許洋洋,李 偉,王 杰
1.鄭州工業(yè)應(yīng)用技術(shù)學(xué)院 機(jī)電工程學(xué)院,鄭州451100
2.鄭州大學(xué) 電氣工程學(xué)院,鄭州450001
基于視覺的控制一直是計(jì)算機(jī)視覺和控制領(lǐng)域的一個(gè)研究課題,其最主要的應(yīng)用就是在機(jī)器人領(lǐng)域[1-3]。由于視覺數(shù)據(jù)的復(fù)雜性,圖像處理算法所花費(fèi)的時(shí)間不僅很長,而且隨著圖像的顏色、特征的可檢測性和擴(kuò)展性以及分割的可能性等特性的不同,所花費(fèi)的時(shí)間也會(huì)有很大的變化[4]。此外,視覺算法本身會(huì)做出復(fù)雜的決策,這也會(huì)帶來顯著的運(yùn)行延時(shí)[5-7]。因此為了減少延時(shí),現(xiàn)有的方法種類很多,如,Horsssen等人[8]通過在驅(qū)動(dòng)策略中增加閾值,來減小延時(shí),Chang等人[9]通過結(jié)合控制和低延時(shí)通信約束來解決該延時(shí)問題。但這些方法都存在運(yùn)算復(fù)雜、實(shí)際部署困難等缺點(diǎn)。另外,在圖像處理中由于會(huì)存在大量異常數(shù)據(jù),所以隨機(jī)樣本一致性(RANSAC)[10]被廣泛使用于消除數(shù)據(jù)的異常值,如王可等人[11]提出在RANSAC框架下建立全概率混合模型來處理圖像,李秀智等人[12]利用RANSAC結(jié)合最小二乘法來提高算法精度。但由于這類方法的特性,需要花費(fèi)大量時(shí)間來運(yùn)行,導(dǎo)致產(chǎn)生延時(shí)。為了解決延時(shí)問題,在此基于Prakash等人[13]提出的方法,提出了一個(gè)基于期限和事件驅(qū)動(dòng)控制算法(DEC),解決視覺機(jī)器人在運(yùn)行中的延時(shí)問題,并同時(shí)考慮了RANSAC方法運(yùn)行過程中的延時(shí)問題。DEC方法的核心思想是以固定的周期更新閉環(huán)系統(tǒng),但前提是延時(shí)小于限時(shí),并且事件驅(qū)動(dòng)的控制算法在事件發(fā)生時(shí)立即使用新數(shù)據(jù)。為了驗(yàn)證提出方法的性能,在此使用了一個(gè)全向機(jī)器人通過對攝像機(jī)獲得圖像的處理,讓其在有彩色標(biāo)記的環(huán)境中移動(dòng)。
如圖1所示,一個(gè)全向機(jī)器人在帶有彩色標(biāo)記的平面場上移動(dòng)。機(jī)器人配備了一個(gè)車載攝像頭,可以觀察機(jī)器人前方的環(huán)境。通過Wi-Fi連接,基站(包含外部處理和控制平臺(tái))獲取攝像機(jī)圖像并對其進(jìn)行處理,從而對機(jī)器人在環(huán)境中的位置估計(jì)。利用位置估計(jì),控制器確定速度反饋控制信號(hào),該信號(hào)通過Wi-Fi連接傳輸回機(jī)器人。假設(shè)Wi-Fi連接中的延時(shí)與圖像處理延時(shí)相比可以忽略不計(jì)。機(jī)器人計(jì)算并應(yīng)用對應(yīng)于反饋信號(hào)的適當(dāng)車輪運(yùn)動(dòng),從而達(dá)到流程的循環(huán)。
圖1 全向機(jī)器人的基于圖片的反饋流程Fig.1 Feedback processing of omnidirectional robots based on picture
