• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on fuze microswitch based on corona discharge effect

    2021-09-02 05:37:42WenzhongLouHengzhenFengJinkuiWangYiSunYuecenZhao
    Defence Technology 2021年4期

    Wen-zhong Lou,Heng-zhen Feng,Jin-kui Wang,Yi Sun,Yue-cen Zhao

    The School of Mechatronical Engineering,Beijing Institute of Technology,100081,Beijing,China

    Keywords: Corona discharge Peek’s law Optimal ratioε MEMS switch

    ABSTRACT Abnormal voltages such as electrostatic,constant current,and strong electromagnetic signals can erroneously trigger operation of MEMS pyrotechnics and control systems in a fuze,which may result in casualties.This study designs a solid-state micro-scale switch by combining the corona gas discharge theory of asymmetric electric fields and Peek’s Law.The MEMS switch can be transferred from “off” to “on” through the gas breakdown between the corona electrodes.In the model,one of the two electrodes is spherical and the other flat,so a non-uniform electric field is formed around the electrodes.The theoretical work is as follows.First,the relation among the radius of curvature of the spherical electrode,the discharge gap,and the air breakdown voltage is obtained;to meet the low voltage(30-60 V)required to drive the MEMS switch,the radius of curvature of the spherical electrode needs to be 10-50μm and the discharge gap between the two electrodes needs to be 9-11μm.Second,the optimal ratioεis introduced to parameterize the model.Finally,the corona discharge structural parameters are determined by comparing the theoretical and electric field simulation results.The switch is then fabricated via MEMS processing.A hardware test platform is built and the performing chip tested.It is found that when the electrode gap is 9μm,the electrostatic voltage is at least 37.3 V,with an error of 2.6%between the actual and theoretical air breakdown voltages.When the electrode gap is 11μm,the electrostatic voltage is at least 42.3 V,with an error of 10.5%between the actual and theoretical air breakdown voltages.Both cases meet the design requirements.

    1.Introduction

    Electrostatic discharge is the most common source of electromagnetic radiation in nature[1,2].When the field strength of a charged body exceeds the dielectric breakdown field strength of the surrounding medium,a strong electric field and a high instantaneous current occur between the dielectrics,and strong electrical radiation is generated.This forms a broadband electromagnetic pulse that irreversibly affects the control system[3-7],including the fuze and radar equipment.Many researchers have integrated microelectromechanical systems(MEMS)to develop MEMS switches that can guide abnormal signals[8-10].These structures use metal bridge wires to minimize electrical explosions while achieving signal switching,which can cause performance degradation.Therefore,extensive research has been performed on gas breakdown switches[11-13].Corona discharges between sharp and blunt electrodes are among the most common lowtemperature,non-equilibrium plasma processes because they are easy to generate,are stable at atmospheric pressure,and operate at low currents(order of mA)and with low power consumption.

    In 2017,Kamaljeet Singh et al.developed a gas breakdown discharge switch[14].This solution is based on corona discharges and uses ring electrodes to achieve switching on and off,but the gap between the electrodes of this switch reaches 800μm.When the switch breaks down,the driving voltage goes up to 2.8 kV,and the breakdown voltage is too high to conduct switching at low voltage(below 100 V).

    Many devices,including electrostatic precipitators[15],ion sources[13],and ion blowers[14]of mass spectrometers use the above scheme,but all theoretical studies have been on the order of thousands of microns in terms of device size.The switches therefore had high working thresholds.To achieve reliable grooming of abnormal energy levels and reduce the threshold voltage for switching,development of these MEMS switches now focuses mainly on the response times for sensitive excitation signals.This paper addresses these problems using the technical foundation mentioned above.Research is carried out on MEMS switches on the basis of the corona discharge effect,and device processing is realized using a combination of theoretical calculations,finite element analysis,and MEMS processing techniques.

    2.Model design theory

    The three characteristics of radio frequency interference are high potential,a strong electric field,and a high instantaneous current,which cause charge accumulation and abnormal discharge in an electric system.During the discharge,the current pulse rises extremely fast and releases strong electromagnetic radiation.An electrostatic discharge forms as an electromagnetic pulse this way.Although the duration is extremely short,the electromagnetic energy is often strong enough to damage sensitive devices in electronic systems.The mechanisms developed by various researchers have reduced the electrostatic and radio energy thresholds to 130 V,but this has not improved system safety.

