• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of atmospheric turbulence on coherent beam combining for laser weapon systems

    2021-09-02 05:38:44JanJabczyskiPrzemysawGontar
    Defence Technology 2021年4期

    Jan K.Jabczyski,Przemys?aw Gontar

    Military University of Technology,Gen.S.Kaliskiego 2,Warsaw,00-908,Poland

    Keywords: Laser beams Beam combining Coherence Atmosphere turbulences

    ABSTRACT The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for assumed coherence coef ficients between beams in a CBC lattice was developed.The Kolmogorov model of atmospheric turbulence and the Hufnagel-Valley model of Cn2 dependence on atmospheric parameters were implemented.Novel simpli fied metrics were proposed to assess the CBC performance.Several beam pro files(super-Gaussian,truncated Gaussian,etc.)and geometries were analyzed in terms of maximal intensity in the far field.An approximate formula for PCBC ef ficiency dependent on the Fried radius was proposed.The results of CBC modeling were compared to those of the Gaussian beam propagation model in a turbulent atmosphere.The dependence of CBC performance on the Cn2 parameter,range,and elevation angle was analyzed.It could be concluded that the application of CBC for medium and long range propagation is impractical without an effective adaptive optics system.

    1.Introduction

    At present,depending on the application,laser weapon systems(LaWS)require the development of laser sources with a near-single spatial mode and output continuous wave(CW)powers of dozens of kW nearing MW[1-3].However,fundamental physical effects that limit the available output power from a single aperture laser source to a few kWhave been identi fied(see e.g.Refs.[3-7]).The use of beam combination techniques appears to be the most promising approach to increase the CWlaser output power beyond 100 kW[8-12].In principle,these techniques can be divided into two categories:1)those that use serial devices with a singleaperture output and 2)those that use parallel devices with a “tiled” aperture,composed of a two-dimensional(2D)array of laser beams.In 2016,power values above 30 kW were obtained by applying spectral beam combination to a case of single-aperture output[13];however,certain fundamental physical barriers were still identi fied.In the case of parallel(or “tile” )addition,coherent beam combining(CBC)and incoherent beam combining(ICBC)techniques have been proposed and extensively explored both theoretically and experimentally.In the ICBC technique,the farfield power density is proportional toN(the number of emitters).Such systems have been experimentally demonstrated and found to be feasible with respect to long propagation distances in the atmosphere[14-18].

    According to a simple physical model of the CBC system[8,9],the maximal intensity is proportional toN2.However,owing to the lattice architecture,beam pro file,technical imperfections,and atmospheric turbulence,realistic estimates of the averaged power density in the far field can be much lower.Thus,the usefulness of CBC and its ability to outperform ICBC come into question.This has been considered in several works[9-12,19,20],but no de finite conclusion has been reached thus far.The experimental demonstration of effective CBC for horizontal paths on 7 km range with Target in the Loop setting[21-23]was demonstrated in last decade.

    This study aims to analyze the feasibility of CBC for LaWS while taking into account the limitations posed by atmospheric turbulence.The semi-analytical model of partial CBC(PCBC)[23,24]has been implemented here.This model was developed to calculate the intensity distribution of the CBC of a laser beam array in the far field based on known coherence coef ficients for partially combined beams.Kolomogorov’s model of atmospheric turbulence[27],which enables the calculation of coherence radius based on thestructure parameter,and the Hufnagel-Valley(H-V)model[29]of theparameter dependent on the height over ground were assumed.

    In Section 2,the proposed model is described,and simpli fied metrics are suggested to assess CBC performance based on the laser transmitter and atmosphere parameters.The analysis of several beam pro files(super-Gaussian,truncated Gaussian)and geometries is then presented.In the next part of the paper,the analysis of the impact of the atmospheric turbulence level and elevation angles on CBC performance is discussed.

    2.Model

    2.1.PCBC model

    2.1.1.Definition of 2D laser beam array and beam profile in farfield

    The proposed here analytical model can be applied to any 2D architecture of lattice.The architectures of 2D array could be different.The most compact consisted of central beam and two outer crowns of 6 and 11 beams(Fig.1),was considered with the parametersb(half period of lattice)and(cm,x,cm,y)b(coordinates ofm-beam center).The alternative architecture of 3 hexagonal prototype sublattices consisted of 7 beams each was applied in experimental works[22,23].

    The main assumptions are discussed below,the details and mathematical rigorous description was given in Ref.[24].Each beam of the given amplitude functionA1(r1)defined in the exit pupil of the laser transmitter is propagated at a distanceLaccording to the Fourier-Bessel transform

    Fig.1.Architecture of CBC lattice:19 beams ordered in hexagonal lattice:b-lattice half period,D=10 b-diameter array aperture,raper-radius of aperture of individual beam let,w0-gaussian beam radius of beamlet,(cm,x,cm,y)b-cooridnates of mbeamlet center.

    where:λ-wavelength,r1-radius in exit pupil of collimator in transmitter,(x2,y2)-point coordinates defined in target plane distant onr2-radius to the center of target plane,raper-radius of collimator aperture.