將機(jī)器人建模并控制為二維地面上的剛體。如圖2所示,在此引入一個(gè)機(jī)器人自身位置框架{R}與世界位置框架{W}之間關(guān)系。機(jī)器人框架的原點(diǎn)固定在機(jī)器人三角形底座的幾何中心。對于這兩個(gè)幀,前兩個(gè)坐標(biāo)軸位于曲面上,最后一個(gè)坐標(biāo)軸指向曲面外,因此和是平行的。機(jī)器人有三個(gè)自由度:沿和方向平移x和y,繞旋轉(zhuǎn)ψ。
圖2 標(biāo)記的環(huán)境下機(jī)器人俯視圖Fig.2 Top view of robot in marked environment
p=[x,y,ψ]T表示機(jī)器人相對于世界坐標(biāo)系的姿態(tài)。機(jī)器人的速度用表示?;拘D(zhuǎn)矩陣如公式(1):
基本旋轉(zhuǎn)矩陣將機(jī)器人框架中的一個(gè)姿態(tài)與世界框架中的一個(gè)姿態(tài)聯(lián)系起來,這樣就可以寫出世界框架中的速度,對于t∈?≥0,可用公式(2)計(jì)算知:
將機(jī)器人基于圖像的反饋控制輸入uC作為機(jī)器人的速度設(shè)定值,即vR(t)=uC(t),t∈?≥0。本文主要研究x和y方向上的運(yùn)動(dòng),為了應(yīng)用文獻(xiàn)[1]中的線性系統(tǒng)設(shè)計(jì),假設(shè)機(jī)器人的方向是固定的,即對于所有t∈?≥0,假設(shè)ψ(t)=ψ0,其中ψ0∈[ 0 ,2π)。從公式(2)可以看出,系統(tǒng)動(dòng)力學(xué)是由線性模型給出的,如公式(3)所示:
如圖2所示,相機(jī)位于地平面上的機(jī)器人框架中的位置pO=[xO,yO,ψO]T處地面上的固定高度h∈?≥0處,并且在表面上具有觀察框架{O}。定位算法用于根據(jù)攝像機(jī)圖像計(jì)算機(jī)器人位置的估計(jì)值,表示為。
機(jī)器人的目標(biāo)是遵循預(yù)定的參考軌跡pref:?≥0→?2×[0,2)其中與機(jī)器人旋轉(zhuǎn)相對應(yīng)的第三個(gè)元素是所有t∈?≥0的等于ψ0的常數(shù)。公式(3)對應(yīng)的前饋控制動(dòng)作uFF在機(jī)器人中實(shí)現(xiàn),詳見第3章。由于模型失配和干擾,真實(shí)系統(tǒng)與公式(3)不完全匹配,機(jī)器人偏離期望軌跡pref。
對模型失配的影響和擾動(dòng)進(jìn)行建模,作為p元素上獨(dú)立的連續(xù)時(shí)間加維納過程(Wiener processes),在離散時(shí)間內(nèi),p元素可以看作是加性高斯白噪聲擾動(dòng)。因此,可以考慮標(biāo)準(zhǔn)形式的連續(xù)時(shí)間的隨機(jī)微分方程載體模型,如公式(4)所示:
在這里Ac=0,Bc=Rz(ψ0),并且Bw=diag([Bw,x,Bw,y,Bw,ψ]),式中Bw,x、Bw,y、Bw,ψ為擾動(dòng)的標(biāo)準(zhǔn)差,p(t)∈為狀態(tài),u(t)∈為t∈?≥0時(shí)的應(yīng)用控制輸入,w為nw維納過程,在Inwdt中協(xié)方差遞增,其中Inw為nw×nw大小的恒等矩陣。注意,由于Inw和Bw不是時(shí)變的,所以噪聲的方差在連續(xù)時(shí)間內(nèi)不是時(shí)變的。注意,雖然dw是標(biāo)準(zhǔn)白噪聲,但Bwdw的單位在物理上對應(yīng)于線性和角度位置的位移擾動(dòng)。此外,u=uFF+uFB,其中uFB是控制反饋項(xiàng)。注意(Ac,Bc)是可控的,Bc是滿秩可逆的。
控制目標(biāo)是線性二次高斯型成本函數(shù)的最小化,如公式(5)所示:
這里,gc(e,u)=eTQce+uTRcu,具有正定矩陣Qc,Rc?0,其中包括偏離參考軌跡pref(t)的成本和應(yīng)用反饋控制動(dòng)作uFB(t)的懲罰,其中:
在公式(6)中,在這里uk∈?3和tk控制更新時(shí)間k∈?,最小化式(4)受隨機(jī)定位延時(shí)和過程擾動(dòng)的影響。在本文中,證明了可以用概率分布函數(shù)(probability distribution function,pdf)f:?>0→? 或相應(yīng)的累積分布函數(shù)(cumulative distribution function,cdf)F:?>0→[0,1]描述的隨機(jī)過程對拍攝圖像和將姿態(tài)估計(jì)值p呈現(xiàn)給控制器的時(shí)間之間的延時(shí)τ來建模。為了解決具有隨機(jī)測量時(shí)滯的控制問題,將應(yīng)用文獻(xiàn)[13]中提出的隨機(jī)驅(qū)動(dòng)時(shí)滯系統(tǒng)的控制設(shè)計(jì)思想。第3章詳細(xì)介紹了控制策略,以及如何在當(dāng)前情況下應(yīng)用這些策略。
在本章中,將解釋在機(jī)器人中實(shí)現(xiàn)的控制算法。速度控制輸入u()
t,t∈?是數(shù)字實(shí)現(xiàn)的,具體如公式(7):
首先,在此討論了前饋控制uFF,它用于引導(dǎo)機(jī)器人沿著參考軌跡運(yùn)動(dòng)。其次,討論了基于圖像的反饋控制uFB,它可以校正與參考值的偏差,并且最小化公式(5)。完整的參考跟蹤控制方案如圖3所示。
圖3 基于前饋和視覺反饋的控制方案Fig.3 Control scheme based on feedforward and visual feedback
在此由于前饋更新率明顯高于反饋更新率,因此可以認(rèn)為前饋對于反饋問題是理想的。對于給定的可微參考軌跡pref:?≥0→?2×[ 0 ,2π),考慮公式(4),當(dāng)Bw=0時(shí),所有t∈?滿足p(t)=pref(t)的輸入uFF:
由于Bc=Rz(ψ0)是一個(gè)旋轉(zhuǎn)矩陣,它總是可逆的。近似于公式(8),在數(shù)字域中,在的時(shí)間間隔內(nèi),對應(yīng)于20 Hz的更新率,在此實(shí)現(xiàn)了t∈[nTFF,(n+1)TFF),n∈? ,分段常數(shù)輸入,如公式(9):
在這里,如果Bw=0,則p(nTFF)=pref(nTFF),n∈?。
為了補(bǔ)償前饋控制不可能實(shí)現(xiàn)的干擾w的影響,在跟蹤控制配置中使用攝像機(jī)圖像。如前文所述,局部化步驟可以用pdff的隨機(jī)延時(shí)來建模。用e表示在時(shí)間tk獲得的圖像在所有k∈?處的處理延時(shí),對于在此的設(shè)置來說,這是分布f的獨(dú)立同分布(independently identically distribution,iid)實(shí)現(xiàn)。接下來,將研究對于公式(6)和基于pdff和cdfF的測量延時(shí),在這里可以將文獻(xiàn)[9]的思想用于控制設(shè)計(jì)。
首先,在這里定義了跟蹤誤差e(t)=p(t)-pref(t),t∈?≥0,根據(jù)公式(4)和(8)得到了誤差動(dòng)力學(xué)模型,如公式(10):
通過對誤差系統(tǒng)(10)在采樣時(shí)間tk,k∈?的離散化,那么可以得到公式(11):
在這里,hk可以通過tk+1-tk計(jì)算得到,A(h)為eAch,擾動(dòng)是一個(gè)具有協(xié)方差的零均值獨(dú)立隨機(jī)向量wk∈?nw,k∈?序列,其中W(h)=代表h∈?≥0。注意,自協(xié)方差W(hk)僅取決于采樣間隔hk,而不取決于采樣實(shí)例tk。
平均成本(5)可以改寫成公式(12):
式中,N()
T為并且g( )