    Because most of the current working voltages of control systems and pyrotechnic products are below 30 V,the focus of this study is reducing the grooming threshold voltage.

    We design a silicon-based MEMS corona switch on the basis of the corona discharge effect and the voltage-current coupling energy.A structural model of the switch is shown in Fig.1.The switch mainly includes:a spherical corona plate,a flat plate,and a substrate.The radius of curvature of the spherical corona plate isr0,and the gap between the two electrodes isd.

    Fig.1.The model of microswitch.

    The switch produces an instantaneous breakdown of the air via the asymmetric electric field distribution between the electrodes,which causes the switch to close.The breakdown voltage during a corona discharge(VC)is the applied potential required to attain the critical electric field that ionizes the air molecules near the wire surface[16].In this paper,the spherical corona structure is designed according to the actual needs for its application:Peek’s law relates this onset potential to the gap distancedas a function of the wire radiusr0,the interstitial gas pressurep,and the temperatureT[16].For a spherical wire-to-plane corona,the relationship is given by:

    Wheremvis an irregularity factor that accounts for the condition of the electrode,r0is the electrode radius,and d is the distance between the electrode and the parallel electrode in cm.The parameterδis the gas density factor based on the pressure and temperature,which is given by

    wherepis the pressure in centimeters andTis the temperature.In practice,mv varies from 0.85 to 0.98 and is dependent on the condition of the wires.The factorg0is the “disruptive critical potential gradient” and is of the order of 30 kV/cm for air[16].

    Fig.2 shows that,for the air breakdown voltage amplitudeVCto be close to(±)30 V,the radius of curvature of the spherical plate should be 10-50μm and the gap between the two electrodes should be 9-11μm.However,the error(1-2μm)caused by the actual processing technology cannot be ignored.

    Considering the relation betweenr0,d,and the air breakdown voltageVc combined with inevitable problems such as machining accuracy and alignment errors that cannot be ignored during actual processing,we introduce the optimal ratioεbetween the air breakdown voltage and actual processing error:

    whereVCis the electrode breakdown voltage obtained through theoretical calculation,r0is the radius of curvature of the spherical electrode,Δris the processing error of the radius of curvature of the spherical electrode due to the actual conditions,d is the gap between the spherical electrode and the planar electrode,andΔdis the processing error between the two pairs of electrode gaps caused by the actual conditions.

    According to Eq.(3),when the driving voltage of the switch is constant,the radius of curvature of the spherical electrode ranges from 10 to 50μm,and the gap between the two electrodes ranges from 9 to 11μm.Therefore,when the radius of curvature of the spherical electrode range is close to the range of the electrode gap(r0≈0.8d/1.2d),r0anddjointly determine the optimal ratioε.The smaller the error caused by the machining accuracy,the largerεis.If the range ofr0is greater thand,andr0≥1.2d,thenεis mainly related tor0.The lower the processing accuracy,the greater the optimization coef ficient.

    Fig.3(a)and(b)show the calculated ranges ofεwhen the processing errors are 1μm and 2μm,respectively.

    In Fig.3,Xrepresents the electrode gapd,andYrepresents the radius of curvature of the spherical electrode,r0.When the processing error equals the radius of curvature,the optimal ratioε decreases as the electrode gap increases.Whendandr0are constant,εincreases as the machining error increases.The structural design of this paper will give rise to dimensional error owing to the large span of adjacent structures.For this reason,the ratio of the radius of the spherical corona plate to the width of the electrode gap is set at 2:1.This paper uses a structural model with a value forε around 0.2.The theoretical values of the structural parameters are shown in Table 1.

    Table 1 The theoretical parameters of corona discharge model.

    To guide the voltage pulse signal generated by the abnormal signal reliably,we select the two electrode gap values of 9μm and 11μm for the structural simulation and design processes.

    A discharge model is designed according to the principle of the corona discharge.Among the model elements,this discharge mechanism mainly includes the underlying substrate,a metal discharge structure,and a fluid medium designed for the discharge environment.

    3.Model simulation

    The theoretical calculations described above are used to develop an electrostatic simulation based on the corona model.The bottom material is selected to be silicon oxide,and the metal structure is composed of aluminum and gold(Al-Au).