    2.1.2.Partial coherent summation of N beams

    During propagation in turbulent atmosphere laser beam experiences random wavefront distortions.Usually to analyze such process the numerical model based on paraxial wave equation with a set of phase random screens is applied(see e.g.Refs.[11,20,27]).Instead of it,we proposed the analytical approach consisted in partially coherent summation of coherent beamlets defined by formula(1).We have limited the scope of analysis to the case of focusing i.e.the distance to the targetLis equal to the wavefront radiusFof exiting laser beam(F=L).The amplitude functionA2,mof eachm-beam in target plane is represented by the fieldA2multiplied by a phase function corresponding to the tilted wavefront at the(αm,x,αm,y)tilt angle as follows:

    where

    The different as a rule,tilts of each beamlet enable to focus the beam in the center point of target plane.In terms of geometric optics each beamlet chief ray crosses the target plane in the center point of target plane(0,0).The practical realization of such precise aiming for each beamlet is made by micromovement of fiber tip[23]or outer segmented mirror.

    We assumed that the main physical effect of turbulent atmosphere on propagation of beamlets is the decrease in partial coherence.To calculate average,partial coherent superposition of beamlets in target plane the analytical expression for partial coherence summation was applied with a priori defined partial coherence coef ficients(see details in Refs.[24]).The average over propagation distance for the so-called‘long exposure case’partial coherence coef ficientμm,lbetween themth andlth beamlets is defined by Kolmogorov’s model of atmosphere turbulences(see e.g.Refs.[27])as follows:

    where:ρcohis the coherence radius of atmosphere,andΔcm,lis the relative distance between centers of themth andlth beam as follows:

    The final formula for the PCBC intensityIPCBC[24]is:

    where:

    2.1.3.CBC metrics

    The Power in the Bucket(PIB)metric has to be known in order to assess the beam quality[23-27].To determine PIB,the intensity distribution has to be calculated in an area of at least 3-5 Airy radiirAiry=1.22λL/Din the far field.The bucket radius at targetbTis taken to be equal to Airy radiusbT=rAiryusually.This is a laborious procedure that does not lead to simple,general conclusions,because the effects of the lattice geometry,beam pro file,and partial coherence are largely indistinguishable.

    Therefore,a simpli fied approach is proposed here based on the principle of the Strehl ratio(see e.g.Ref.[28])which corresponds to a case of small bucket radiusbT?rAiry.We intend to find the maximal intensity in the center point of far field(x2=0,y2=0).Let us note that

    whereff=raper/b-filling factor.

    Thus maximal intensity in far field is given by:

    where:ηPCBC,0-PCBC ef ficiency dependent on lattice structure and coherence coef ficients as follows:

    IBL,max-maximal intensity in far field for individual beamlet defined in such a way that forff=1 and top hat distributionIBL,max=1:

    where

    Such an approach enables separation of the analysis of the optimal shape/pro file of a laser beam and the atmospheric turbulence effects using formulae(11)and(12),respectively.

    Speci fically,the lattice structure information is included in formula(11).Moreover,the results depend on the applied model of coherence radius based on atmospheric parameters(see p.2.2).We assume here‘long exposure time case’and fully coherent individual beamlet at the target plane,which may be the most controversial aspect of the proposed approach.However,as will be shown in p.2.2-2.3,this method led us to fairly general conclusions.

    2.2. models of turbulent atmosphere

    The level of turbulences in atmosphere is characterized by-refractive index structure constant depending on local meteorological conditions as:temperature,air pressure,wind speed,insolation,season,time of day,height over ground,topography,etc.[27].

    In the proposed model,the value of thefor slant rays at elevation angleα(see Fig.2)was calculated based on the approximated formula of the Hufnagel-Valley model(H-V)ofdependence on height over ground[29]:

    whereR0,HV=0.1 km is the height for which theCn,HV2drops to level 1/e as per the H-V model,-refractive index structure constant on the ground.

    To compare the different turbulence conditions for given propagation length it is convenient to use the unidimensional parameter called Rytov variancedefined for slant path and H-V model as follows[27]:

    The level of signi ficant turbulences corresponds to>1.

    The H-V model enables the calculation of the effective Fried radius of slant rays valid for Gaussian beam case[27],assuming‘focusing case’i.e.the distance to target is equal to wavefront radius of Gaussian beam at exit pupil of emitter(L=F),as follows:

    Fig.2.Scheme of CBC-LaWS focused at a distance L for slant path with elevation angleα.

    where:k=2π/λ-wavenumber,β=sin(α)L/RHVandNF=Lλ/πw02-Fresnel number.Let us note,that the coherence radius defined by(16)dependent on beam radiusw0is close to the‘spherical wave’case and signi ficantly different from‘plane wave’case for which the Fried radius was defined[27].

    In formulae(7)and(11),it is assumed that the intensity of individual beamlet in far field is not dependent on,which is an excessive approximation for a high level of.To correct this approximation,a formula for the relative Gaussian beam intensity ηGAwas applied[27,30]with respect to ideal “non turbulent” case=0)as follows:

    whereWf-beam radius at target plane in vacuum=0),WLTbeam radius at target plane for long exposure time.Following the approach given in Ref.[27]for a focusing case(L=F)we obtained the following formula enabling calculationηGAfor slant paths:

    Finally,a correction to the PCBC ef ficiency in formula(11)is proposed as follows:

    2.3.Approximate formula on PCBC ef ficiency

    PCBC ef ficiency(formula(11))depends on lattice architecture(aperture,distance between beamlets,geometry)atmospheric structure parameter,elevation angleαand rangeL.In some cases these parameters are not available and exact calculation of formula(11)is not possible.Thus,we have tried to find an approximate formula on PCBC ef ficiency(see Fig.3).By analyzing several cases of PCBC,it has been found that the PCBC ef ficiency can be approximated by the following formula:

    Fig.3.PCBC ef ficiency vs.ratio of aperture diameter D to Fried radius r0-rhombsexact formula(11),continuous blue curve approximated formula(21),crosses-errors of approximation.

    whereDis the aperture diameter of the CBC lattice(for 19-beamsD=10b).

