• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism Study of Rice Straw Pyrolysis by Fourier Transform Infrared Technique*

    2009-05-14 03:04:24FUPeng付鵬HUSong胡松XIANGJun向軍SUNLushi孫路石YANGTao楊濤ZHANGAnchao張安超andZHANGJunying張軍營
    關(guān)鍵詞:楊濤軍營

    FU Peng (付鵬), HU Song (胡松), XIANG Jun(向軍), SUN Lushi (孫路石), YANG Tao (楊濤), ZHANG Anchao (張安超) and ZHANG Junying (張軍營)

    ?

    Mechanism Study of Rice Straw Pyrolysis by Fourier Transform Infrared Technique*

    FU Peng (付鵬), HU Song (胡松)**, XIANG Jun(向軍), SUN Lushi (孫路石), YANG Tao (楊濤), ZHANG Anchao (張安超) and ZHANG Junying (張軍營)

    State Key Lab of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

    rice straw, pyrolysis, mechanism, Fourier transform infrared

    1 INTRODUCTION

    With the excessive use of fossil fuels and the concerns over environmental protection, the utilization of biomass resources has attracted increasing worldwide interest. Biomass including agricultural residues is one of the main renewable energy resources available especially in an agricultural country such as China. Biomass can be converted to energy and clean fuelsthermochemical and biochemical processes. Pyrolysis, as one of the promising thermochemical conversion routes, plays a vital role in biomass conversion [1]. Pyrolysis is also a vital process in biomass combustion and gasification [2]. However, pyrolysis is an extremely complex process, which generally goes through a series of reactions and can be influenced by many factors [3-5]. Thus, it is necessary to analyze the pyrolysis characteristics of agriculture residues and build comprehensive pyrolysis models that can predict product specification and yields.

    So far, numerous studies were focused on developing kinetics models for predicting behavior of biomass pyrolysis [3, 5-7]. The structure property of biomass was found to influence greatly the pyrolysis characteristics. However, the releasing characteristics of gas products, their relationships with the chemical structure of biomass, and the chemical structure changes during pyrolysis were not discussed in-depth in the previous studies. The lack of data, combining with the large variety and complexity of agricultural residues, leads to difficulties in understanding emission behavior of agricultural residues during the thermal treatment process.

    Rice straw is one of the China’s main agricultural residue resources. Rice straw is not only a potential source of energy but also a value-added by-product. Various technologies for utilization of rice straw through thermochemical conversion requires knowledge of relevant aspects concerning pyrolysis. In the present study, we focused on the gas formation behaviors during pyrolysis of rice straw. The changes in the surface chemistry during pyrolysis were also studied by FTIR analysis. From these measurements, the pyrolysis mechanism of rice straw was examined in details. It is favorable for the development of advanced biomass pyrolysis.

    2 EXPERIMENTAL

    2.1 Experiment materials

    Rice straws (RS) were used in this study as the representatives of agricultural residues. RS were first crushed and sieved, the fraction of particle sizes less than 0.295 mm being chosen for subsequent studies. Elemental analysis and proximate analysis were carried out in a Euro-EA 3000 (HEKAtech, Italy) and TGA-2000 (Navas Instruments, Spain). The respective data are given in Table 1.

    Table 1 Proximate and ultimate analysis of rice straw

    ① Dry and ash-free basis.

    ②Calculated by difference.

    ③As-received basis.

    2.2 Experiment method

    2.2.1

    Thermogravimetric experiments were carried out on a computerized thermobalance (NETZSCH STA 409C, Germany). Thermobalance configuration gives a sensitivity of 0.1 mg. In order to establish an inert atmosphere, a controlled nitrogen flow (fixed at 300 ml·min-1) sweeps the measurement cell that is purged during 30 min. During experiments, the nitrogen flow is fixed at 100 ml·min-1. The initial mass of samples is about 10 mg. The experiments were carried out at a constant heating rate of 5, 10, 20 and 50°C·min-1from the ambient to 900°C, at a steady nitrogen flow of 100 ml·min-1.

    2.2.2

    The experimental apparatus mainly consists of a tubular reactor and a Fourier transform infrared spectrometer. The portable FTIR gas analyzer, GASMET Dx-4000 (Temet Instrument Oy, Finland) FTIR spectrometer, is designed for analysis of multicomponent gases. After the background calibration by N2, test gases were conducted into the sampler and heated up to 180°C during the entire sampling procedure. In the FTIR spectrometer, specific molecular components and structures were specified by the corresponding infrared absorption bands, which allowed the computerized data to be searched against the reference libraries. The concentrations of the gases were further confirmed by classical least squares (CLS) algorithm.

