• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning for Next-generation Printed Technologies

    2021-09-10 20:47:18LittyV.ThekkekaraShaminiP.BabyJefferyChanIvanCole

    Litty V.Thekkekara Shamini P. Baby Jeffery Chan Ivan Cole

    Abstract

    Modern science advances towards the development of lightweight wearable and portable applications for the promotion of human-machine interfaces. Among them, the most beneficial ones include the technologies for healthcare, telecommunications, and energy resources. Recent developments in the additive manufacturing otherwise 3D printing sector are promising for largescale applications. It promotes cost-effective production of technologies like sensors, lab on chips, solar cells, and energy storage. However, these applications' efficiency is lower to technologies fabricated using other methods like chemical approaches due to the non-optimized parameters involved in the fabrication and characterization phases. Machine learning on the other hand expands its science and engineering capabilities. It has a broader opportunity to support 3D printing to develop the potentials and efficiency through effective prediction methods for printing methods and design aspects. In this review, we discuss the use of machine learning prediction algorithms for technologies using 3D printing.

    1. Introduction

    Additive manufacturing (AM) [1], also known as 3D printing, is used to create objects using layer-by-layer fabrication methods using a CAD design model. Rapid fabrication time and better process control for even arbitrary shape formation from nano to mesoscale results in cost-effective interactive devices with minimum material wastage and lower energy requirements, ensuring the promising future of the 3D printing industries [2]. Different 3D printing methods include binder jetting, material extrusion, material jetting, powder bed fusion, sheet lamination, direct energy deposition, metal casting, and photopolymerization methods like dynamic laser printing (DLP) and Stereolithography (SLA) [3].

    It profoundly impacts areas like automotive, lightweight wearables, portable electronics, energy storage, solar cells, optics, bioengineering, medical applications, and the fashion industry [4]. The applications are not limited to the previously listed, as discovery of materials that support the more dimensions for the fabrication, like 4D printing promotes new applications [5].

    However, the 3D printing process-based applications have several limitations in achieving the best performance due to the non-optimal final structures [6]. The primary issue preventing the development of an ideal output structure using 3D printing processing could be the reduced heat dissipation time in the fabrication materials. It can lead to difficulties in developing desired shapes in the output with non-desired roughness. Besides, the stitching errors contributed by the 3D printing source can result in resolution issues, which results in misconfigured structures, voids, and interlayer spacing problems in the final output.

    Several other factors, like the mechanical delays in the printing system, non-coordination between computer software used for the control and the printing system, thermal relaxation of dynamic optical and other mechanical systems, non-optimization of the designs utilized, can influence the printing process [7]. In recent years, the utilization of artificial intelligence (AI) and its sub-fields like machine learning (ML) for 3D printing show a promise in developing a self-intelligent automated fabrication process through assistance in design, choosing material, material tuning, process optimization, in situ monitoring, defect recognition, cloud service, and cybersecurity [8].

    With the utilization of the processed information and data, the ML training network figure out how to make decisions [9]. ML is dynamic, implying that it can alter itself when exposed to more information. The 'learning' part of ML means that the algorithms attempt to limit the errors and boost likelihood of their predictions being valid.

    The field of ML has organized around three primary research: (1) task-oriented studies, involving the development and analysis of learning systems to improve performance in a predetermined set of tasks, (2) cognitive simulation used for investigation and computer simulation of human learning processes and finally, (3) analysis such as the theoretical space exploration of possible learning methods and algorithms independent of application domain [10].

    Deep Learning (DL) which is a subset of ML incorporates computational models and algorithms that imitate the architecture of the brains biological neural networks, which are termed artificial neural networks (ANNs)[11]. Deep Neural Networks (DNNs) are used in various applications, such as object recognition in images and acoustic processing for speech recognition [12]. Whenever the brain gets new data, it attempts to contrast with known data to make sense. The brain decodes the information through labeling and assigning the items to various categories, and DL employs the same concept.

    ‘Deep is a technical term and refers to the number of layers in an ANN. There are three types of layers: (a) an input layer (receives the input data), (b) a output layer (produces the result of data processing), and (3) the hidden layer (extracts the patterns within the data) [13]. While the information moves from one hidden layer to another, more superficial features recombine and recompose complex elements. DL works exceptionally well on unstructured data and has higher accuracy than traditional ML approaches for unsupervised training, but requires a considerable volume of training data, along with expensive hardware and software.

    Here, we discuss the current use of ML in 3D printing, and perspectives about the improvement in this area using advanced ML methodologies significantly to optimize the prefabrication design process, defect/failure detection, real-time 3D printing control/failure compensation, predictive maintenance, cost optimization and photopolymerization using ML-based algorithm to maximize control on chemicals and energy dose input.

    2. ML for 3D Printing Applications

    There has been a lot of recent interest in adopting ML methods for scientific and engineering applications using 3D printing[14]. Recently, a lot of attention has been given for printable graphical codes enabling a link between the physical and digital worlds, which is of great interest for anti-counterfeiting, Internet of Things (IoT), and brand protection applications[15].