    This approximation simpli fies the analysis of the impact of atmospheric turbulence in the case of CBC systems.The primary factor here isD,which represents the whole aperture of the lattice.Thus,a CBC system can be considered as a type of partially coherent single aperture laser system with an effective aperture depending on the ratioD/r0.In a limiting case in which the‘hypothetical’adaptive optics system can increase the effective Fried radius to be signi ficantly greater than the apertureD,the PCBC ef ficiency tends to 1.However,it must be noted that this is only the first order approximation,and it does not take into account the particular lattice structure or the speci fics of the given CBC lattice 2Dintensity distributions in the far field.

    In general,formulae(12)and(21)both enable the performance estimation of any CBC system.The main advantage is that by applying such a simpli fied approach,the limiting operational parameters of an existing or designed CBC system can be assessed for atmospheric turbulence without extensive details such as the compensation of phase errors and residual aberrations.

    3.Analysis

    Following the method explained in Section 2,the impacts of two typical laser beam pro files have been analyzed.

    3.1.Properties of truncated Gaussian beams in CBC

    Fig.4.Intensity in far field(red curve)IBL,max for truncated Gaussian beam and truncation losses(blue curve)vs.relative Gaussian beam radius(w0/raper).

    The simplest method to manipulate the laser beam pro file is to truncate it by applying a‘hard’diaphragm.In this case,the Gaussian beam radius at aperturew0related to the single emitter aperture radiusraperis a control parameter.Such a case has been analyzed(see Fig.4),the truncation losses of the Gaussian beam defined as γtrunc=exp[-2(w0/raper)2]were calculated as well.

    The obtained here optimal relative radiusw0/raper=0.847 corresponding to truncation losses of 8.1%was found as a maximum of intensity in far field(formula(11))is consistent with results of[10]and with our previous results[25].In such a case,73.5%of the maximal intensity is obtained.It should be noted that this approach is permissible only for low power CBC systems.

    3.2.Properties of super-Gaussian beams in CBC

    In the case of a high-power laser system,the admissible level of truncation losses has to be defined,and it is generally much lower than 1%(see Fig.4).Considering the Gaussian beam pro file,this leads to very low CBC intensity.Therefore,several designs of beam shapers have been considered to make the Gaussian pro file more convenient(see e.g.Refs.[31,32]).To analyze the optimal laser beam pro file for CBC with a negligible level of truncation losses,the family of super-Gaussian(SG)beams[26,27]has been used here,defined as follows:

    As shown in Fig.5a,the pro file of the SG beam depends on the exponentpand radiuswp.Assuming the truncation losses are below 0.05%,the speci fic radiuswphas been found for eachp.Under such an assumption,the maximal intensity is solely dependent onp(see Figs.5b and 6).

    Fig.5.(a)Intensity pro files of super-Gaussian beams in the near field.(b)IBL,max vs.p for super-Gaussian beam.

    The dependence of the maximal PCBC intensity of SG beams on the ratio between the aperture diameter and Fried radius is shown in Fig.6.Forp=4,the same value of CBC intensity as in a case of Gaussian beam with optimal truncation level is achieved.

    Fig.6.Maximal PCBC intensity of super-Gaussian beams(each having truncation losses below 0.0005)vs.ratio of aperture diameter D to Fried radius r0.

    The further increase in thepexponent results in an increase in the PCBC intensity up to the limit of 90%defined for 95%of the filling factor and top hat pro file.However,the increase in thepexponent results in more challenging design and manufacturing requirements for an appropriate beam shaper.Thus,a reasonable compromise is needed.We consider that ap≈8 would enable a compromise between the requirements of maximal CBC ef ficiency and manufacturability of the beam shaper.

    3.3.Impact of elevation angle and Cn2 on far-field intensity for a single aperture Gaussian beam

    In general,a LaWS deployed on ground-based or maritime platforms operates over slant paths with elevation angles of a few to a few dozen degrees.Owing to the exponential decrease of thewith the height over ground,the performance of the LaWS significantly depends on the elevation angle.

    To more clearly show the change in the LaWS ef ficiency with respect to the elevation angle anddefined at a ground,such dependencies have been presented for LaWS based on a singleaperture Gaussian beam(see Figs.7 and 8).The presented at Fig.7 Rytow varianceσ2Rdata were calculated for horizontal pathL=1 km.It was found that averaged over slant path Rytov variance deceases about 40 times between horizontal and vertical directions for 1 km range.

    Let us note that for slant pathsCn,HV2decreases according to HV model,the relative intensity of Gaussian beam is calculated according to formula(18).