e,u,h=,這是與維納過程的內(nèi)部采樣行為相關(guān)聯(lián)的成本。
由于提出的系統(tǒng)具有簡單的動(dòng)力學(xué),Ac=0,Bc=Rz(ψ0),那么得到和接下來,將解釋此系統(tǒng)的期限驅(qū)動(dòng)和事件驅(qū)動(dòng)控制方案。
3.2.1 期限驅(qū)動(dòng)的控制
在期限驅(qū)動(dòng)的控制中,根據(jù)固定的期限,例如hk=D∈?≥0對于所有的k∈?,控制會(huì)更新,如公式(13):
是當(dāng)前狀態(tài)ek的估計(jì)值,使用卡爾曼濾波器獲得公式(14):
在公式(15)中,常數(shù)D∈?>0可以任意選擇。注意,τk-1≤D的概率由F(D)給出。在這假定獲得完整狀態(tài)的完美測量,這是所選圖像采集和圖像處理方法的結(jié)果。估計(jì)增益由Ld=A()D給出,估計(jì)eˉk的無窮時(shí)域協(xié)方差Θd由李雅普諾夫(Lyapunov)方程的解給出,如公式(16):
它只對D∈?的值有一個(gè)解,其中A(D)是舒爾數(shù)(Schur)。因?yàn)樵谶@里的例子中A(D)=I且D∈?>0,如果F(D)>0,則是舒爾數(shù)。對于D∈?≥0的特定值,此控制設(shè)計(jì)最小化公式(12),最小值由公式(17)可知:
通過計(jì)算公式(17)的大量D∈?的值,確定了使Jd最小化的D的最優(yōu)值。
由于hk=D∈?>0是截止日期驅(qū)動(dòng)情況下所有k∈?的常數(shù),因此這種控制類型的控制更新是周期性的。
3.2.2 事件驅(qū)動(dòng)控制
在事件驅(qū)動(dòng)控制中,該控制在處理后立即更新,即對所有k∈? 的hk=τk,可獲得公式(18):
式中,τ具有可由勒貝格-斯蒂爾杰斯(Lebesgue-Stieltjes)積分計(jì)算。注意,在這種情況下,總是獲得姿勢估計(jì),但是延時(shí)τk和因此反饋控制更新間隔hk是概率性的。注意,雖然期限驅(qū)動(dòng)的方法的協(xié)方差W(hk)是恒定的,因?yàn)閔k=D,但由于采樣間隔依賴于變化的延時(shí)τk,因此對于事件驅(qū)動(dòng)的方法,它是時(shí)變的。估計(jì)增益由給出,估計(jì)值eˉk的無窮時(shí)域協(xié)方差由給出。
對于事件驅(qū)動(dòng)的情況,這種控制設(shè)計(jì)最小化公式(12),最小值由公式(21)得出:
在這里,是延時(shí)的預(yù)期值。
同時(shí)定位和映射(SLAM),是機(jī)器人研究中需要解決的問題。為了解決這個(gè)問題,通常使用SIFT和SURF等特征檢測器。然而,在本文中,不需要像SLAM中那樣對環(huán)境進(jìn)行映射,并且特征具有簡單的幾何圖形。因此,只考慮定位問題,不需要SIFT和SURF等高級特征檢測器。RANSAC[10]方法經(jīng)常被用來匹配一系列圖像中的特征。由于主要關(guān)注隨機(jī)延時(shí)控制算法的性能,在此考慮了一個(gè)簡單的基于視覺的定位過程。
攝像機(jī)相對于{R}的精確三維姿態(tài)及其固有參數(shù),包括幾何畸變模型[14],是通過使用來自MATLAB的計(jì)算機(jī)視覺工具箱攝像機(jī)校準(zhǔn)器通過攝像機(jī)校準(zhǔn)先驗(yàn)確定的。通過從相機(jī)姿態(tài)的精確透視變換,利用所有標(biāo)記都位于同一平面的事實(shí),可以對固定{R}的觀測幀{O}進(jìn)行計(jì)算?;局械膱D像處理軟件有一個(gè)數(shù)據(jù)庫,其中包含環(huán)境中的所有標(biāo)記及其顏色和相對于世界幀{W}的位置?;窘邮盏叫碌臄z像機(jī)圖像后,通過使用失真校正、色調(diào)飽和值(HSV)顏色分割[15-16]、形態(tài)清理和閉合、blob分析[17-18]等方法,精確地確定彩色標(biāo)記相對于{O}的中心的顏色和位置。