    In a demonstrated work, an automated ML segmentation procedure to create a virtual object to be printed [16]. They made an accurate 3D printed core sample replicas using an ML image processing tool (MLIPT). Another application of ML technique s in the? prediction of the hole-filling in pin-in-paste technology[17]. A detailed evaluation of ML-based prediction methods is performed in this research, including artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (AFNIS), and gradient boosted decision trees to optimize the process parameters of pin-in-paste. Another relevant 3D printing application that has potential use is concrete printing. In this application, the ANN model optimizes the surface finish quality and potentially affects bonding strength between layers [18].

    In addition to all these printable applications, shape accuracy is an important performance measure or product built via 3D printing. Some works[19] adopted Gaussian process regression to capture spatial correlations. The printed 2-D and 3-D shapes are used to demonstrate the proposed modeling framework and derive new process insights for fabrication process. The proposal for developing a useful tool with the potential for broad application in planning and optimizing 3D printing of soft materials with Hierarchical ML algorithms (HML)[20]. HML algorithm predicts the problematic physical system behaviours using sparse data sets through the integration of physical modeling using statistical learning. This methodology simultaneously optimizes material, formulation, and process variables.

    In a report on manufacturing a 3D printer, the functional surfaces of printing medium are developed with DLs help[21]. This methodology is beneficial for printing highly biological samples like bone prosthetics, regenerative biomedicines, and fabrication directly on the human bodys internal organs like implantation of sensors for in-situ monitoring of lungs functioning and heart. 3D printing of biomaterials for tissue-engineering by utilizing random forest ML algorithms is a significant step towards more accurate and efficient biomedical applications [22] 3D printed personalized pharmaceuticals and medicines depending on the individual patient necessities are now accomplished using ML algorithms[23].

    ML applications in optical technologies attain exceptional attention in recent years.? The ML use gained rapid growth in the sectors like laser beam-material interactions for fundamental material science studies helped understand the physical and chemical property changes [24]. ML is used to enhance the disc's data storage capacity by fabricating the optical structures beyond the diffraction limit of light[25]. ML algorithms have helped to develop and discover better photonic designs for optical communications, augmented realities, displays, holography, meta-optics, adaptive optics, metrology, and quantum optics using 3D printing [26]. Apart from these studies, recently, researchers are successful in 3D printing a framework of multiple layers of diffractive surfaces, which in the collective form an optical analog of a neural network for statistical learning and termed as a diffractive deep neural network (D2NN)[26f]. In the framework, both the networks interference and prediction mechanism are all-optical through a computer-controlled design.

    We have summarized the ML applications in different steps of developing a 3D printing from material selection towards the optimization and characterization of the processed device in Figure 1.

    3. Challenges of ML use in 3D printing

    For ML, the training data is the critical input where having the right quality and quantity of data sets is essential to get accurate results. The larger the ML algorithms training data, it will more likely to help the model to see diverse types of objects, making it easier to recognize and generalize to diverse real-life scenarios. Data collection is a significant bottleneck in ML. We envision that requirement for (training) data play a larger role in specifying ML systems than for conventional methods. This information needs to be elicited from the problem domain and serves as an input[27].

    It is known that the major time for running ML end-to-end is spent on preparing the data, which includes collecting, cleaning, analyzing, visualizing, and feature engineering. There are two reasons for which data collection has recently become a critical issue. First, as ML is becoming more widely used, we can see new applications that do not necessarily have enough labeled data. Second, unlike traditional ML, deep learning techniques can be used by unsupervised training to generate automatic features, which saves feature engineering costs, but in return, may require more massive amounts of labeled data [27].

    Supervised ML models are successfully used to respond to a whole range of challenges. However, these models need more data, and their performance relies heavily on the size of training sets available. In many cases, it is not easy to create training datasets that are large enough, particularly for engineering tasks. It is impossible to precisely estimate the minimum amount of data required for AI projects. The nature of every project will significantly influence the amount of data we will need. Many 3D printing systems do record data during the builds, and that this data could be curated and collected to assist with ML. Besides, other factors such as ‘number of categories to be predicted and ‘model performance should be considered to make an accurate estimate.

    4. Perspectives

    There is a wide range of ML algorithms available, and their applications are immense. Here we can adopt a suitable method that gives minimum errors and maximum accuracy for our printing applications. It will enable the analysis to focus on the available scientific measurements and the actual optimization process using the essential experimental and simulated data points. One successful example in this field is a study conducted by Google Health to measure breast cancer signs with few input variables [28]. Another approach is in the designing of pharmacologically relevant chemical space with drug-like molecular entities on demand with limited training data [29]. The final model aims to have better accuracy and a lesser time frame than numerical simulations.

    Fault management is a functional area of systems management related to the detection, prediction, isolation, and prevention of faults. A model is trained by looking at the systems fault-free state, and can be used in all printing processes today as they have much simpler requirements to system expertise or data needed or training the fault-free models [30]. AI can have a more significant influence in the field of automating 3D printing workflows. The printability of an object can be analyzed before starting the fabrication process. The quality of a part can also be predicted, and the process can be controlled to avoid printing errors, effectively saving time. Material selection can also be automated with AI depending on the requirements of the design to be printed. A flowchart for the process is as shown in Figure 3 below.