    The same Gaussian beam radius as that in the case of an individual beamlet of a CBC system(analyzed in p.3.4 and p.3.5)was assumed in calculation.It is evident that the horizontal path is the worst case for LaWS operation,while between the horizontal path and 30°elevation,the admissible level ofcan differ(see Fig.8).

    Fig.7.Maximum intensity for Gaussian beam vs.elevation angle for several =0.5 10-14 m-2/3,=0.5-red curve,=1 10-14 m-2/3=1-blue curve,=2 10-14 m-2/3=2-red curve;L=1 km,w0=16.1 mm.

    Fig.8.Maximum intensity for Gaussian beam vs.Cn2 for several elevation angles;L=1 km,w0=16.1 mm.

    3.4.Impact of elevation angle and on CBC performance

    The typical dependence of LaWS ef ficiency based on a CBC systemvs.and elevation angles does not qualitatively differ from the LaWS based on a single aperture beam.

    To quantify these differences,the maximal intensities taking into account diffraction and turbulence effects were calculated for equivalent cases:the single aperture beam with Gaussian beam radius equivalent to the CBC single emitter beam(Fig.9),the single aperture beam with Gaussian beam radius equivalent to the whole apertureDof 19-beam lattice(Fig.10)and the final case of CBC of 19-beams(Fig.11).The comparison of three cases for horizontal and vertical paths was presented in Fig.12.For slant pathsCn2decreases according to H-V model(formula(14)),the relative intensity of Gaussian beam is calculated according to formula(18),Fried radius is determined by formula(16).Fig.9.2D map of intensity in logarithmic scale of Gaussian beam,w0=16.1 mm,Cn2=10-14m-2/3.;X-horizontal(0.125 km,1 km),Yvertical axis(0.125 km,1 km).

    Fig.10.2D map of intensity in logarithmic scale:Gaussian beam,w0=80 mm,Cn2=10-14 m-2/3.X-horizontal(0.125 km,1 km),Y vertical axis(0.125 km,1 km).

    The Gaussian beam with the lowest width is evidently the least sensitive to atmospheric turbulence(Figs.7-9);however,it also offers the lowest laser power.The choice of appropriate aperture for an individual beamlet depends on the operation range of the LaWS,as well as on the technical limits imposed by the detrimental effects of the thermal-optics in the optical system of the laser effector.

    There is no signi ficant difference between the case of CBC(Fig.11)and a single aperture beam with equivalent Gaussian beam diameter(Fig.10)for horizontal path(Fig.12).However,the advantage of CBC manifests for slant paths(see Figs.10-12).

    Fig.11.2D map of CBC intensity in logarithmic scale:CBC-19-beams,D=200 mm,w0=16.1 mm,Cn2=10-14 m-2/3.X-horizontal(0.125 km,1 km),Y vertical axis(0.125 km,1 km).

    Fig.12.Intensity vs range L for horizontal(solid lines)and vertical(dashed lines)and three cases of Gaussian beam of individual beamlet,w0=16.1 mm(red color),Gaussian beam of full aperture w0=80 mm(blue color)and CBC case D=200 mm,w0=16.1 mm,(black color).

    As was shown in Fig.12 for vertical path the intensity of CBC beam is close to single wavelet beam(dashed black and red curves)whereas the intensity of full aperture Gaussian beam falls much faster.

    It is caused by decreased impact of turbulence on coherence radius of focused Gaussian beam for slant paths(formula(16)).

    It should be noted that a wider aperture(Fig.10)does not indicate higher output power in a single fundamental mode,whereas CBC(Fig.11)offers N times higher power with comparable performance to single aperture(Figs.9 and 10)for elevation angles>20°.

    4.Conclusions

    The dependence of CBC performance on theCn2parameter,elevation angle,and range was analyzed.Simpli fied CBC performance metrics based on maximal intensity in the far field were proposed.Applying this approach the analysis of the optimal beam pro file and lattice geometry can be separated from the impact of atmospheric turbulence.The proposed formulae on maximal intensity of beamlet(11)and approximated PCBC ef ficiency(21)based on the Fried radius can generally enable the estimation of performance of any CBC system without requiring technical details.

    Optimal laser beam shapes were determined for cases of truncated Gaussian beam pro files with de finite truncation losses and super-Gaussian pro files with negligible truncation losses.The advanced optical technologies of optical coatings and glass production has pushed the limit of admissible CWpower density to the level of dozens kW/cm2[33].Thus,the barrier of admissible power density in laser optics elements has improved signi ficantly.Considering truncation loss limitations,the main challenge is related to the beam shaper technology.

    The analysis of CBC performance was carried out for the socalled‘long exposure time’model of atmospheric turbulence;thus,any effects of beam wandering and wavefront compensation have not been taken into account.The results of CBC modeling were compared to those of single aperture Gaussian beam propagation in a turbulent atmosphere.Compared to the Gaussian beam of diameter equivalent to the CBC lattice diameter,the CBC system presents the comparable performance for horizontal paths.However,for slant paths(elevation angles>30°)the advantage of CBCLaWS is evident.