然后,它實(shí)現(xiàn)了一個(gè)基于RANSAC的定位算法,將觀察到的標(biāo)記的配置與數(shù)據(jù)庫中隨機(jī)標(biāo)記集的配置相匹配。找到一個(gè)正匹配的結(jié)果,估計(jì)機(jī)器人在環(huán)境中的姿態(tài)。由于算法的隨機(jī)性和無記憶性,算法的完成時(shí)間是隨機(jī)的、獨(dú)立的、同分布的。
這里,i∈{ }1,2,…。如圖2所示,標(biāo)記的顏色及其相互之間的歐幾里德距離,可以由公式(23)計(jì)算得到:
同樣的,對于i∈{1 ,2,…}。如圖2所示,以及顏色和歐氏距離l(oi,oj),i,j∈{1 ,2,…}。注意,e1O、eO2是圖2中所示的幀{O}的坐標(biāo)軸。
機(jī)器人的姿態(tài)可以通過匹配O和D中的元素來確定。將公式(24)中定義ox和oy,o∈O的一個(gè)元素,與公式(22)中定義的dx,dy d∈D的一個(gè)元素的正確匹配,其需要滿足以下關(guān)系,如公式(25):
其中,pO=[xO,yO,ψO]T是坐標(biāo)變換后的框架{O}關(guān)于框架{R}的姿態(tài)。注意,pO=[xO,yO,ψO]T是固定且已知的,并且公式(25)在旋轉(zhuǎn)ψ中是非線性的。
注意公式(25)只提供了三個(gè)未知量( )x,y,ψ的兩個(gè)非線性方程,這不足以獲得唯一的姿態(tài)。因此,需要同時(shí)從每個(gè)集合O和D中得到兩個(gè)或多個(gè)標(biāo)記,這就提供了三個(gè)未知量的四個(gè)或多個(gè)方程。在此分兩步解決這個(gè)問題。首先,求解非線性差分方程(有兩個(gè)標(biāo)記o1,o2∈O,d1,d2∈D的情況),如公式(26)所示:
對于初始值為ψ0的牛頓方法[19]中的。其次,用公式(25)中的ψ代替每個(gè)標(biāo)記中的,并用最小二乘法求解x和y,得到估計(jì)和通過考慮更多的標(biāo)記,可以使姿態(tài)估計(jì)對測量誤差更具魯棒性。
針對O和D中選擇標(biāo)記用于解決位姿估計(jì)問題的開放性問題,在此基于RANSAC方法來解決這類問題。具體的應(yīng)用算法如算法1所示。
算法1RANSAC位置估計(jì)
步驟1隨機(jī)采樣
隨機(jī)選擇oi,oj∈O,i≠janddl,dm∈D,l≠m搭配成對的顏色(i,j)和(j,m)。對于一些小容忍度?1,檢測環(huán)境
條件(15)檢查成對(i,j)和(l,m)的歐氏距離是否相同,否則成對不能對應(yīng)于匹配。如果滿足公式(15),則繼續(xù)執(zhí)行步驟2,否則返回步驟1并獲取新的標(biāo)記對。
步驟2模型估計(jì)
步驟3達(dá)成共識(shí)
隨機(jī)選擇一個(gè)元素ok∈O{ }oi,oj。將ok映射到世界坐標(biāo)系中的點(diǎn)
對于O{oi,oj}中的所有其他元素,可以重復(fù)此過程。如果達(dá)到所選擇的足夠數(shù)量的解釋標(biāo)記(至少一個(gè)),則算法接受姿勢p等于估計(jì)否則,算法返回到步驟1。
在這一部分中,解釋了識(shí)別相關(guān)系統(tǒng)參數(shù)所采取的步驟,并提供了實(shí)驗(yàn)結(jié)果。