    We propose a model that can predict accurate results with the supply of minimum input data for printable scientific applications using appropriate design and suitable materials. Using the data prediction aspects of machine learning by incorporating computer simulation, develop an ML model that can predict better and accurate results using lesser input data. The final model aims to have better accuracy and a more secondary time frame than numerical simulations. Design optimization of printable applications can be done with the help of a Deep Neural network (DNN), which is a self-learning model and accurate by nature. In this approach, performance improvement and optimization methodologies such as Backtracking in DNN [31] and Bayesian optimization [32] can be applied iteratively to get precise outcomes. At each iteration, local optima can be evolved, and that can be used as the input to the next iteration. In this way, the performance will increase and minimize errors, which will result in an optimized design model. A perspective for our hypothesis is given in Figure 4 below.

    In conclusion, we propose a model that can predict accurate results with minimum input data supply. We consider printable scientific applications using appropriate design, suitable materials, and optimization of the fabrication process. This research aims to utilize the data prediction aspects of ML by incorporating computer simulation techniques. In this process, we can develop an ML model that can predict better and accurate results using lesser input data for the feed loop mechanism.

    ACKNOWLEDGMENTS

    This research was supported (partially or fully) by the Australian Government through the Australian Research Councils Discovery Projects funding scheme (project DP170103174).

    AUTHOR CONTRIBUTIONS

    All authors contributed equally to the design, writing, and editing of the manuscript.

    COMPETING INTERESTS

    The authors declare no competing financial interests.

    Reference

    [1] I. Gibson, D. W. Rosen, B. Stucker, Additive manufacturing technologies, Springer, 2014.

    [2] a) H. Lipson, M. Kurman, Fabricated: The new world of 3D printing, John Wiley & Sons, 2013; b) B. Berman, Business horizons 2012, 55, 155; c) L. Jonu?auskas, D. Gailevi?ius, S. Rek?tyt?, T. Baldacchini, S. Juodkazis, M. Malinauskas, Optics express 2019, 27, 15205.

    [3] a) T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Composites Part B: Engineering 2018, 143, 172; b) S. Maruo, O. Nakamura, S. Kawata, Optics letters 1997, 22, 132; c) S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.

    [4] a) J. Chang, T. Ge, E. Sanchez-Sinencio, presented at 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS) 2012; b) A. Vanderploeg, S.-E. Lee, M. Mamp, International Journal of Fashion Design, Technology and Education 2017, 10, 170; c) S. Khan, L. Lorenzelli, R. S. Dahiya, IEEE Sensors Journal 2014, 15, 3164; d) Q. Yan, H. Dong, J. Su, J. Han, B. Song, Q. Wei, Y. Shi, Engineering 2018, 4, 729; e) C. Schubert, M. C. Van Langeveld, L. A. Donoso, British Journal of Ophthalmology 2014, 98, 159; f) J. A. Lewis, B. Y. Ahn, Nature 2015, 518, 42; g) S.-Y. Wu, C. Yang, W. Hsu, L. Lin, Microsystems & Nanoengineering 2015, 1, 1; h) Y. L. Kong, I. A. Tamargo, H. Kim, B. N. Johnson, M. K. Gupta, T.-W. Koh, H.-A. Chin, D. A. Steingart, B. P. Rand, M. C. McAlpine, Nano letters 2014, 14, 7017; i) G. Comina, A. Suska, D. Filippini, Lab on a Chip 2014, 14, 424; j) L. V. Thekkekara, M. Gu, Scientific reports 2017, 7, 45585; k) Y. Liu, T. T. Larsen-Olsen, X. Zhao, B. Andreasen, R. R. S?ndergaard, M. Helgesen, K. Norrman, M. J?rgensen, F. C. Krebs, X. Zhan, Solar energy materials and solar cells 2013, 112, 157; l) A. Ghilan, A. P. Chiriac, L. E. Nita, A. G. Rusu, I. Neamtu, V. M. Chiriac, Journal of Polymers and the Environment 2020, 1.

    [5] a) A. Mitchell, U. Lafont, M. Ho?yńska, C. Semprimoschnig, Additive Manufacturing 2018, 24, 606; b) D. Bourell, J. P. Kruth, M. Leu, G. Levy, D. Rosen, A. M. Beese, A. Clare, CIRP Annals 2017, 66, 659.

    [6] a) B. Ahuja, M. Karg, M. Schmidt, presented at Laser 3d manufacturing II 2015; b) S. Yang, Y. F. Zhao, The International Journal of Advanced Manufacturing Technology 2015, 80, 327; c) N. Kouraytem, X. Li, W. Tan, B. Kappes, A. Spear, Journal of Physics: Materials 2020.

    [7] a) D. I. Wimpenny, P. M. Pandey, L. J. Kumar, Advances in 3D Printing and Additive Manufacturing Technologies, Springer Singapore Pte. Limited, Singapore, SINGAPORE 2016; b) G. A. Adam, D. Zimmer, Rapid Prototyping Journal 2015.