    Analyzing formula(21)is it evident that the signi ficant decrease in CBC performance for a LaWS without adaptive optics(AO)appears for the Fried radiusr0?D.Fried radius for horizontal path of a few kms is of a few cm for typical atmospheric conditions,thus it limits practical application of CBC without AO to very low turbulence level(σ2R<0.2).On the other hand,it was shown in theoretical analysis[10,11]and con firmed experimentally[21-23],that the CBC system with advanced AO based on Target in the Loop concept can operate successfully for 7-km horizontal path up to the Fried radius comparable to individual beamlet collimator aperture(of 3-4 cm).The similar effect shown in our analysis for vertical path(see Fig.12 dashed lines)can be explained by the fact that turbulences occurs here in near field at a propagation distance ofRHV=0.1 km and do not disturb the coherent summation in target plane.

    Overall,it was concluded that the application of CBC-based LaWS for medium and long range propagation is impractical without an effective adaptive optics system.

    Declaration of competing interest

    We declare there is not any con flict of interest connected with this publication.Both authors have seen manuscript and approved to submit to this journal.The work has not been published or submitted for publication elsewhere,either completely or in part.No materials are reproduced from another source.

    Acknowledgments

    This work was financed in the framework of the strategic program DOB-1-6/1/PS/2014 funded by the National Center for Research and Development of Poland.I would like to thanks Dr D.Sabourdy from CILAS for inspiration and critical remarks.