    Fig.2.(a)Relation among electrode radius r0(10-50μm),electrode gap d(5-15μm)and air breakdown voltage V c in an ideal environment,(b)Relation among electrode radius r0(10-50μm),electrode gap d(9-11μm)and air breakdown voltage V c in an ideal environment.

    Fig.3.(a)Distribution of optimal ratioεunder processing accuracy error is 1μm,(b)Distribution of optimal ratioεunder processing accuracy error is 2μm.

    The structural simulation was carried out using the software COMSOL Multiphysics to obtain the energies at voltages of 30 V,40 V,50 V,and 60 V with discharge electrode gaps of 9μm and 11μm,and the metal electrodes were combined with the Al-Au.The breakdown voltage and the electric field strength are shown in Figs.4 and 5.

    According to Fig.6.The simulation reveals that for constantr0and constantd,the field strength generated by the switch breakdown increases with increasing driving voltage.However,at constantr0and constant breakdown voltage,the electric field distribution caused by the electrode breakdown decreases as the electrode gap increases.When the electrode gap ranges from 5 to 11μm,the field strength tends to be stable,and the air can be reliably broken down.Because of the switch preparation error,the larger the electrode gap,the smaller the effect of the processing error on the device function.Table 2 shows the structural parameters obtained from the simulation and theoretical calculations.

    4.Process design

    Following the theoretical calculations and the analysis above,the design of the process flow shown in Fig.7:

    A.The SiO2substrate was prepared;

    B.Al(1μm thick)was sputtered on the metal substrates to graphically form discharge electrodes;

    C.Spin coating.Select AZ6130,speed 3000 rpm/min,thickness 3μm;

    D.Developing.Photoresist(AZ6130)was developed,where the graphic photoresist had a development time of 45 s;

    E.ICP etching of Al.Improve the accuracy of metal patterning and avoid the phenomenon of horizontal drilling caused by wet corrosion.Etching rate:100 nm/min.Remove Photoresist,cleaning.

    F.Spin coating.Select AZ6130,speed 3000 rpm/min,thickness 3μm;

    G.Developing.Photoresist(AZ6130)was developed,where the graphic photoresist had a development time of 45 s;

    Fig.4.Electric field strength distribution under 9μm.

    Fig.5.Electric field strength distribution under 11μm.

    H.Evaporate metal Au with an evaporation thickness of 1μm;I.Stripping the photoresist and heating in acetone water bath,temperature(70°C),release time 15 min,Photoresist removal, cleaning, and energy grooming structure processing.

    5.Test

    A micro-electrostatic grooming solid-state protection test was performed using a DC high-voltage generator developed by our group.

    The test system is shown schematically in Fig.8.The testing was divided into the two stages of charging and discharging.According to the theoretical calculation and simulation analysis in Chapters 2 and 3,the microswitch based on corona discharge state changes can be realized at the driving voltage of 30-60 V respectively.Therefore,the following speci fications of charging and discharging circuits are selected in this paper:

    Fig.6.Relation between electrode gap,electrostatic excitation voltage and field strength density.

    The charging circuit included a DC high-voltage generator,a 500Ωcharging resistor,an energy storage capacitor,and a charging switch.The DC high-voltage generator could generate a 100 V DC pulsed voltage,while the charging resistor was used to limit current to prevent the DC high-voltage generator and the energy storage capacitor from being burned by the charging current.

    The discharging circuit included a 220μF capacitor(as the Energy storage capacitor),diode(Prevent current reverse),a currentlimiting resistor,a discharging switch,and the electrostatic grooming solid-state protection structure.The schematic of the system test is shown in Fig.9.Through the MEMS process,the device wafer map and device structure diagram by scanning electron microscope are shown in Figs.10 and 11.

    First,the system charge switch was closed,the discharge switch was opened,the DC power supply charged the capacitor,and the capacitor voltage was detected.

    Second,after the capacitor was charged,the charging switch was disconnected.

    The discharge switch was again closed to complete the solidstate switch driving capability test.After the test,a microscope was used to determine whether the switch was broken.