    [8] a) U. Delli, S. Chang, Procedia Manufacturing 2018, 26, 865; b) Z. Jin, Z. Zhang, J. Ott, G. X. Gu, Additive Manufacturing 2020, 101696; c) H. Zhang, S. K. Moon, T. H. Ngo, ACS applied materials & interfaces 2019, 11, 17994; d) T. Wang, T.-H. Kwok, C. Zhou, S. Vader, Journal of manufacturing systems 2018, 47, 83; e) T. DebRoy, T. Mukherjee, H. Wei, J. Elmer, J. Milewski, Nature Reviews Materials 2020, 1; f) C. Wang, X. P. Tan, S. B. Tor, C. S. Lim, Additive Manufacturing 2020, 36, 101538; g) G. D. Goh, S. L. Sing, W. Y. Yeong, Artificial Intelligence Review 2020, 1; h) L. Scime, J. Beuth, Additive Manufacturing 2019, 25, 151; i) L. Scime, J. Beuth, Additive Manufacturing 2018, 19, 114; j) A. Caggiano, J. Zhang, V. Alfieri, F. Caiazzo, R. Gao, R. Teti, CIRP Annals 2019, 68, 451.

    [9] F. Pesapane, M. Codari, F. Sardanelli, European radiology experimental 2018, 2, 35.

    [10] R. MICHALSIK, J. Carbonell, L. MICHE, Palo Alto: Tioga Publishing,? 1983.

    [11] J. Schmidhuber, Neural networks 2015, 61, 85.

    [12] M. E. Morocho-Cayamcela, H. Lee, W. Lim, IEEE Access 2019, 7, 137184.

    [13] B. F. King Jr, Am Roentgen Ray Soc,? 2017.

    [14] D. Jakhar, I. Kaur, Clinical and experimental dermatology 2020, 45, 131.

    [15] O. Taran, S. Bonev, S. Voloshynovskiy, presented at ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019.

    [16] A. Almetwally, H. Jabbari, Journal of Natural Gas Science and Engineering 2020, 76, 103192.

    [17] P. Martinek, O. Krammer, Computers & Industrial Engineering 2019, 136, 187.

    [18] W. Lao, M. Li, T. N. Wong, M. J. Tan, T. Tjahjowidodo, Virtual and Physical Prototyping 2020, 15, 178.

    [19] Q. Huang, Y. Wang, M. Lyu, W. Lin, IEEE Transactions on Automation Science and Engineering 2020.

    [20] A. Menon, B. Póczos, A. W. Feinberg, N. R. Washburn, 3D Printing and Additive Manufacturing 2019, 6, 181.

    [21] Z. Zhu, D. W. H. Ng, H. S. Park, M. C. McAlpine, Nature Reviews Materials 2021, 6, 27.

    [22] A. Conev, E. E. Litsa, M. R. Perez, M. Diba, A. G. Mikos, L. E. Kavraki, Tissue Engineering Part A 2020.

    [23] M. Elbadawi, B. Mu?iz Castro, F. K. H. Gavins, J. J. Ong, S. Gaisford, G. Pérez, A. W. Basit, P. Cabalar, A. Goyanes, International Journal of Pharmaceutics 2020, 590, 119837.

    [24] a) G. Casalino, Optics & Laser Technology 2018, 100, 165; b) J. Zhou, B. Huang, Z. Yan, J.-C. G. Bünzli, Light: Science & Applications 2019, 8, 1.

    [25] P. R. Wiecha, A. Lecestre, N. Mallet, G. Larrieu, Nature nanotechnology 2019, 14, 237.

    [26] a) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Nature 2017, 549, 195; b) F. N. Khan, Q. Fan, C. Lu, A. P. T. Lau, Journal of Lightwave Technology 2019, 37, 493; c) F. N. Khan, C. Lu, A. P. T. Lau, presented at 2018 Optical Fiber Communications Conference and Exposition (OFC) 2018; d) Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, Nanophotonics 2020, 1; e) L. Li, H. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alù, C.-W. Qiu, T. J. Cui, Nature communications 2019, 10, 1; f) X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan, Science 2018, 361, 1004; g) H. Ren, W. Shao, Y. Li, F. Salim, M. Gu, Science Advances 2020, 6, eaaz4261; h) S. You, J. Guan, J. Alido, H. H. Hwang, R. Yu, L. Kwe, H. Su, S. Chen, Journal of Manufacturing Science and Engineering 2020, 142.

    [27] J. P. Winkler, J. Gr?nberg, A. Vogelsang, presented at 2019 IEEE 27th International Requirements Engineering Conference (RE) 2019.

    [28] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H. Ashrafian, T. Back, M. Chesus, G. C. Corrado, A. Darzi, Nature 2020, 577, 89.

    [29] M. Moret, L. Friedrich, F. Grisoni, D. Merk, G. Schneider, Nature Machine Intelligence 2020, 2, 171.

    [30] F. Baumann, D. Roller, presented at MATEC web of conferences 2016.

    [31] G. Chartrand, P. M. Cheng, E. Vorontsov, M. Drozdzal, S. Turcotte, C. J. Pal, S. Kadoury, A. Tang, Radiographics 2017, 37, 2113.

    [32] F. Archetti, A. Candelieri, Bayesian Optimization and Data Science, Springer, 2019.