    Pyrolysis experiments were carried out as follows. About a (1.0±0.05) g of virgin biomass particles was loaded into the sample holder and the sample holder assembly was inserted into the cylindrical quartz tube reactor. Then the sample was heated up to 900°C at a constant heating rate of 10°C·min-1, and held for 5 min. Purified nitrogen (≥99.995%) at a flow rate of 2.0 L·min-1was used as the carrier gas to provide an inert atmosphere for pyrolysis. The gases released out were swept immediately to a gas cell, followed by the Gasmet FTIR Dx4000. The transfer line and gas cell were heated to an internal temperature of 180°C in order to avoid cold spots and thus prevent the condensation of the gaseous products. The evolving rates of gaseous products were estimated from the measurements.

    2.2.3

    To investigate the changes in the surface chemistry during pyrolysis, information on the surface chemistry of the samples was provided by FTIR spectroscopy. The raw sample was heated at a constant heating rate of 10°C·min-1to a fixed pyrolysis temperature varied from 200-900°C. The pyrolysis temperatures investigated were 200, 300, 350, 400, 500, 700 and 900°C. The residence time at the maximum temperature was 10 min. This holding time made sure that no significant decomposition occurred during the cooling of the sample. All the IR spectra of rice straw and the chars prepared at different pyrolysis temperatures were measured at 4 cm-1resolution on the VERTEX 70 FTIR spectrometer. The samples were first powdered in an agate mortar and then mixed with KBr at a ratio of 1︰100 to prepare transparent disks. The disks were oven-dried at 110°C for at least 48h to remove water. Eventually, the spectra were plotted with the same scale on the transmittance axis. Abbreviations used in the study of the FTIR results are, stretching;, in-plane bending;, out-of-place bending; as, asymmetric; and s, symmetric.

    3 RESULTS AND DISCUSSION

    3.1 Thermal decomposition characteristics

    The thermogravimetric (TG) and differential thermogravimetric (DTG) curves at a heating rate of 10°C·min-1for rice straw are shown in Fig. 1. The pyrolysis process with the increase of temperature from TG can be divided into three stages, including drying stage(<200°C), main pyrolysis stage (200-400°C), and carbonization stage(>400°C). At the temperature lower than 200°C, the small change of mass is attributed to vaporization of moisture attached on the surface of the sample. The major decomposition occurs between 220 and 380°C. The maximum pyrolysis peak (7.3%·min-1) at 313°C is attributed to the decomposition of cellulose and hemicellulose [8]. Lignin is known to decompose slowly and is responsible for the tailing at high temperatures. As can be seen from Fig. 2, with increasing the heating rate, the maximum pyrolysis rate increases and the corresponding temperature also increases from 304°C at 5°C·min-1to 327°C at 50°C·min-1.

    Figure 1 TG and DTG curves of rice straw pyrolysis

    Figure 2 Comparison of pyrolysis DTG of rice straw at the different heating rates heating rate/°C·min-1:■?5;○?10;△?20; ★?50

    3.2 Kinetic modeling

    A kinetic study of rice straw pyrolysis is necessary to achieve an efficient production of fuel gases, chemicals and energy. The information is also important for the design of large-scale pyrolysis reactors. In this study, the three-pseudocomponent model (TPM) proposed in the Ref. [6] is used for the evaluation of the kinetics. The TPM model assumes that the biomass consists of three pseudocomponents and the pyrolysis rate is then described by

    The variableis the degree of transformation. The subscriptsrepresents the different pseudocomponent of the biomass. Parametersc,andare the coefficient which expresses the contribution of the partial processes to the overall mass loss, the activation energy and the pre-exponential factor andis ideal gas constant.

    This assumption of three pseudocomponents is consistent with the fact that most of biomass consists of hemicellulose, cellulose and lignin. In fact, three pseudocomponents represent a pool of fractions of the main biomass components. Depending on the reaction order, the following kinetic equations are used for each pseudocomponent:

    Hu. [6] pointed out that the three- pseudocomponent model with a reaction order of one could have sufficiently high accuracy to represent biomass pyrolysis for practical utilization. Therefore, the TPM model is used to evaluate the thermal decomposition of rice straw, as shown in Fig. 3. In the view of the previous discussion [6], the decomposition of the raw material is considered as the result of the degradation of its main constituents. Therefore, the three reactions utilized for the simulation of rice straw correspond to the thermal degradation of cellulose, hemicellulose and lignin. The kinetic parameters for rice straw are summarized in Table 2.