    国产伦精品一区二区三区视频9| 亚洲精品,欧美精品| 久久久久久久久大av| 一级毛片久久久久久久久女| 最近的中文字幕免费完整| 亚洲不卡免费看| 午夜免费男女啪啪视频观看| 性高湖久久久久久久久免费观看| 亚洲中文av在线| 欧美三级亚洲精品| 全区人妻精品视频| 寂寞人妻少妇视频99o| av.在线天堂| 久久女婷五月综合色啪小说| 国产av码专区亚洲av| 一级毛片黄色毛片免费观看视频| 国产成人精品久久久久久| 亚洲av欧美aⅴ国产| 亚洲精品乱码久久久久久按摩| 欧美日韩精品成人综合77777| 亚洲av中文av极速乱| 91午夜精品亚洲一区二区三区| 亚洲av中文av极速乱| 国产黄频视频在线观看| 这个男人来自地球电影免费观看 | 中国三级夫妇交换| 精品一区在线观看国产| 成人综合一区亚洲| 精品一品国产午夜福利视频| 亚洲精华国产精华液的使用体验| 亚洲久久久国产精品| 国产成人freesex在线| 欧美最新免费一区二区三区| 久久女婷五月综合色啪小说| 不卡视频在线观看欧美| 成人亚洲精品一区在线观看 | 欧美日韩精品成人综合77777| 美女主播在线视频| 国产成人91sexporn| 99久久精品热视频| 五月玫瑰六月丁香| 色哟哟·www| 美女xxoo啪啪120秒动态图| 国产黄片视频在线免费观看| 亚洲精品国产av成人精品| 夜夜骑夜夜射夜夜干| 男人狂女人下面高潮的视频| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| 91久久精品国产一区二区成人| 干丝袜人妻中文字幕| 国产伦理片在线播放av一区| 精华霜和精华液先用哪个| 在线观看美女被高潮喷水网站| 国产亚洲一区二区精品| 国产白丝娇喘喷水9色精品| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 韩国高清视频一区二区三区| 国产成人freesex在线| 观看av在线不卡| 免费大片18禁| 成年av动漫网址| 日本黄色日本黄色录像| 最新中文字幕久久久久| 一区二区三区免费毛片| 国产久久久一区二区三区| 亚洲成色77777| 国产精品av视频在线免费观看| 一区二区三区四区激情视频| 在线亚洲精品国产二区图片欧美 | 国产免费又黄又爽又色| 国产黄色免费在线视频| 国产高清有码在线观看视频| av黄色大香蕉| .国产精品久久| 久久久成人免费电影| 大片免费播放器 马上看| 亚洲精品国产av蜜桃| 在线播放无遮挡| av播播在线观看一区| 中国国产av一级| 秋霞在线观看毛片| 国产一区二区三区综合在线观看 | 亚洲国产毛片av蜜桃av| 国产永久视频网站| 少妇裸体淫交视频免费看高清| 久热久热在线精品观看| 大陆偷拍与自拍| 十分钟在线观看高清视频www | 日本黄色片子视频| 人人妻人人澡人人爽人人夜夜| 男女啪啪激烈高潮av片| 亚洲欧美成人综合另类久久久| 噜噜噜噜噜久久久久久91| 精品久久久精品久久久| 秋霞伦理黄片| 久久国产乱子免费精品| 91精品国产国语对白视频| 亚洲精品乱码久久久v下载方式| 成人亚洲欧美一区二区av| 高清日韩中文字幕在线| 亚洲av免费高清在线观看| 一级毛片aaaaaa免费看小| av网站免费在线观看视频| 久久久精品94久久精品| 久久久久性生活片| 不卡视频在线观看欧美| 久久久久视频综合| 秋霞在线观看毛片| 久久国产精品大桥未久av | 亚洲四区av| tube8黄色片| 久久av网站| 国产成人精品久久久久久| 欧美亚洲 丝袜 人妻 在线| 精品国产乱码久久久久久小说| 免费久久久久久久精品成人欧美视频 | 国产精品精品国产色婷婷| 精品久久久久久久末码| 亚洲欧美一区二区三区国产| 午夜精品国产一区二区电影| 日韩一区二区视频免费看| 人妻制服诱惑在线中文字幕| av.在线天堂| 少妇丰满av| 国产亚洲午夜精品一区二区久久| 啦啦啦视频在线资源免费观看| 简卡轻食公司| 国产久久久一区二区三区| 免费看不卡的av| 国产成人午夜福利电影在线观看| 国产成人精品久久久久久| 成人黄色视频免费在线看| 国产精品欧美亚洲77777| 精品久久久久久久末码| 少妇 在线观看| 天堂俺去俺来也www色官网| 在线观看一区二区三区激情| 国产精品一区二区三区四区免费观看| 22中文网久久字幕| 色婷婷久久久亚洲欧美| 天堂俺去俺来也www色官网| 亚洲三级黄色毛片| 国产高清不卡午夜福利| 中文欧美无线码| 啦啦啦在线观看免费高清www| 毛片一级片免费看久久久久| 免费看av在线观看网站| 赤兔流量卡办理| 成人亚洲精品一区在线观看 | 国产成人免费观看mmmm| 日韩欧美精品免费久久| 亚洲美女搞黄在线观看| 黄色一级大片看看| 日产精品乱码卡一卡2卡三| 国产精品免费大片| 国产片特级美女逼逼视频| 日韩电影二区| 人妻夜夜爽99麻豆av| 五月伊人婷婷丁香| 中国三级夫妇交换| 久久青草综合色| 国产精品一区www在线观看| 97在线人人人人妻| 日韩国内少妇激情av| 亚洲精品亚洲一区二区| 大码成人一级视频| 亚洲国产最新在线播放| 成年av动漫网址| 内射极品少妇av片p| 亚洲激情五月婷婷啪啪| 大片电影免费在线观看免费| 国语对白做爰xxxⅹ性视频网站| 久久久久久久国产电影| 亚洲在久久综合| 婷婷色麻豆天堂久久| 国产国拍精品亚洲av在线观看| 国产美女午夜福利| 国产av精品麻豆| 欧美国产精品一级二级三级 | 国产精品99久久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕人妻熟人妻熟丝袜美| 日韩人妻高清精品专区| 亚洲色图综合在线观看| 午夜免费男女啪啪视频观看| 黑人高潮一二区| 国产69精品久久久久777片| 成人免费观看视频高清| 亚洲欧洲日产国产| av在线app专区| 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| 人妻 亚洲 视频| 国产真实伦视频高清在线观看| 欧美日韩国产mv在线观看视频 | 国产成人a∨麻豆精品| 在线观看免费视频网站a站| 亚洲欧美日韩无卡精品| 精品人妻熟女av久视频| 黄色一级大片看看| 丰满迷人的少妇在线观看| 又爽又黄a免费视频| 中文字幕av成人在线电影| 