    一区二区三区乱码不卡18| 国产视频内射| 最近中文字幕高清免费大全6| 嫩草影院精品99| 亚洲av免费在线观看| 汤姆久久久久久久影院中文字幕 | 国内精品美女久久久久久| 亚洲成人av在线免费| 熟妇人妻久久中文字幕3abv| 内射极品少妇av片p| 久久久久免费精品人妻一区二区| 中文字幕久久专区| 中文在线观看免费www的网站| 一级毛片我不卡| 97精品久久久久久久久久精品| 热99在线观看视频| 日韩欧美 国产精品| 久久久久精品久久久久真实原创| 中文字幕人妻熟人妻熟丝袜美| 麻豆乱淫一区二区| 午夜福利视频1000在线观看| 久久午夜福利片| 国产黄色小视频在线观看| 亚洲av成人av| 日韩欧美三级三区| 国产精品国产三级国产av玫瑰| 国内揄拍国产精品人妻在线| 免费高清在线观看视频在线观看| 亚洲国产高清在线一区二区三| 白带黄色成豆腐渣| 99久久九九国产精品国产免费| 国产一区二区三区综合在线观看 | 天堂俺去俺来也www色官网 | 精品99又大又爽又粗少妇毛片| 99热这里只有是精品在线观看| 麻豆成人午夜福利视频| 卡戴珊不雅视频在线播放| av播播在线观看一区| 亚洲自拍偷在线| 亚洲自拍偷在线| 街头女战士在线观看网站| av在线观看视频网站免费| 全区人妻精品视频| 国产熟女欧美一区二区| 看免费成人av毛片| 波野结衣二区三区在线| 免费观看在线日韩| 插逼视频在线观看| 国产高清不卡午夜福利| 精品不卡国产一区二区三区| 亚洲色图av天堂| 黄色一级大片看看| www.av在线官网国产| 80岁老熟妇乱子伦牲交| 亚洲av中文字字幕乱码综合| 国产一区有黄有色的免费视频 | 精品久久久久久久人妻蜜臀av| 大又大粗又爽又黄少妇毛片口| 极品教师在线视频| 国产人妻一区二区三区在| 午夜爱爱视频在线播放| 国内精品宾馆在线| 一区二区三区乱码不卡18| 一级毛片久久久久久久久女| 激情五月婷婷亚洲| 亚洲av成人av| 一边亲一边摸免费视频| 国产成年人精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲熟女精品中文字幕| 久久精品人妻少妇| 国内精品美女久久久久久| 亚洲欧美日韩无卡精品| 黄色一级大片看看| 少妇高潮的动态图| 大香蕉久久网| 看十八女毛片水多多多| 黄色配什么色好看| 欧美日韩综合久久久久久| 精品国产一区二区三区久久久樱花 | 午夜福利视频1000在线观看| 久久6这里有精品| 亚洲国产精品成人综合色| 国产精品久久视频播放| 97热精品久久久久久| 毛片一级片免费看久久久久| 婷婷色综合www| 久久久色成人| 老司机影院成人| 禁无遮挡网站| 亚洲综合精品二区| 亚洲va在线va天堂va国产| 国产精品嫩草影院av在线观看| 性色avwww在线观看| 婷婷色综合www| 亚洲欧美中文字幕日韩二区| 人体艺术视频欧美日本| 可以在线观看毛片的网站| 乱码一卡2卡4卡精品| 一级爰片在线观看| 精品国内亚洲2022精品成人| 欧美潮喷喷水| 91狼人影院| 免费无遮挡裸体视频| 你懂的网址亚洲精品在线观看| 国产精品一区二区性色av| 久久热精品热| 日本色播在线视频| 亚洲伊人久久精品综合| 丰满人妻一区二区三区视频av| av免费在线看不卡| 午夜激情久久久久久久| av一本久久久久| 偷拍熟女少妇极品色| 国产av国产精品国产| 天天躁日日操中文字幕| 五月天丁香电影| 午夜精品在线福利| 晚上一个人看的免费电影| 欧美成人午夜免费资源| 99久久人妻综合| 99久久精品一区二区三区| 99re6热这里在线精品视频| av天堂中文字幕网| 我的老师免费观看完整版| 久久久午夜欧美精品| 日本午夜av视频| 一级毛片 在线播放| 黑人高潮一二区| 亚洲最大成人av| 人人妻人人看人人澡| 国产又色又爽无遮挡免| 免费大片黄手机在线观看| 欧美xxⅹ黑人| 欧美日韩在线观看h| 男人舔女人下体高潮全视频| 欧美精品国产亚洲| 淫秽高清视频在线观看| 亚洲精品久久午夜乱码| 亚洲aⅴ乱码一区二区在线播放| 午夜福利视频1000在线观看| 国产麻豆成人av免费视频| 中文字幕亚洲精品专区| 欧美一级a爱片免费观看看| 人妻一区二区av| 99视频精品全部免费 在线| 国产爱豆传媒在线观看| 美女大奶头视频| 婷婷六月久久综合丁香| 亚洲欧洲日产国产| 午夜福利视频精品| 非洲黑人性xxxx精品又粗又长| 成人亚洲精品av一区二区| 中文在线观看免费www的网站| kizo精华| 国产精品一区二区在线观看99 | 国产成人91sexporn| 高清av免费在线| 69人妻影院| 高清欧美精品videossex| 国产乱来视频区| 又爽又黄无遮挡网站| 国产亚洲av片在线观看秒播厂 | 亚洲欧美一区二区三区黑人 | 久久精品国产亚洲av天美| 亚洲av成人精品一区久久| 亚洲精品一二三| 亚洲第一区二区三区不卡| 久久99蜜桃精品久久| 国产精品一及| 噜噜噜噜噜久久久久久91| av卡一久久| 国产淫片久久久久久久久| 直男gayav资源| 精品久久久久久久人妻蜜臀av| 成人亚洲精品一区在线观看 | 哪个播放器可以免费观看大片| 亚洲怡红院男人天堂| 国产成人福利小说| 日本爱情动作片www.