    Figure 3 indicates that the pyrolysis of rice straw is quite well described by the three-pseudocomponent model with a reaction order of one. According to the kinetic estimations, the first reaction, which corresponds to hemicellulose, occurs between 250 and 360°C, and the second corresponding to cellulose happens between 200 and 300°C. The third reaction corresponding to the decomposition of lignin appears over a wide temperature range (between 250 and 550°C). Fundamental studies of the decomposition of lignocellulosic materials show the same ranges for the decomposition of hemicellulose, cellulose and lignin, confirming the validity of the results [9-11]. The activation energy of hemicellulose range between the values of 91-114 kJ·mol-1. The corresponding values for the pyrolysis of cellulose are higher and range between 143 and 200 kJ·mol-1. The lowest activation energy values are exhibited by lignin and scattered between 20 and 27 kJ·mol-1. Similar values for activation energies of hemicellulose, cellulose and lignin are also found in the Ref. [12].

    Table 2 Kinetic parameters of rice straw pyrolysis

    ① Pre-exponential factor.

    ② Activation energy.

    ③ Fit represents the calculation quality of the three-pseudocomponent model.

    3.3 FTIR analysis of gas products

    Figure 4 shows the typical IR spectra of gas products in the three different pyrolysis stages for rice straw. Several representative temperatures in each pyrolysis stage are chosen to study the formation mechanism of main gas products. In the first stage, the mass loss is mainly caused by the release of water [Fig. 4 (a)], with the characteristic bands of H2O at 3500-4000 and 1275-1875cm-1. The water attached onthe surface of the sample is released out by evaporation.

    Figure 4 FTIR spectra of gas products at (a) 125°C, (b) 300°C and (c) 600°C during the pyrolysis of rice straw

    The main constituents of biomass are lignin, hemicellulose and cellulose [4, 17]. Lignin is a very complex aromatic structure and hemicellulose is a polymer of 5- and 6-carbon sugars, while cellulose is a polymer of glucose [4]. Those structural differences have an influence on the thermal decomposition behaviors of the biomass. Yang. [1] pointed out that the releasing of CO2was mostly contributed by hemicellulose at low temperature (<500°C) and by lignin at high temperature (>500°C), CO releasing was mostly caused by the pyrolysis of hemicellulose in the whole temperature range and that of lignin at high temperatures (>600°C), and hemicellulose, cellulose and lignin all contributed to the releasing of CH4at low, middle and high temperatures.

    Figure 5 The profiles of (a) H2O, (b) CO2, (c) CO and (d) CH4evolving from rice straw pyrolysis

    3.5 FTIR analysis of rice straw

    Figure 6 FTIR spectra of rice straw

    Table 3 The main atomic groups and structures of rice straw

    3.6 Changes in the surface chemistry

    Figure 7 The changes in the FTIR spectra through the pyrolysis of rice straw

    4 CONCLUSIONS

    From the above results, the following conclusions can be drawn:

    (1) The maximum pyrolysis rate increases with the heating rate increasing and the corresponding temperature also increases. The three-pseudocomponent model could describe the pyrolysis behavior of rice straw accurately.

    (2) The main gas products of rice straw pyrolysis are H2O, CO2, CO, CH4, formaldehyde, formic acid, methanol, phenols,. The releasing of H2O, CO2, CO and CH4mainly focuses at 220-400°C. The H2O formation process is separated into two stages corresponding to the evaporation of free water and the formation of primary volatiles. The release of CO2first increases with increasing temperature and gets the maximum at 309°C. The releasing behavior of CO is similar to H2O and CO2between 200 and 400°C. The production of CH4happens at higher temperatures of 275-400°C with the maximum at 309°C.

    1 Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., “Characteristics of hemicellulose, cellulose and lignin pyrolysis”,, 86, 1781-1788 (2007).

    2 Ren, Q., Zhao, C., Wu, X., Liang, C., Chen, X., Shen, J., Tang, G., Wang, Z., “Effect of mineral matter on the formation of NOprecursors during biomass pyrolysis”,..., doi: 10.1016/j.jaap.2008.08.006 (2008).

    3 Manya, J.J., Velo, E., Puigjaner, L., “Kinetics of biomass pyrolysis: A reformulated three-parallel-reactions model”,...., 42, 434-441 (2003).

    4 Becidan, M., Skreiberg, ?., Hustad, J., “Products distribution and gas release in pyrolysis of thermally thick biomass residues samples”,..., 78, 207-213 (2007).

    5 Yan, R., Yang, H., Chin, T., Liang, D.T., Chen, H., Zheng, C., “Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes”,, 142, 24-32 (2005).

    6 Hu, S., Jess, A., Xu, M., “Kinetic study of Chinese biomass slow pyrolysis: Comparison of different kinetic models”,, 86, 2778-2788 (2007).

    7 Babu, B.V., Chaurasia, A.S., “Pyrolysis of biomass: Improved models for simultaneous kinetics and transport of heat, mass and momentum”,, 45, 1297-1327 (2004).

    8 Park, Y.H., Kim, J., Kim, S.S., Park, Y.K., “Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor”,, 100, 400-405 (2009).