在這里采用SuperDroid Robots的全向機(jī)器人作為實(shí)驗(yàn)平臺(tái),該機(jī)器人有三個(gè)全向車輪,由IG32 265轉(zhuǎn)/分齒輪電機(jī)驅(qū)動(dòng),帶有正交編碼器(每轉(zhuǎn)538次計(jì)數(shù))和齒輪箱(傳動(dòng)比為0.052 1),分別由Arduino UNO以1 kHz的頻率控制。在樹莓派Pi 3上實(shí)現(xiàn),通過網(wǎng)絡(luò)攝像頭(型號(hào)為羅技C525)獲取圖像,與基站的通信以及向Arduino UNO發(fā)送指令的功能。使用專用無線路由器(型號(hào)為D-link DIR-850L)通過用戶數(shù)據(jù)報(bào)協(xié)議連接傳輸無線數(shù)據(jù)。處理和控制平臺(tái)(基站)為英特爾i7 2.40 GHz處理器,8 GB內(nèi)存,系統(tǒng)為Windows 7 64位。
在實(shí)驗(yàn)過程中,外部計(jì)算機(jī)以fvalidate=25 Hz的快速速率對攝像機(jī)進(jìn)行采樣,以獲得驗(yàn)證數(shù)據(jù)。
從相機(jī)獲得320×240 RGB像素的圖像。作為姿勢估計(jì)參數(shù),?。?1=0.1,對ψ的公差為10-6,至少需要三個(gè)標(biāo)記,并且至少85%的觀察標(biāo)記應(yīng)該用?2=0.015 m的數(shù)據(jù)庫來解釋。
如圖4所示,由于環(huán)境中重復(fù)了多個(gè)標(biāo)記模式,因此姿態(tài)可能由于這些偽影而被錯(cuò)誤地估計(jì)。由于本文不關(guān)注這種情況,所以添加了一個(gè)額外的檢查,檢查接受的姿態(tài)是否在當(dāng)前姿態(tài)估計(jì)值的0.08 m范圍內(nèi)。如果不是這樣,繼續(xù)定位算法。正如接下來將看到的,過程噪聲足夠小,因此很難觸發(fā)此閾值。
圖4 實(shí)驗(yàn)環(huán)境示意圖Fig.4 Experimental environment
雖然可以使用更精細(xì)的方案來改變圖像大小,壓縮方法可以限制對延時(shí)變化的影響,但是本文假設(shè)成像和處理方法具有固定的設(shè)置,并且不考慮變化。
機(jī)器人的工作空間包含65個(gè)彩色標(biāo)記(25個(gè)紅色、18個(gè)綠色、11個(gè)黃色和11個(gè)藍(lán)色),這些標(biāo)記隨機(jī)放置在距離10 cm的正方形網(wǎng)格上。
機(jī)器人原點(diǎn){R}選擇在機(jī)器人的中心,如圖2所示。在實(shí)驗(yàn)過程中,使用參考橢球軌跡,如公式(27)所示:
表1中列出的參數(shù),如圖4中機(jī)器人工作區(qū)所示。在每次實(shí)驗(yàn)之前,機(jī)器人被驅(qū)動(dòng)到精度很高,因此可以假設(shè)p(0)=pref(0)。
表1 參考橢球的參數(shù)Table 1 Parameters of reference ellipsoid
對基于高階視覺的控制系統(tǒng)的性能感興趣,通過使用非零速度的平滑參考軌跡來消除無法直接建模/控制的起止摩擦效應(yīng),從而減輕了機(jī)器人低階控制中的非線性效應(yīng)。選擇橢球體作為圓形路徑上的變體,以創(chuàng)建更為多樣化的場景。
實(shí)驗(yàn)確定了算法1中各步驟處理圖像數(shù)據(jù)所需時(shí)間的概率分布函數(shù)。通過開環(huán)實(shí)驗(yàn),僅利用前饋控制動(dòng)作,即可獲得具有代表性的一系列圖像。在控制和處理平臺(tái)上用算法1對圖像序列進(jìn)行處理,可以得到一組大的延時(shí)值。計(jì)算延時(shí)值的標(biāo)準(zhǔn)化直方圖提供了一個(gè)離散的概率分布。對于提出的系統(tǒng),延時(shí)是以0.001 s間隔的分辨率確定的。從直方圖中,可以得到一個(gè)分段常數(shù)cdfF,它可以用來計(jì)算前面的控制器。