    To verify the action threshold of the electrostatically-conducting structure,the electrostatic voltage was set from 30 V and the boost gradient used for testing was 5 V.When the electrode gap is 9μm,the electrostatic voltage is at least 37.3 V,and the electrostatic conduction structure based on the corona principle can achieve an air breakdown.When the electrode gap is 11μm,the electrostatic voltage is at least 42.7 V,and the electrostatic conduction structure based on the corona principle can achieve an air breakdown.Table 1 shows the threshold voltages at which air ionization breakdown occurred when the electrode gaps were 9μm and 11μm.

    On the basis of the above tests,we analyze the error between the air breakdown voltage and the theoretical calculation for different electrode gaps.The average breakdown voltage(Vtest)for different electrode gaps can be calculated from Table 3.The calculation is as follows:

    Table 2 The structure parameters of corona discharge model.

    Table 3 Threshold voltage at which air ionization breakdown occurs.

    Fig.7.Process flow for corona structure.

    Fig.8.Test platform schematic of switch based on corona discharge effect.

    Fig.9.Testing schematic diagram of switch based on corona discharge effect.

    The errorηbetween the test and theoretical values is

    The calculation shows that the structure meets the design standards.

    The above test analysis reveals the following.When the radius of curvature is 20μm,the electrode gap is 9μm;the error between the actual test air breakdown voltage and the theoretical air breakdown voltage is 2.6%.When the radius of curvature is 20μm,the electrode gap is 11μm;the error between the actual test air breakdown voltage and the theoretical air breakdown voltage is 10.5%.

    Fig.10.Optical images of the electrostatic grooming structure:(a)after dicing(b)chip-on-board assembly.

    Fig.11.Test veri fication:(a)Before test(b)After test(9μm).

    The main reason for the electrode breakdown error is that the method of preparing the Au electrode in this solution included evaporative peeling.After the peeling process,the metal electrode structure is prone to adhesion and the surface structure is incomplete.Therefore,in the future device design,we plan to use an optimized structural electrode material and etching process to achieve metal patterning.This is to avoid structural adhesion or structural defects of the electrode at the micro-nano scale,which result in errors between the theoretical and actual test results.

    6.Conclusion

    This paper has presented the design of a corona-based electrostatic conduction structure using MEMS processing technology.A combination of theoretical calculations and simulation showed that the system has good discharge characteristics when the discharge gaps are set to be 9μm and 11μm and the implementation period is combined with the MEMS processing platform.Electrostatic excitation testing showed that when the electrode gap was 9μm,the electrostatic voltage was at least 37.3 V,and the electrostatic conduction structure achieved air breakdown according to the corona principle.When the electrode gap was 11μm,the electrostatic voltage was at least 42.3 V.The error between the actual test air breakdown voltage and the theoretical air breakdown voltage was 10.5%,which again meets the design requirements.

    Declaration of competing interest

    We would like to submit the enclosed manuscript entitled“Research on fuze microswitch based on corona discharge effect” ,which we wish to be considered for publication in “Defence Technology” .No con flict of interest exits in the submission of this manuscript,and manuscript is approved by all authors for publication.I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously,and not under consideration for publication elsewhere,in whole or in part.All the authors listed have approved the manuscript that is enclosed.