    9 Muller-Hagedorn, M., Bockhorn, H., Krebs, L., Muller, U., “A comparative kinetic study on the pyrolysis of three different wood species’’,..., 68/69, 231-249 (2003).

    10 Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D., “Pyrolysis behavior and kinetics of biomass derived materials”,..., 62, 331-349 (2002).

    11 Reed, T. B., Gaur, S., “Atlas of thermal data of biomass and other fuels-A report on the forthcoming book”,, 7, 143-145 (1994).

    12 Grammelis, P., Basinas, P., Malliopoulou, A., Sakellaropoulos, G., “Pyrolysis kinetics and combustion characteristics of waste recovered fuels”,, 88, 195-205 (2009).

    13 Zhu, H.M., Yan, J.H., Jiang, X.G., Lai, Y.E., Cen, K.F., “Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis”,, 153, 670-676 (2008).

    14 Liu, Q., Wang, S., Zheng, Y., Luo, Z., Cen, K., “Mechanism of wood lignin pyrolysis by using TG-FTIR analysis”,..., 82, 170-177 (2008).

    15 Biagini, E., Barontini, F., Tognotti, L., “Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique”,..., 45, 4486-4493 (2006).

    16 Fu, P., Hu, S., Sun, L., Xiang, J., Chen, Q., Yang, T., Zhang, J., “Release characteristics and formation mechanism of gas products during rice straw and maize stalk pyrolysis”,, 29, 113-118 (2009).

    17 Worasuwannarak, N., Sonobe, T., Tanthapanichakoon, W., “Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique”,..., 78, 265-271 (2007).

    18 Painter, P.C., Sobkowiak, M., Youtcheff, J., “FT-IR study of hydrogen bonding in coal”,, 66, 973-978 (1987).

    19 Gómez-Serrano, V., Piriz-Almeida, F., Durán-Valle, C.J., Pastor-Villegas, J., “Formation of oxygen structures by air activation. A study by FT-IR spectroscopy”,, 37, 1517-1528 (1999).

    20 Gómez-Serrano, V., Pastor-Villegas, J., Perez-Florindo, A., Duran-Valle, C., Valenzuela-Calahorro, C., “FT-IR study of rockrose and of char and activated carbon”,..., 36, 71-80 (1996).

    21 Pastor-Villegas, J., Meneses Rodríguez, J.M., Pastor-Valle, J.F., García, M.G., “Changes in commercial wood charcoals by thermal treatments”,..., 80, 507-514 (2007).

    22 Pastor-Villegas, J., Duran-Valle, C.J., Valenzuela-Calahorro, C., Gómez-Serrano, V., “Organic chemical structure and structural shrinkage of chars prepared from rockrose”,, 36, 1251-1256 (1998).

    23 Tang, M.M., Bacon, R., “Carbonization of cellulose fibers (1) Low temperature pyrolysis”,, 2, 211-214 (1964).

    24 Shafizadeh, F., Sekiguchi, Y., “Development of aromaticity in cellulosic chars”,, 21, 511-516 (1983).

    2008-12-03,

    2009-04-07.

    the Special Funds for Major State Basic Research Projects of China (2004CB217704), and the National Natural Science Foundation of China (50721005).