在fvalidate=25 Hz的外部計(jì)算機(jī)上獲得的驗(yàn)證數(shù)據(jù),用于計(jì)算機(jī)器人在間隔下的200 s前向?qū)嶒?yàn)軌跡。在使用間隔為ΔT∈?>0的線性插值來獲得機(jī)器人實(shí)際連續(xù)軌跡的近似值。
利用前饋輸入和實(shí)際位置可以確定過程噪聲參數(shù)Bw。既然uFF是已知的,可以通過公式(28):
確定過程噪聲在區(qū)間[ti,ti+ΔT]內(nèi)的總影響w(ti,ΔT),其中ti∈?[0,200]。這里,假設(shè)uFF在這個(gè)區(qū)間內(nèi)近似為常數(shù)[ti,ti+ΔT],這是由參考軌跡的平滑度支持的。由于隨機(jī)性,w(ti,ΔT)的值隨插值時(shí)刻ti的變化而變化。使用公式(28)計(jì)算過程噪聲,ΔT=0.08 s(即,兩倍于奈奎斯特采樣(Nyquist sampling)間隔Tvalidate)。計(jì)算了噪聲的自相關(guān),表明噪聲實(shí)例之間幾乎沒有相關(guān)性。
圖5中的直方圖描繪了處理噪聲的值在狀態(tài)上的概率分布。結(jié)果表明,該分布近似為高斯分布,平均和標(biāo)準(zhǔn)差為零,[σx(ΔT),σy(ΔT),σψ(ΔT)]=[0.003 7,0.003 7,0.007 1]。顯然,前面內(nèi)容中討論的偽影閾值遠(yuǎn)高于標(biāo)準(zhǔn)偏差。正態(tài)性檢驗(yàn)表明,對于wx,可能存在高斯性的輕微偏差。因此假設(shè)所有干擾都是高斯的。
圖5 實(shí)驗(yàn)過程噪聲概率分布(ΔT=0.08)Fig.5 Noise probability distribution during experiment(ΔT=0.08)
在此認(rèn)為成本公式(5)由Qc=qcI和Rc=rcI定義,qc=100和rc=50。利用這些值和先前獲得的延時(shí)和過程噪聲參數(shù),計(jì)算了理論性能通過公式(17)和(21)。通過分析,可以得到了圖6所示期限的折衷值。最佳期限為Dd=0.347 s并且Jd=0.132。當(dāng)Je=0.126和τˉ=0.334 s時(shí),事件驅(qū)動(dòng)控制器的性能預(yù)計(jì)將提高4.78%。
圖6 期限D(zhuǎn)的不同值的理論平均成本Fig.6 Theoretical average cost of different values of deadline D
使用前文中的方法,可以發(fā)現(xiàn)Ld=Le=I,Kd=
將結(jié)果與最壞情況下期限驅(qū)動(dòng)設(shè)計(jì)(使用期限D(zhuǎn)d-con=1 s)進(jìn)行比較,該設(shè)計(jì)對應(yīng)于傳統(tǒng)的周期設(shè)計(jì),其中99%的圖像在期限內(nèi)產(chǎn)生姿態(tài)估計(jì)。增益有
對于Jd-con=0.219的預(yù)期性能,這比建議的設(shè)計(jì)差65%~75%。相反,所提出的設(shè)計(jì)預(yù)計(jì)比傳統(tǒng)設(shè)計(jì)的性能提高約40%。
在這一節(jié)中,通過對t∈[0 ,100](單位:s)的每種控制器進(jìn)行實(shí)驗(yàn)來驗(yàn)證理論結(jié)果,其中機(jī)器人遵循參考橢球5次。為簡潔起見,在這里分別利用e、d和d-con表示事件驅(qū)動(dòng)、最優(yōu)期限驅(qū)動(dòng)和最壞期限控制策略。圖7和8分別描述了每個(gè)策略的姿態(tài)和姿態(tài)誤差。