    免费搜索国产男女视频| 两性夫妻黄色片| 亚洲欧美一区二区三区黑人| 18禁黄网站禁片午夜丰满| 午夜成年电影在线免费观看| 欧美精品啪啪一区二区三区| 日本五十路高清| 老司机靠b影院| 亚洲电影在线观看av| 777久久人妻少妇嫩草av网站| 国产一级毛片七仙女欲春2 | 嫩草影视91久久| 桃红色精品国产亚洲av| 国产欧美日韩一区二区精品| 国产真实乱freesex| 操出白浆在线播放| 一本久久中文字幕| 久久精品国产99精品国产亚洲性色| 久久久久精品国产欧美久久久| 看黄色毛片网站| 一级a爱视频在线免费观看| 亚洲欧美精品综合一区二区三区| 岛国在线观看网站| 不卡av一区二区三区| 国产精品98久久久久久宅男小说| 99久久久亚洲精品蜜臀av| 欧美乱色亚洲激情| 国产精品乱码一区二三区的特点| 午夜两性在线视频| 大型黄色视频在线免费观看| 国产精品亚洲一级av第二区| 欧美三级亚洲精品| 国产精品98久久久久久宅男小说| 日韩精品中文字幕看吧| 亚洲电影在线观看av| 日本 av在线| 久久香蕉激情| 欧美日韩亚洲国产一区二区在线观看| 又黄又爽又免费观看的视频| 亚洲国产精品sss在线观看| 久久久久久国产a免费观看| 国产av又大| 成人亚洲精品av一区二区| 又黄又粗又硬又大视频| 午夜福利18| 精品久久久久久久毛片微露脸| 欧美日韩一级在线毛片| 国产1区2区3区精品| 色哟哟哟哟哟哟| 欧美激情 高清一区二区三区| 最近最新免费中文字幕在线| 国产精品久久电影中文字幕| www日本在线高清视频| 国产三级在线视频| 性色av乱码一区二区三区2| aaaaa片日本免费| 99国产精品99久久久久| 国产精品久久久久久亚洲av鲁大| 成人免费观看视频高清| 日韩一卡2卡3卡4卡2021年| 波多野结衣巨乳人妻| ponron亚洲| 啦啦啦 在线观看视频| 一本一本综合久久| 看片在线看免费视频| 一区二区三区高清视频在线| 国产一区二区三区在线臀色熟女| 国产成人欧美在线观看| 欧美日韩精品网址| 亚洲,欧美精品.| 国产成人影院久久av| 国产精品永久免费网站| 国产成人欧美| 国产精品自产拍在线观看55亚洲| 少妇的丰满在线观看| 成人永久免费在线观看视频| 午夜a级毛片| 两个人视频免费观看高清| 免费看日本二区| 超碰成人久久| 在线视频色国产色| 母亲3免费完整高清在线观看| 亚洲国产中文字幕在线视频| 成人特级黄色片久久久久久久| 18禁国产床啪视频网站| 99精品久久久久人妻精品| 国产精品电影一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久久精品欧美日韩精品| 18禁黄网站禁片午夜丰满| 在线国产一区二区在线| 国产真人三级小视频在线观看| 色播亚洲综合网| 国产精品亚洲av一区麻豆| 亚洲中文日韩欧美视频| 国产三级在线视频| 中亚洲国语对白在线视频| 精品久久蜜臀av无| 一本综合久久免费| 在线视频色国产色| 俺也久久电影网| xxx96com| 午夜视频精品福利| 欧美激情高清一区二区三区| www.精华液| 亚洲专区国产一区二区| 国产三级黄色录像| 亚洲成国产人片在线观看| 超碰成人久久| 岛国视频午夜一区免费看| 别揉我奶头~嗯~啊~动态视频| 日日夜夜操网爽| 好男人电影高清在线观看| videosex国产| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 18禁黄网站禁片免费观看直播| av在线天堂中文字幕| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av| 亚洲av美国av| 免费在线观看成人毛片| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久精品电影 | 欧美日韩瑟瑟在线播放| 久热这里只有精品99| 黄频高清免费视频| 精品久久蜜臀av无| 动漫黄色视频在线观看| 一个人免费在线观看的高清视频| 色尼玛亚洲综合影院| 亚洲三区欧美一区| 露出奶头的视频| 国产v大片淫在线免费观看| 婷婷精品国产亚洲av| 亚洲精品色激情综合| 久久久国产成人免费| 黑人操中国人逼视频| 在线视频色国产色| 视频在线观看一区二区三区| 成人精品一区二区免费| 91字幕亚洲| 国产欧美日韩精品亚洲av| 在线观看免费午夜福利视频| 香蕉久久夜色| 午夜a级毛片| 两性夫妻黄色片| 热re99久久国产66热| 国产三级在线视频| 久久九九热精品免费| 一级毛片精品| 精品国产一区二区三区四区第35| 老鸭窝网址在线观看| 国产久久久一区二区三区| 亚洲熟女毛片儿| 亚洲熟妇熟女久久| 两人在一起打扑克的视频| 757午夜福利合集在线观看| 日韩欧美一区视频在线观看| 国产精品美女特级片免费视频播放器 | 俄罗斯特黄特色一大片| 久久热在线av| 91字幕亚洲| 免费看美女性在线毛片视频| www.