亚洲色图综合在线观看| 欧美老熟妇乱子伦牲交| 一边亲一边摸免费视频| 直男gayav资源| 男女边摸边吃奶| 好男人视频免费观看在线| 久久久欧美国产精品| 草草在线视频免费看| 丝袜脚勾引网站| 精品酒店卫生间| 国产精品免费大片| 一个人免费看片子| 亚洲怡红院男人天堂| 人妻少妇偷人精品九色| 岛国毛片在线播放| 国产精品精品国产色婷婷| 最近最新中文字幕大全电影3| 国产精品国产三级专区第一集| 亚洲高清免费不卡视频| 国产又色又爽无遮挡免| 精品午夜福利在线看| 一级av片app| 天堂中文最新版在线下载| 综合色丁香网| 亚洲欧美成人精品一区二区| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 中国国产av一级| 天堂俺去俺来也www色官网| 一级爰片在线观看| 国产成人a∨麻豆精品| 亚洲人成网站在线播| 五月开心婷婷网| 黄片wwwwww| 狂野欧美激情性xxxx在线观看| 水蜜桃什么品种好| 2018国产大陆天天弄谢| 亚洲婷婷狠狠爱综合网| 精品亚洲成国产av| 在线天堂最新版资源| 日韩三级伦理在线观看| 亚洲av免费高清在线观看| 99热这里只有是精品50| 大话2 男鬼变身卡| 久久婷婷青草| 国产av码专区亚洲av| 一区二区av电影网| 狂野欧美激情性xxxx在线观看| 国产成人aa在线观看| 性高湖久久久久久久久免费观看| 色视频在线一区二区三区| 久久婷婷青草| 自拍欧美九色日韩亚洲蝌蚪91 | 女的被弄到高潮叫床怎么办| 少妇高潮的动态图| 丰满迷人的少妇在线观看| 亚洲三级黄色毛片| 一本色道久久久久久精品综合| 国产精品蜜桃在线观看| 久久99精品国语久久久| 久久国内精品自在自线图片| 岛国毛片在线播放| 国产综合精华液| 中文字幕久久专区| 五月玫瑰六月丁香| 久久久a久久爽久久v久久| 精华霜和精华液先用哪个| 97精品久久久久久久久久精品| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 亚洲,欧美,日韩| 免费av中文字幕在线| av在线老鸭窝| 丰满人妻一区二区三区视频av| 嘟嘟电影网在线观看| 日日摸夜夜添夜夜爱| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 久久精品久久久久久久性| 亚洲经典国产精华液单| 国产免费视频播放在线视频| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 中文字幕久久专区| 啦啦啦在线观看免费高清www| 丝瓜视频免费看黄片| 欧美日韩视频精品一区| 秋霞在线观看毛片| 国产黄色免费在线视频| 熟女人妻精品中文字幕| 高清黄色对白视频在线免费看 | 久久人人爽av亚洲精品天堂 | 精品99又大又爽又粗少妇毛片| 观看免费一级毛片| 日韩国内少妇激情av| 黑丝袜美女国产一区| 精品久久久久久久久亚洲| 美女cb高潮喷水在线观看| 51国产日韩欧美| 国产大屁股一区二区在线视频| 成人高潮视频无遮挡免费网站| 99久久精品热视频| 久久久久国产精品人妻一区二区| 高清视频免费观看一区二区| 亚洲怡红院男人天堂| 亚洲国产色片| 欧美激情国产日韩精品一区| 一级毛片 在线播放| 欧美精品亚洲一区二区| 亚洲欧美日韩东京热| 18禁裸乳无遮挡动漫免费视频| 亚洲精品成人av观看孕妇| 国产精品.久久久| 高清av免费在线| 欧美 日韩 精品 国产| 国产av码专区亚洲av| 国产精品一区二区在线不卡| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 亚洲va在线va天堂va国产| 伦精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 日本vs欧美在线观看视频 | 国产精品.久久久| 青青草视频在线视频观看| 少妇的逼水好多| 久久久国产一区二区| 国产日韩欧美在线精品| 大片电影免费在线观看免费| 日韩一区二区视频免费看| 国产成人精品婷婷| 中文字幕久久专区| 夫妻午夜视频| kizo精华| 综合色丁香网| 岛国毛片在线播放| 18禁在线无遮挡免费观看视频| 五月开心婷婷网| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产日韩一区二区| 午夜福利视频精品| 最近中文字幕2019免费版| 久久午夜福利片| 欧美最新免费一区二区三区| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| 亚洲精品国产av成人精品| 高清午夜精品一区二区三区| 日本一二三区视频观看| 成人毛片60女人毛片免费| 色婷婷久久久亚洲欧美| 国产永久视频网站| 国产人妻一区二区三区在| 成人毛片a级毛片在线播放| 亚洲av免费高清在线观看| 成年美女黄网站色视频大全免费 | 国产精品久久久久久av不卡| 亚洲av二区三区四区| 久久久久久久精品精品| 亚洲欧美日韩东京热| 国产高清有码在线观看视频| 亚洲成色77777| 18禁在线无遮挡免费观看视频| 国产精品一区二区在线观看99| 91精品国产国语对白视频| 三级经典国产精品| av国产久精品久网站免费入址| 亚洲经典国产精华液单| 成人无遮挡网站| 黄色一级大片看看| 久久久久久久久大av| 国产精品99久久99久久久不卡 | 亚洲美女黄色视频免费看| 国产精品一区二区在线不卡| 国产91av在线免费观看| h日本视频在线播放| 啦啦啦在线观看免费高清www| 嘟嘟电影网在线观看| 永久免费av网站大全| 免费观看无遮挡的男女| 亚洲av中文字字幕乱码综合| 久久久久久久久大av| 啦啦啦啦在线视频资源| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 精品一品国产午夜福利视频| 免费播放大片免费观看视频在线观看| 午夜激情福利司机影院| 免费观看在线日韩| 啦啦啦中文免费视频观看日本| 日韩一区二区视频免费看| 国产成人免费观看mmmm| 亚洲成人一二三区av| 91午夜精品亚洲一区二区三区| 婷婷色综合www| 黄色一级大片看看| 国产精品精品国产色婷婷| 国产高清三级在线| 