圖7 不同控制下的機(jī)器人姿態(tài)Fig.7 Robot posture under different controls
圖8 不同控制下的姿態(tài)誤差Fig.8 Posture error under different control
反饋輸入如圖9所示。保守控制器的誤差通常比預(yù)期的大,從而導(dǎo)致較大的控制輸入。根據(jù)前文可知,Bw=diag([ 0.013,0.013,0.025])。因此,對于Dd=0.347 s和Dd-con=1 s的期限驅(qū)動(dòng)方法,自協(xié)方差分別由W(Dd)=diag[( 5.86×10-5,5.86×10-5,21.7×10-5)]和W(Dd-con)=diag[( 16.9×10-5,16.9×10-5,62.5×10-5)]給出。對于事件驅(qū)動(dòng)的方法,自協(xié)方差依賴于變化的延時(shí)。三種方法的自協(xié)方差如圖10所示。
圖9 不同控制下的反饋輸入Fig.9 Feedback input under different controls
圖10 離散時(shí)間的干擾協(xié)方差Fig.10 Interference covariance in discrete time
為了只分析平均成本(5),省略了瞬態(tài)啟動(dòng)行為(最多7 s)。利用誤差和輸入數(shù)據(jù),計(jì)算了=0.057 1,=0.056 4和=0.222 8方法的實(shí)驗(yàn)性能。這表明事件驅(qū)動(dòng)控制器的性能確實(shí)略好于理論結(jié)果所預(yù)期的最優(yōu)期限驅(qū)動(dòng)控制器(1.3%),并且兩種方法的性能都顯著優(yōu)于最壞設(shè)計(jì)(幾乎75%)。實(shí)驗(yàn)結(jié)果支持理論結(jié)果,特別是所提出的處理隨機(jī)延時(shí)的方法優(yōu)于傳統(tǒng)的最壞情況周期設(shè)計(jì)。當(dāng)接近理論成本時(shí),和的實(shí)驗(yàn)性能明顯低于Jd和Je的理論成本。這是由于未建模效應(yīng)導(dǎo)致很小的干擾被很好地抑制。
在圖11中,描繪了每種方法的處理延時(shí),顯示出了在期限驅(qū)動(dòng)的實(shí)現(xiàn)的期限(0.33 s和1 s)處延時(shí)的累積。計(jì)算樣本的自相關(guān),顯示樣本之間沒有顯著相關(guān)性,從而驗(yàn)證了iid假設(shè)。
圖11 處理每種控制方法的延時(shí)直方圖Fig.11 Delay histogram of each control method
反饋采樣周期的選擇由圖像處理步驟決定,由于隨機(jī)干擾的攻擊性有限,在20 Hz時(shí)的前饋速率的選擇足以近似地跟隨所選擇的參考。
在本文中,通過實(shí)驗(yàn)證明了基于模型的事件驅(qū)動(dòng)和基于期限驅(qū)動(dòng)控制算法在實(shí)時(shí)視覺反饋控制中的優(yōu)勢。結(jié)果表明,基于模型的隨機(jī)測量延時(shí)方法可以應(yīng)用到實(shí)際中,與傳統(tǒng)的(周期最壞情況)設(shè)計(jì)相比,具有顯著的性能提高。考慮到具有固定方向的全向機(jī)器人,可以應(yīng)用線性系統(tǒng)控制框架來控制二維位置;考慮具有非完整約束的機(jī)器人,需要擴(kuò)展到非線性領(lǐng)域,需要進(jìn)一步研究控制框架。在未來的工作中,更為復(fù)雜的機(jī)器人模型、更為智能的定位方法模型和魯棒性研究將成為研究的熱點(diǎn)。