    ** To whom correspondence should be addressed. E-mail: hssh30@163.com

    猜你喜歡
    楊濤軍營
    傳承好紅巖精神 走好新時(shí)代長征路
    九龍坡:一江繞半島 藝術(shù)煥新生
    Quantum reflection of a Bose–Einstein condensate with a dark soliton from a step potential?
    THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTOL LOL
    軍營里的奧運(yùn)會(huì)
    Changes in fi sh diversity and community structure in the central and southern Yellow Sea from 2003 to 2015*
    軍營游
    軍營暢想曲
    心聲歌刊(2017年4期)2017-09-20 11:43:50
    在軍營下棋的歲月(一)
    棋藝(2016年6期)2016-11-14 05:42:17
    幸福夢
    午夜福利在线在线| 亚洲av免费在线观看| 成年版毛片免费区| 赤兔流量卡办理| av黄色大香蕉| 国产v大片淫在线免费观看| 久久久色成人| 99久久无色码亚洲精品果冻| 一个人免费在线观看电影| 久久精品影院6| 国产精品国产三级国产av玫瑰| 18禁黄网站禁片免费观看直播| 日韩中文字幕欧美一区二区| 国产伦在线观看视频一区| 欧美绝顶高潮抽搐喷水| 日韩大尺度精品在线看网址| 免费av观看视频| 国产aⅴ精品一区二区三区波| 中文字幕免费在线视频6| 成年女人毛片免费观看观看9| 桃色一区二区三区在线观看| 桃色一区二区三区在线观看| 51国产日韩欧美| 国产美女午夜福利| 久9热在线精品视频| 18禁裸乳无遮挡免费网站照片| 亚洲七黄色美女视频| 美女xxoo啪啪120秒动态图| 变态另类丝袜制服| 麻豆国产97在线/欧美| 日日撸夜夜添| 日韩欧美一区二区三区在线观看| 日本色播在线视频| 成人国产麻豆网| 少妇丰满av| 精品国产三级普通话版| 久久精品国产亚洲av香蕉五月| 最新中文字幕久久久久| 波多野结衣高清无吗| 亚洲午夜理论影院| 看片在线看免费视频| 久久99热6这里只有精品| 久久久久国内视频| 久久这里只有精品中国| 亚洲精品日韩av片在线观看| 日韩欧美国产一区二区入口| 悠悠久久av| 身体一侧抽搐| 成人毛片a级毛片在线播放| 夜夜看夜夜爽夜夜摸| 一个人看的www免费观看视频| 看十八女毛片水多多多| .国产精品久久| 成人国产综合亚洲| 看免费成人av毛片| 老熟妇乱子伦视频在线观看| 伊人久久精品亚洲午夜| 久久精品国产亚洲av涩爱 | 国产精品国产高清国产av| 91狼人影院| 久久精品国产亚洲av涩爱 | 欧美成人a在线观看| а√天堂www在线а√下载| 校园人妻丝袜中文字幕| 俄罗斯特黄特色一大片| av在线天堂中文字幕| 国产黄色小视频在线观看| 成人午夜高清在线视频| 中国美女看黄片| 99久久精品国产国产毛片| 精品一区二区三区视频在线| 美女cb高潮喷水在线观看| 在现免费观看毛片| 乱系列少妇在线播放| 夜夜夜夜夜久久久久| 久久久国产成人精品二区| 老司机午夜福利在线观看视频| 久久精品国产99精品国产亚洲性色| 国产高清激情床上av| 他把我摸到了高潮在线观看| 亚洲一级一片aⅴ在线观看| 国产精品一区二区三区四区久久| 国产欧美日韩精品亚洲av| 国产黄a三级三级三级人| 亚洲av日韩精品久久久久久密| 男女之事视频高清在线观看| 听说在线观看完整版免费高清| a级毛片a级免费在线| 一个人免费在线观看电影| 91久久精品国产一区二区成人| 色精品久久人妻99蜜桃| 午夜免费激情av| 国产精品一区www在线观看 | 99视频精品全部免费 在线| 亚洲电影在线观看av| ponron亚洲| 午夜福利在线在线| 精品人妻1区二区| 色噜噜av男人的天堂激情| 我的女老师完整版在线观看| 精品乱码久久久久久99久播| 国国产精品蜜臀av免费| 国产精品爽爽va在线观看网站| 精品免费久久久久久久清纯| 夜夜爽天天搞| 日韩高清综合在线| bbb黄色大片| 很黄的视频免费| 欧美高清性xxxxhd video| 国产在线精品亚洲第一网站| 日韩一区二区视频免费看| 亚洲中文日韩欧美视频| 成人永久免费在线观看视频| 国产亚洲精品av在线| 日日摸夜夜添夜夜添av毛片 | 成人特级av手机在线观看| 99国产精品一区二区蜜桃av| 男插女下体视频免费在线播放| 97超级碰碰碰精品色视频在线观看| 91精品国产九色| 国产大屁股一区二区在线视频| 真实男女啪啪啪动态图| 国产av麻豆久久久久久久| 久久精品国产鲁丝片午夜精品 | 美女高潮喷水抽搐中文字幕| 国产一区二区亚洲精品在线观看| 欧美一区二区亚洲| 69人妻影院| 99久久精品国产国产毛片| 又爽又黄无遮挡网站| 国产大屁股一区二区在线视频| 91在线观看av| 欧美三级亚洲精品| 亚洲精品一区av在线观看| 日韩欧美一区二区三区在线观看| 国产精品日韩av在线免费观看| 一夜夜www| 久久久国产成人免费| 一卡2卡三卡四卡精品乱码亚洲| 国产色爽女视频免费观看| 免费av观看视频| .