精华霜和精华液先用哪个| 人妻系列 视频| 精品熟女少妇av免费看| 一边亲一边摸免费视频| 亚洲精品乱码久久久v下载方式| 日韩人妻高清精品专区| 少妇猛男粗大的猛烈进出视频| 久久这里有精品视频免费| 久久久久精品久久久久真实原创| 久久精品夜色国产| 肉色欧美久久久久久久蜜桃| av国产精品久久久久影院| 久久毛片免费看一区二区三区| 久久久久久久久大av| 欧美日韩亚洲高清精品| 日韩av不卡免费在线播放| 久久国内精品自在自线图片| 亚洲中文av在线| 偷拍熟女少妇极品色| 夜夜爽夜夜爽视频| av免费在线看不卡| 中文字幕免费在线视频6| 汤姆久久久久久久影院中文字幕| 婷婷色综合www| 成人免费观看视频高清| 黄色怎么调成土黄色| 欧美日本视频| 欧美少妇被猛烈插入视频| 一级爰片在线观看| 最黄视频免费看| 乱系列少妇在线播放| 免费观看在线日韩| 一级二级三级毛片免费看| 高清在线视频一区二区三区| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频 | 99视频精品全部免费 在线| 91精品国产国语对白视频| 内射极品少妇av片p| 日韩强制内射视频| 免费黄频网站在线观看国产| 一区二区av电影网| 特大巨黑吊av在线直播| 国产黄频视频在线观看| 51国产日韩欧美| 人妻夜夜爽99麻豆av| 亚洲va在线va天堂va国产| 亚洲经典国产精华液单| av国产精品久久久久影院| 日日摸夜夜添夜夜添av毛片| 成人特级av手机在线观看| 精品一品国产午夜福利视频| 国产高潮美女av| 美女cb高潮喷水在线观看| 中文字幕av成人在线电影| 男人狂女人下面高潮的视频| 99久久中文字幕三级久久日本| h视频一区二区三区| 免费av中文字幕在线| 精品少妇黑人巨大在线播放| 18禁裸乳无遮挡免费网站照片| 我的老师免费观看完整版| 青春草国产在线视频| 最黄视频免费看| 一个人免费看片子| 在线观看国产h片| 五月开心婷婷网| 99久国产av精品国产电影| 亚洲精品自拍成人| 久久久久久久国产电影| 国产男人的电影天堂91| 欧美人与善性xxx| 欧美成人一区二区免费高清观看| 欧美精品人与动牲交sv欧美| 晚上一个人看的免费电影| 成人国产av品久久久| 99九九线精品视频在线观看视频| 日韩一区二区视频免费看| 成人午夜精彩视频在线观看| 亚洲自偷自拍三级| 尤物成人国产欧美一区二区三区| 亚洲熟女精品中文字幕| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 18禁裸乳无遮挡免费网站照片| 色综合色国产| 一二三四中文在线观看免费高清| 色5月婷婷丁香| 男女国产视频网站| 亚洲丝袜综合中文字幕| 国产精品国产三级国产av玫瑰| av线在线观看网站| 亚洲av成人精品一二三区| 欧美日韩亚洲高清精品| 国产 一区精品| 亚洲欧美日韩另类电影网站 | 日韩中字成人| 亚洲第一区二区三区不卡| 欧美成人一区二区免费高清观看| 少妇高潮的动态图| 午夜免费鲁丝| 看免费成人av毛片| www.av在线官网国产| 欧美一区二区亚洲| 在线观看一区二区三区激情| 大码成人一级视频| 国产乱人偷精品视频| 久久精品国产自在天天线| 如何舔出高潮| 午夜福利在线在线| 麻豆乱淫一区二区| 久久久久久九九精品二区国产| 国产老妇伦熟女老妇高清| 亚洲精品aⅴ在线观看| 久久久色成人| av.在线天堂| 插阴视频在线观看视频| 黑丝袜美女国产一区| 一级毛片我不卡| 欧美日韩综合久久久久久| 插阴视频在线观看视频| 亚洲国产高清在线一区二区三| av不卡在线播放| 国产免费一级a男人的天堂| 六月丁香七月| 国产黄片美女视频| 亚洲成人手机| av天堂中文字幕网| 王馨瑶露胸无遮挡在线观看| 免费观看在线日韩| 老司机影院成人| 亚洲精品乱码久久久久久按摩| 少妇熟女欧美另类| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 99热网站在线观看| 免费黄频网站在线观看国产| 日本vs欧美在线观看视频 | 97超碰精品成人国产| av在线播放精品| 免费看光身美女| 97热精品久久久久久| 亚洲精品中文字幕在线视频 | 老师上课跳d突然被开到最大视频| 久久精品国产自在天天线| 久久精品国产a三级三级三级| 丰满人妻一区二区三区视频av| 国产日韩欧美在线精品| 欧美国产精品一级二级三级 | 国产精品.久久久| 毛片一级片免费看久久久久| 99精国产麻豆久久婷婷| 久久久色成人| 男人舔奶头视频| 啦啦啦啦在线视频资源| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 亚洲精品乱久久久久久| 日韩电影二区| 欧美另类一区| 麻豆成人av视频| 久久精品久久精品一区二区三区| 国产精品一区二区三区四区免费观看| 免费观看性生交大片5| 成人免费观看视频高清| 亚洲综合精品二区| 日本黄大片高清| 久久久久国产精品人妻一区二区| 国产精品成人在线| 欧美高清性xxxxhd video| 我的女老师完整版在线观看| 男女无遮挡免费网站观看| 噜噜噜噜噜久久久久久91| 免费看光身美女| 毛片一级片免费看久久久久| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 国产一区二区三区av在线| 蜜桃久久精品国产亚洲av| 亚洲国产欧美在线一区| 免费看光身美女| 久久久久精品性色| 精品国产三级普通话版| 中国美白少妇内射xxxbb| 国内精品宾馆在线| 99热国产这里只有精品6| kizo精华| 日韩亚洲欧美综合| 国产精品av视频在线免费观看| 中国美白少妇内射xxxbb| 老司机影院成人| 99久久精品热视频| 内射极品少妇av片p| 最近2019中文字幕mv第一页| 国产精品国产三级国产av玫瑰| 国产欧美亚洲国产| 免费在线观看成人毛片| 欧美精品国产亚洲| 国产白丝娇喘喷水9色精品| 日本黄色片子视频| 精品久久国产蜜桃| 在线天堂最新版资源| 欧美极品一区二区三区四区| 我要看日韩黄色一级片| 两个人的视频大全免费| 97在线人人人人妻| 亚洲色图综合在线观看| 国产精品国产三级专区第一集| 街头女战士在线观看网站| av在线老鸭窝|