在线观看| 毛片女人毛片| 91精品国产九色| 国产免费又黄又爽又色| 国产一区二区三区综合在线观看 | 日本免费在线观看一区| 久久精品人妻少妇| 亚洲国产精品sss在线观看| www.色视频.com| 97在线视频观看| 日日干狠狠操夜夜爽| 人妻少妇偷人精品九色| 女人被狂操c到高潮| 久久精品国产鲁丝片午夜精品| 亚洲在线观看片| kizo精华| 大话2 男鬼变身卡| 亚洲自拍偷在线| 国产亚洲91精品色在线| 国产综合精华液| 欧美xxxx黑人xx丫x性爽| 日韩 亚洲 欧美在线| 天堂影院成人在线观看| 日韩成人伦理影院| 欧美三级亚洲精品| 国产 一区精品| 一级a做视频免费观看| 久久6这里有精品| 免费黄色在线免费观看| 日日啪夜夜爽| 国产在线男女| 黄色一级大片看看| 国产女主播在线喷水免费视频网站 | 日本色播在线视频| 亚洲国产欧美在线一区| 午夜亚洲福利在线播放| 久99久视频精品免费| 日日啪夜夜爽| 国产精品一区二区三区四区免费观看| 日韩av不卡免费在线播放| 久久精品综合一区二区三区| 一区二区三区四区激情视频| 亚洲成人久久爱视频| 国产成人精品一,二区| 国产精品一区二区三区四区免费观看| 男人舔奶头视频| 国产欧美另类精品又又久久亚洲欧美| 一级毛片久久久久久久久女| 亚洲最大成人手机在线| 别揉我奶头 嗯啊视频| 免费大片黄手机在线观看| 国产三级在线视频| 一级毛片电影观看| 最近中文字幕高清免费大全6| 18禁裸乳无遮挡免费网站照片| 别揉我奶头 嗯啊视频| 老司机影院毛片| 高清日韩中文字幕在线| 国产在视频线精品| 国产成人精品一,二区| 成人毛片60女人毛片免费| 国产黄a三级三级三级人| 亚洲成人久久爱视频| 亚洲精华国产精华液的使用体验| 国产三级在线视频| 免费观看性生交大片5| 精品久久久久久成人av| 国产熟女欧美一区二区| 国产男人的电影天堂91| 最近的中文字幕免费完整| 麻豆成人av视频| 热99在线观看视频| 精品欧美国产一区二区三| 久久久精品免费免费高清| 国内少妇人妻偷人精品xxx网站| 美女xxoo啪啪120秒动态图| 男女那种视频在线观看| 草草在线视频免费看| 秋霞在线观看毛片| 久久久久久久久久人人人人人人| 亚洲综合色惰| 18禁在线播放成人免费| 欧美高清性xxxxhd video| av福利片在线观看| 99热网站在线观看| 国产精品熟女久久久久浪| 国产伦理片在线播放av一区| 久久99蜜桃精品久久| 一区二区三区四区激情视频| 欧美 日韩 精品 国产| 九草在线视频观看| 99久久精品热视频| 亚洲四区av| 欧美潮喷喷水| av在线观看视频网站免费| 欧美激情在线99| 又黄又爽又刺激的免费视频.| 国产爱豆传媒在线观看| 97超视频在线观看视频| 久久久久九九精品影院| 色5月婷婷丁香| 黄片wwwwww| 777米奇影视久久| 国产淫片久久久久久久久| 99久国产av精品| 人妻制服诱惑在线中文字幕| 精品一区二区免费观看| 好男人视频免费观看在线| 日韩亚洲欧美综合| 国产成人a区在线观看| 岛国毛片在线播放| 97人妻精品一区二区三区麻豆| 高清av免费在线| 一区二区三区免费毛片| 国产激情偷乱视频一区二区| 成年版毛片免费区| 日韩三级伦理在线观看| 中文乱码字字幕精品一区二区三区 | 国产v大片淫在线免费观看| 中国美白少妇内射xxxbb| 亚洲乱码一区二区免费版| 丝袜美腿在线中文| 真实男女啪啪啪动态图| 国产成人精品福利久久| 最近最新中文字幕免费大全7| 亚洲人与动物交配视频| 国产精品不卡视频一区二区| 街头女战士在线观看网站| 亚洲欧美日韩卡通动漫| 国产高清三级在线| 亚洲精品久久久久久婷婷小说| 两个人视频免费观看高清| 老师上课跳d突然被开到最大视频| 国产永久视频网站| 久久99热这里只频精品6学生| 久久精品国产鲁丝片午夜精品| 久久久久久九九精品二区国产| 嫩草影院新地址| 又爽又黄a免费视频| 