国产精品久久| 身体一侧抽搐| 亚洲美女黄片视频| 88av欧美| 亚洲av一区综合| 中国美女看黄片| 国产视频内射| 日韩欧美国产在线观看| 国产免费男女视频| 成年女人看的毛片在线观看| 精品人妻视频免费看| 国产精品国产三级国产av玫瑰| 亚洲精品国产成人久久av| 欧美黑人巨大hd| 97超级碰碰碰精品色视频在线观看| 国产又黄又爽又无遮挡在线| 国产精品野战在线观看| 三级男女做爰猛烈吃奶摸视频| 12—13女人毛片做爰片一| 国产 一区精品| 久久久久久久久久黄片| 色播亚洲综合网| 别揉我奶头~嗯~啊~动态视频| 日本在线视频免费播放| 欧美高清成人免费视频www| 永久网站在线| 亚洲美女黄片视频| 一进一出好大好爽视频| 久久精品综合一区二区三区| 欧美xxxx黑人xx丫x性爽| 久久久久性生活片| 级片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕日韩| 欧美日韩精品成人综合77777| 国产黄a三级三级三级人| 亚洲精品影视一区二区三区av| 少妇人妻精品综合一区二区 | 在线观看舔阴道视频| 国产精品久久电影中文字幕| 国产一区二区激情短视频| 亚洲欧美日韩高清专用| 两个人的视频大全免费| x7x7x7水蜜桃| 亚洲av免费在线观看| 亚洲精品一区av在线观看| 久久精品国产自在天天线| 色综合亚洲欧美另类图片| 欧美成人性av电影在线观看| 一级黄片播放器| 精品久久久噜噜| 色综合色国产| 亚洲乱码一区二区免费版| 床上黄色一级片| 久久九九热精品免费| 91精品国产九色| 中国美白少妇内射xxxbb| 大型黄色视频在线免费观看| 波多野结衣高清作品| 国产精品久久视频播放| 特大巨黑吊av在线直播| 日韩欧美在线乱码| 日韩欧美 国产精品| 国产精品国产三级国产av玫瑰| 欧美成人一区二区免费高清观看| 女人被狂操c到高潮| 日韩在线高清观看一区二区三区 | 97超视频在线观看视频| 欧美zozozo另类| 欧美中文日本在线观看视频| 欧美最黄视频在线播放免费| 一级黄色大片毛片| www日本黄色视频网| 免费大片18禁| 韩国av在线不卡| 国内精品久久久久精免费| 久久精品91蜜桃| 他把我摸到了高潮在线观看| 99久久无色码亚洲精品果冻| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区| 欧美一区二区精品小视频在线| 久久婷婷人人爽人人干人人爱| 欧美在线一区亚洲| 国产精品久久电影中文字幕| 日本熟妇午夜| 免费看a级黄色片| 国产成人福利小说| 99精品久久久久人妻精品| 成人综合一区亚洲| 国产极品精品免费视频能看的| 九九久久精品国产亚洲av麻豆| 色播亚洲综合网| 国产精品久久电影中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 深夜a级毛片| av在线天堂中文字幕| 非洲黑人性xxxx精品又粗又长| 午夜精品一区二区三区免费看| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 久久久久国内视频| 国产在视频线在精品| 麻豆成人av在线观看| 一区福利在线观看| 一区二区三区免费毛片| 亚洲图色成人| 看十八女毛片水多多多| 久久精品久久久久久噜噜老黄 | 亚洲人与动物交配视频| 黄色欧美视频在线观看| 亚洲国产高清在线一区二区三| 色吧在线观看| 性色avwww在线观看| av黄色大香蕉| 国产乱人伦免费视频| 黄片wwwwww| 少妇裸体淫交视频免费看高清| 国产成人av教育| 99热精品在线国产| 欧美三级亚洲精品| 国产精品一及| 99久久无色码亚洲精品果冻| 亚洲图色成人| 国产白丝娇喘喷水9色精品| 黄片wwwwww| 亚洲国产精品成人综合色| 国产精品久久久久久久久免| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站 | 三级国产精品欧美在线观看| www.色视频.com| 嫩草影院入口| 日本在线视频免费播放| 国产精品98久久久久久宅男小说| 热99在线观看视频| 日韩av在线大香蕉| 蜜桃亚洲精品一区二区三区| 欧美绝顶高潮抽搐喷水| 美女免费视频网站| 两个人视频免费观看高清| 久久草成人影院| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观| 国产伦人伦偷精品视频| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日本亚洲视频在线播放| 日韩欧美免费精品| 亚洲精品456在线播放app | 亚洲无线在线观看| 国产麻豆成人av免费视频| 看片在线看免费视频| 亚洲精品在线观看二区| 亚洲av一区综合| 校园春色视频在线观看| 三级男女做爰猛烈吃奶摸视频| 丰满的人妻完整版| 成人无遮挡网站| 欧美极品一区二区三区四区| 黄色一级大片看看| 九九久久精品国产亚洲av麻豆| 中亚洲国语对白在线视频| 高清在线国产一区| 欧美区成人在线视频| 亚州av有码| 俺也久久电影网| 色av中文字幕| 日韩,欧美,国产一区二区三区 | 国产精品久久久久久精品电影| 一个人观看的视频www高清免费观看| 99久久成人亚洲精品观看| av.