精华液| 国产一区二区三区视频了| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9| 激情在线观看视频在线高清| 变态另类丝袜制服| 亚洲精品国产一区二区精华液| 亚洲中文字幕日韩| 精品久久久久久久末码| 午夜福利视频1000在线观看| 国产aⅴ精品一区二区三区波| 欧美性长视频在线观看| 欧美成人免费av一区二区三区| 精品久久久久久久末码| 很黄的视频免费| 狂野欧美激情性xxxx| 91九色精品人成在线观看| 免费在线观看影片大全网站| 在线天堂中文资源库| 99久久国产精品久久久| 熟妇人妻久久中文字幕3abv| 2021天堂中文幕一二区在线观 | 无人区码免费观看不卡| 欧美久久黑人一区二区| 又紧又爽又黄一区二区| 欧美又色又爽又黄视频| 久久久国产精品麻豆| 18禁美女被吸乳视频| 午夜精品在线福利| 国产人伦9x9x在线观看| 国产成人精品久久二区二区免费| 天天躁夜夜躁狠狠躁躁| 久久香蕉国产精品| 欧美成狂野欧美在线观看| 亚洲av电影不卡..在线观看| 中文字幕久久专区| 色哟哟哟哟哟哟| 国产主播在线观看一区二区| 日韩三级视频一区二区三区| 一本久久中文字幕| 伦理电影免费视频| 欧美绝顶高潮抽搐喷水| 好男人电影高清在线观看| 亚洲激情在线av| 免费女性裸体啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到| 精品欧美一区二区三区在线| 亚洲专区字幕在线| 日韩精品青青久久久久久| 宅男免费午夜| 国产高清有码在线观看视频 | 一级作爱视频免费观看| 色老头精品视频在线观看| 国产精品二区激情视频| 国产亚洲欧美精品永久| 久久婷婷成人综合色麻豆| 51午夜福利影视在线观看| 国内精品久久久久精免费| 久久人人精品亚洲av| 色精品久久人妻99蜜桃| 亚洲最大成人中文| 黄片小视频在线播放| 国产一区二区三区在线臀色熟女| 国产精品香港三级国产av潘金莲| 欧美激情高清一区二区三区| 美女 人体艺术 gogo| 麻豆国产av国片精品| 国产黄色小视频在线观看| www.精华液| 少妇 在线观看| 99热只有精品国产| 1024手机看黄色片| 精品久久久久久久人妻蜜臀av| 女人高潮潮喷娇喘18禁视频| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 国产成+人综合+亚洲专区| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女| 国产精品久久久人人做人人爽| 免费看十八禁软件| 十分钟在线观看高清视频www| 亚洲 欧美一区二区三区| 亚洲最大成人中文| 亚洲三区欧美一区| av欧美777| 18禁美女被吸乳视频| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久久久久久久 | 日日夜夜操网爽| 熟妇人妻久久中文字幕3abv| 伊人久久大香线蕉亚洲五| 国产精品,欧美在线| 国产伦人伦偷精品视频| 国产欧美日韩一区二区精品| 性欧美人与动物交配| 一本精品99久久精品77| 欧美激情久久久久久爽电影| 婷婷精品国产亚洲av在线| 亚洲人成77777在线视频| 热99re8久久精品国产| 久久国产亚洲av麻豆专区| 亚洲国产欧美日韩在线播放| 在线永久观看黄色视频| 欧美黑人巨大hd| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 亚洲精品国产精品久久久不卡| 美女 人体艺术 gogo| 成人精品一区二区免费| 男人舔奶头视频| 久久99热这里只有精品18| 香蕉丝袜av| 国产极品粉嫩免费观看在线| 国内久久婷婷六月综合欲色啪| 99国产精品99久久久久| 欧美三级亚洲精品| 黑丝袜美女国产一区| 首页视频小说图片口味搜索| 成人国产综合亚洲| 88av欧美| 在线观看日韩欧美| 特大巨黑吊av在线直播 | 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 在线观看舔阴道视频| 999久久久国产精品视频| 国产午夜精品久久久久久| 亚洲中文日韩欧美视频| 免费观看精品视频网站| 黄色成人免费大全| 亚洲成人精品中文字幕电影| 叶爱在线成人免费视频播放| 欧美色视频一区免费| 中文字幕久久专区| 大型黄色视频在线免费观看| 久久久久久大精品| 亚洲人成伊人成综合网2020| 久久青草综合色| 97碰自拍视频| 久久中文字幕人妻熟女| 