男人舔奶头视频| 亚洲精品影视一区二区三区av| 啦啦啦韩国在线观看视频| 亚洲熟女精品中文字幕| 亚洲va在线va天堂va国产| 赤兔流量卡办理| 亚洲av成人精品一二三区| 国产老妇伦熟女老妇高清| 熟妇人妻久久中文字幕3abv| 久久久成人免费电影| 天堂俺去俺来也www色官网 | 一本久久精品| 在线天堂最新版资源| 亚洲精品影视一区二区三区av| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 免费av观看视频| 国产亚洲午夜精品一区二区久久 | 一区二区三区高清视频在线| 成人av在线播放网站| 日本-黄色视频高清免费观看| 一区二区三区免费毛片| 人体艺术视频欧美日本| 春色校园在线视频观看| 成年女人看的毛片在线观看| 国产精品嫩草影院av在线观看| 高清午夜精品一区二区三区| 久久国内精品自在自线图片| 日本-黄色视频高清免费观看| 国产在视频线精品| 天堂中文最新版在线下载 | 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 三级毛片av免费| 在线观看av片永久免费下载| 欧美xxxx性猛交bbbb| 永久网站在线| 国产人妻一区二区三区在| 国产女主播在线喷水免费视频网站 | 国产探花极品一区二区| 校园人妻丝袜中文字幕| 精品少妇黑人巨大在线播放| 男女边吃奶边做爰视频| 精品国内亚洲2022精品成人| 日韩三级伦理在线观看| 天堂网av新在线| 亚州av有码| 国产成人精品一,二区| 亚洲自偷自拍三级| 国产欧美日韩精品一区二区| 激情五月婷婷亚洲| 国产伦精品一区二区三区四那| 日本猛色少妇xxxxx猛交久久| 啦啦啦韩国在线观看视频| 国产国拍精品亚洲av在线观看| 天堂影院成人在线观看| 亚洲国产欧美在线一区| 亚洲av中文字字幕乱码综合| 国产精品精品国产色婷婷| 亚洲精华国产精华液的使用体验| 国产综合精华液| 久久精品国产亚洲av涩爱| 一级毛片久久久久久久久女| 人妻制服诱惑在线中文字幕| 又大又黄又爽视频免费| 成人二区视频| eeuss影院久久| 亚洲人成网站在线播| 又大又黄又爽视频免费| 午夜久久久久精精品| 七月丁香在线播放| 黄色欧美视频在线观看| 久久久精品94久久精品| 国产亚洲精品av在线| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 国产精品精品国产色婷婷| 麻豆成人av视频| 日本av手机在线免费观看| 国产成人freesex在线| 久久97久久精品| 女人久久www免费人成看片| 嫩草影院入口| 免费观看在线日韩| 日韩 亚洲 欧美在线| 婷婷色麻豆天堂久久| 成年免费大片在线观看| 男人舔女人下体高潮全视频| 久久精品国产亚洲av天美| 99热网站在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲18禁久久av| 日本一本二区三区精品| 我的女老师完整版在线观看| 精品久久久久久久久久久久久| 亚洲一级一片aⅴ在线观看| 男女那种视频在线观看| 国国产精品蜜臀av免费| 欧美+日韩+精品| 女人十人毛片免费观看3o分钟| 亚洲av二区三区四区| 能在线免费看毛片的网站| 免费观看在线日韩| 最近的中文字幕免费完整| 国产亚洲5aaaaa淫片| 国产精品伦人一区二区| 精品久久久久久电影网| 中文字幕久久专区| 欧美性猛交╳xxx乱大交人| 久久久久久久久久成人| 性插视频无遮挡在线免费观看| 久久久久久久久久人人人人人人| 在线 av 中文字幕| 免费高清在线观看视频在线观看| 特大巨黑吊av在线直播| 亚洲国产精品专区欧美| 国产色婷婷99| 成人漫画全彩无遮挡| 不卡视频在线观看欧美| 一区二区三区免费毛片| 日韩欧美 国产精品| 三级毛片av免费| 亚洲国产精品sss在线观看| 蜜桃久久精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天堂av国产一区二区熟女人妻| 我要看日韩黄色一级片| 欧美不卡视频在线免费观看| 国产亚洲av嫩草精品影院| 在线观看av片永久免费下载| 国产一级毛片在线| av免费在线看不卡| 赤兔流量卡办理| 天美传媒精品一区二区| 最近中文字幕2019免费版| 日日摸夜夜添夜夜添av毛片| 一夜夜www| 国产男女超爽视频在线观看| 国产老妇伦熟女老妇高清| 汤姆久久久久久久影院中文字幕 | 免费高清在线观看视频在线观看| 亚洲精品国产av蜜桃| 免费av毛片视频| 欧美97在线视频| 