在线天堂| 深夜精品福利| 乱系列少妇在线播放| av在线亚洲专区| 3wmmmm亚洲av在线观看| 69av精品久久久久久| 亚洲美女搞黄在线观看 | 一区二区三区激情视频| 99热只有精品国产| 国产精品一区www在线观看 | 亚洲国产欧洲综合997久久,| 少妇人妻精品综合一区二区 | 一级a爱片免费观看的视频| 天天躁日日操中文字幕| 精品99又大又爽又粗少妇毛片 | 亚洲aⅴ乱码一区二区在线播放| 级片在线观看| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类 | 丰满乱子伦码专区| 性欧美人与动物交配| 欧美日韩瑟瑟在线播放| 久久人人爽人人爽人人片va| x7x7x7水蜜桃| 国产探花极品一区二区| 婷婷六月久久综合丁香| 97热精品久久久久久| 免费在线观看日本一区| 国产免费一级a男人的天堂| 综合色av麻豆| 成人鲁丝片一二三区免费| 欧美激情久久久久久爽电影| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看 | 1000部很黄的大片| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| 国产精品1区2区在线观看.| 亚洲国产欧洲综合997久久,| 精品人妻熟女av久视频| 欧美日韩国产亚洲二区| 午夜a级毛片| 一本一本综合久久| 少妇的逼水好多| 18禁黄网站禁片免费观看直播| 一边摸一边抽搐一进一小说| 成人综合一区亚洲| 午夜影院日韩av| 成人无遮挡网站| 啦啦啦韩国在线观看视频| 人人妻,人人澡人人爽秒播| 女人十人毛片免费观看3o分钟| 黄色丝袜av网址大全| 91午夜精品亚洲一区二区三区 | 日韩在线高清观看一区二区三区 | 最近中文字幕高清免费大全6 | 亚洲中文字幕一区二区三区有码在线看| 99热只有精品国产| 国产麻豆成人av免费视频| 成人高潮视频无遮挡免费网站| 久久中文看片网| 乱系列少妇在线播放| 特级一级黄色大片| 我的女老师完整版在线观看| 国产精品一区www在线观看 | 免费看美女性在线毛片视频| 九九爱精品视频在线观看| 神马国产精品三级电影在线观看| 欧美zozozo另类| 精品一区二区三区av网在线观看| 午夜福利高清视频| 丰满的人妻完整版| 久久久久性生活片| 免费无遮挡裸体视频| 男女边吃奶边做爰视频| 色av中文字幕| av在线蜜桃| 18禁在线播放成人免费| 欧美高清性xxxxhd video| av在线蜜桃| 美女xxoo啪啪120秒动态图| 亚洲男人的天堂狠狠| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 直男gayav资源| 久久人人精品亚洲av| 欧美成人一区二区免费高清观看| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 在线看三级毛片| 国产一级毛片七仙女欲春2| 18禁在线播放成人免费| 国产高清三级在线| 深夜a级毛片| 99久久无色码亚洲精品果冻| 成人欧美大片| 亚洲成人中文字幕在线播放| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜添av毛片 | 91麻豆av在线| 国产精品综合久久久久久久免费| 在线观看美女被高潮喷水网站| 欧美高清性xxxxhd video| 大型黄色视频在线免费观看| 一个人观看的视频www高清免费观看| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 好男人在线观看高清免费视频| 亚洲欧美日韩东京热| 99在线人妻在线中文字幕| 精品午夜福利视频在线观看一区| 国产免费一级a男人的天堂| 91在线精品国自产拍蜜月| 人妻丰满熟妇av一区二区三区| av国产免费在线观看| 午夜爱爱视频在线播放| 黄色配什么色好看| 国产大屁股一区二区在线视频| 午夜福利在线在线| 春色校园在线视频观看| 中国美白少妇内射xxxbb| 亚洲熟妇中文字幕五十中出| 亚洲欧美精品综合久久99| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 亚洲在线观看片| 久久人人精品亚洲av| 在线免费十八禁| 国产精品一区二区三区四区免费观看 | 亚洲成a人片在线一区二区| 97碰自拍视频| 国产精品av视频在线免费观看| 成人av在线播放网站| 婷婷亚洲欧美| 乱人视频在线观看| 九色国产91popny在线| 