舔av片在线| 欧美不卡视频在线免费观看| 国产精品熟女久久久久浪| 神马国产精品三级电影在线观看| 中文字幕亚洲精品专区| 亚洲18禁久久av| 97超碰精品成人国产| 免费观看无遮挡的男女| 亚洲欧美精品自产自拍| 天堂俺去俺来也www色官网 | 蜜桃亚洲精品一区二区三区| av免费在线看不卡| 免费看不卡的av| 欧美zozozo另类| 欧美日韩一区二区视频在线观看视频在线 | 免费观看无遮挡的男女| 国产免费福利视频在线观看| 久久精品久久久久久久性| 亚洲欧洲国产日韩| 啦啦啦韩国在线观看视频| 18禁在线播放成人免费| 色网站视频免费| 在线免费十八禁| 久久国产乱子免费精品| 国产 一区 欧美 日韩| 男女边吃奶边做爰视频| 欧美激情久久久久久爽电影| 在线 av 中文字幕| 日本色播在线视频| 一级爰片在线观看| 狂野欧美激情性xxxx在线观看| 九草在线视频观看| 亚洲精品日本国产第一区| av播播在线观看一区| 久久久久久久久久久丰满| 亚洲熟妇中文字幕五十中出| 亚洲在久久综合| 亚洲欧美清纯卡通| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲av天美| 日本猛色少妇xxxxx猛交久久| 一个人看视频在线观看www免费| 一区二区三区乱码不卡18| 国产乱人视频| 欧美成人午夜免费资源| 麻豆国产97在线/欧美| 国产一区二区三区综合在线观看 | 在线观看免费高清a一片| 身体一侧抽搐| 99久国产av精品| 五月玫瑰六月丁香| 一个人看视频在线观看www免费| 亚洲综合精品二区| 日本与韩国留学比较| videos熟女内射| 激情 狠狠 欧美| 成人亚洲欧美一区二区av| 能在线免费观看的黄片| 黄片wwwwww| 国产探花在线观看一区二区| 国产av国产精品国产| 亚洲av日韩在线播放| 干丝袜人妻中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品乱久久久久久| 亚洲精品一二三| 午夜老司机福利剧场| 蜜臀久久99精品久久宅男| 精品久久久久久久久久久久久| 国产视频首页在线观看| 色网站视频免费| 日韩一区二区三区影片| 久久久久久久久大av| 国产精品不卡视频一区二区| 亚洲va在线va天堂va国产| av在线观看视频网站免费| 又爽又黄a免费视频| 舔av片在线| 精品国产露脸久久av麻豆 | 成人毛片a级毛片在线播放| 嘟嘟电影网在线观看| 国产一区亚洲一区在线观看| 内射极品少妇av片p| 亚洲最大成人手机在线| av国产免费在线观看| 啦啦啦韩国在线观看视频| 91久久精品国产一区二区成人| 22中文网久久字幕| 免费黄网站久久成人精品| 成人特级av手机在线观看| av福利片在线观看| 天堂俺去俺来也www色官网 | 国产久久久一区二区三区| 国产视频首页在线观看| 精品国产露脸久久av麻豆 | 国产乱人视频| 日日啪夜夜爽| 免费看美女性在线毛片视频| 国产成人精品久久久久久| 如何舔出高潮| 国国产精品蜜臀av免费| 色网站视频免费| 久久精品久久久久久久性| 五月玫瑰六月丁香| 精品酒店卫生间| 免费黄色在线免费观看| 美女黄网站色视频| 十八禁网站网址无遮挡 | 日韩欧美精品v在线| 夜夜爽夜夜爽视频| 免费观看无遮挡的男女| 午夜日本视频在线| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看| 边亲边吃奶的免费视频| av线在线观看网站| 欧美一区二区亚洲| 亚洲精品乱码久久久v下载方式| 丰满乱子伦码专区| 在线天堂最新版资源| 国产精品久久久久久久久免| 有码 亚洲区| 欧美日韩综合久久久久久| 超碰97精品在线观看| 亚洲av.av天堂| 一个人看视频在线观看www免费| 男人爽女人下面视频在线观看| 亚洲av成人精品一二三区| 日韩成人伦理影院| 好男人在线观看高清免费视频| 男人舔女人下体高潮全视频| 欧美高清成人免费视频www| 亚洲欧美清纯卡通| 免费看a级黄色片| 成人美女网站在线观看视频| 一二三四中文在线观看免费高清| 亚洲精品亚洲一区二区| 又黄又爽又刺激的免费视频.| 久久97久久精品| 亚洲av国产av综合av卡| 久久久久久久亚洲中文字幕| 久久6这里有精品| 久久久午夜欧美精品| 成人美女网站在线观看视频| 男女视频在线观看网站免费| 国产极品天堂在线| 乱码一卡2卡4卡精品| 久久99热这里只频精品6学生| 中文字幕av成人在线电影| 丝袜喷水一区| 日日摸夜夜添夜夜爱| 只有这里有精品99| 成年女人在线观看亚洲视频 |