最新中文字幕久久久久| 亚洲人与动物交配视频| 久久精品91蜜桃| 99riav亚洲国产免费| 少妇高潮的动态图| 噜噜噜噜噜久久久久久91| 淫妇啪啪啪对白视频| 黄片wwwwww| 在线免费观看不下载黄p国产 | 国产伦人伦偷精品视频| 黄色欧美视频在线观看| 国产高清激情床上av| 欧美3d第一页| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 国产精品亚洲美女久久久| 亚洲无线在线观看| 国内精品久久久久精免费| 精品一区二区免费观看| 中文字幕精品亚洲无线码一区| 精品一区二区三区视频在线观看免费| 免费搜索国产男女视频| 欧美日韩瑟瑟在线播放| 噜噜噜噜噜久久久久久91| 免费观看精品视频网站| 国产免费av片在线观看野外av| 性欧美人与动物交配| av中文乱码字幕在线| 久久久色成人| 日本成人三级电影网站| 成人午夜高清在线视频| 色5月婷婷丁香| av在线天堂中文字幕| 少妇的逼水好多| 亚洲av成人av| 亚洲精品乱码久久久v下载方式| 国产一区二区三区av在线 | av中文乱码字幕在线| 欧美xxxx性猛交bbbb| 国产高潮美女av| 嫁个100分男人电影在线观看| 一个人看的www免费观看视频| 国内毛片毛片毛片毛片毛片| 国产激情偷乱视频一区二区| 五月玫瑰六月丁香| 亚洲天堂国产精品一区在线| 少妇被粗大猛烈的视频| 色视频www国产| 久久久午夜欧美精品| 国产亚洲av嫩草精品影院| 18+在线观看网站| 香蕉av资源在线| 亚洲精品456在线播放app | 非洲黑人性xxxx精品又粗又长| 婷婷亚洲欧美| 99热网站在线观看| 特大巨黑吊av在线直播| 91久久精品电影网| 91久久精品国产一区二区三区| 国产色婷婷99| 在线免费观看的www视频| av黄色大香蕉| 91麻豆精品激情在线观看国产| 别揉我奶头 嗯啊视频| 国产蜜桃级精品一区二区三区| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 成人二区视频| 人人妻,人人澡人人爽秒播| 能在线免费观看的黄片| 成人av一区二区三区在线看| 给我免费播放毛片高清在线观看| 麻豆成人av在线观看| 午夜福利在线观看吧| 黄色配什么色好看| 狠狠狠狠99中文字幕| 伦精品一区二区三区| 嫩草影院精品99| 在线播放无遮挡| 九九热线精品视视频播放| 啦啦啦观看免费观看视频高清| 深夜精品福利| 国产aⅴ精品一区二区三区波| 一进一出好大好爽视频| 亚洲美女搞黄在线观看 | 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 午夜影院日韩av| 久久99热6这里只有精品| 村上凉子中文字幕在线| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 国内精品久久久久久久电影| 国产爱豆传媒在线观看| 成人性生交大片免费视频hd| 国产一级毛片七仙女欲春2| 毛片女人毛片| 久久精品91蜜桃| 国产成人影院久久av| 国产精品亚洲一级av第二区| 亚洲va在线va天堂va国产| 又紧又爽又黄一区二区| 国模一区二区三区四区视频| 一级黄色大片毛片| 在线观看午夜福利视频| 在线观看免费视频日本深夜| 99久久无色码亚洲精品果冻| 亚洲av二区三区四区| 91久久精品国产一区二区成人| 欧美日韩瑟瑟在线播放| 午夜亚洲福利在线播放| 伦精品一区二区三区| 嫩草影院新地址| 特级一级黄色大片| 亚洲av熟女| 婷婷亚洲欧美| 久久天躁狠狠躁夜夜2o2o| 欧美最新免费一区二区三区| 最近最新免费中文字幕在线| 在线a可以看的网站| 性色avwww在线观看| 一区二区三区激情视频| 午夜精品在线福利| 一进一出抽搐gif免费好疼| 久久午夜亚洲精品久久| 国内精品美女久久久久久| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 午夜爱爱视频在线播放| 成人毛片a级毛片在线播放| 最近在线观看免费完整版| 中文字幕熟女人妻在线| 韩国av一区二区三区四区| 天美传媒精品一区二区| 天天一区二区日本电影三级| 日本爱情动作片www.在线观看 | 久久久久国产精品人妻aⅴ院| 我要搜黄色片| 伊人久久精品亚洲午夜| 深爱激情五月婷婷| 内射极品少妇av片p| 久久6这里有精品| 精品福利观看| 久久国内精品自在自线图片| 嫩草影视91久久| 国产单亲对白刺激| 欧美又色又爽又黄视频| 亚洲欧美激情综合另类| 亚洲乱码一区二区免费版| 亚洲人成网站在线播| 九九久久精品国产亚洲av麻豆| 午夜久久久久精精品| 88av欧美| 真人做人爱边吃奶动态| 欧美一区二区国产精品久久精品| 国产激情偷乱视频一区二区| 舔av片在线| 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 99久久九九国产精品国产免费| 亚洲黑人精品在线| 国产熟女欧美一区二区| 国内精品宾馆在线| 波多野结衣高清无吗| 欧美中文日本在线观看视频|