欧美中文综合在线视频| 日韩中文字幕欧美一区二区| 老鸭窝网址在线观看| 亚洲自偷自拍图片 自拍| 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 香蕉av资源在线| 老司机福利观看| 午夜免费成人在线视频| 最近在线观看免费完整版| 国产视频一区二区在线看| 日本免费a在线| 免费一级毛片在线播放高清视频| 亚洲精品粉嫩美女一区| 一级毛片精品| av有码第一页| 中文字幕高清在线视频| 一个人免费在线观看的高清视频| 亚洲av片天天在线观看| 久久久国产精品麻豆| 啦啦啦韩国在线观看视频| 欧美午夜高清在线| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 人妻久久中文字幕网| 最好的美女福利视频网| 国产日本99.免费观看| 亚洲 国产 在线| 国产真实乱freesex| 久久久久久免费高清国产稀缺| 日本 欧美在线| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 久久精品亚洲精品国产色婷小说| 免费女性裸体啪啪无遮挡网站| 中文资源天堂在线| 日韩欧美免费精品| 国产伦在线观看视频一区| 免费高清在线观看日韩| 免费一级毛片在线播放高清视频| 久久久国产精品麻豆| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 欧美一级a爱片免费观看看 | 国产色视频综合| 国产精品免费视频内射| 中亚洲国语对白在线视频| 白带黄色成豆腐渣| 99久久无色码亚洲精品果冻| 老司机在亚洲福利影院| 视频在线观看一区二区三区| 日韩中文字幕欧美一区二区| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 国产亚洲欧美在线一区二区| 国产高清videossex| 精品午夜福利视频在线观看一区| 色综合婷婷激情| 精品国产一区二区三区四区第35| 日日干狠狠操夜夜爽| 天堂影院成人在线观看| www.自偷自拍.com| 又大又爽又粗| 国产免费男女视频| 久久精品国产清高在天天线| 欧美人与性动交α欧美精品济南到| 天天一区二区日本电影三级| 欧美激情极品国产一区二区三区| xxx96com| 国产主播在线观看一区二区| e午夜精品久久久久久久| 大型黄色视频在线免费观看| 亚洲五月婷婷丁香| 少妇熟女aⅴ在线视频| 国产野战对白在线观看| 国产成人精品久久二区二区91| 久久精品亚洲精品国产色婷小说| 黄片小视频在线播放| 少妇的丰满在线观看| 久久精品人妻少妇| 一级片免费观看大全| 色尼玛亚洲综合影院| 亚洲自偷自拍图片 自拍| 天堂动漫精品| 国产精品一区二区免费欧美| 午夜影院日韩av| 国产精品久久久久久人妻精品电影| 亚洲中文日韩欧美视频| 长腿黑丝高跟| 国产久久久一区二区三区| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 日韩免费av在线播放| tocl精华| 成人特级黄色片久久久久久久| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 天堂动漫精品| 亚洲天堂国产精品一区在线| 国产av一区二区精品久久| 亚洲一区高清亚洲精品| 久久婷婷成人综合色麻豆| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 美女高潮喷水抽搐中文字幕| 校园春色视频在线观看| 在线视频色国产色| 99久久精品国产亚洲精品| 一区二区三区高清视频在线| 午夜福利在线观看吧| 久久 成人 亚洲| 久热这里只有精品99| xxxwww97欧美| 此物有八面人人有两片| 亚洲成人久久爱视频| 亚洲一区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 色播在线永久视频| www.999成人在线观看| 日本在线视频免费播放| 人人妻,人人澡人人爽秒播| 国产熟女午夜一区二区三区| 在线观看www视频免费| 欧美日韩亚洲综合一区二区三区_| 亚洲天堂国产精品一区在线| 一区福利在线观看| 夜夜夜夜夜久久久久| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| 国产精品免费视频内射| 色播亚洲综合网| 一本综合久久免费| 90打野战视频偷拍视频| 久久国产亚洲av麻豆专区| 黄色视频不卡| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美日韩在线播放| 啪啪无遮挡十八禁网站| 久久 成人 亚洲| 宅男免费午夜| 一卡2卡三卡四卡精品乱码亚洲| 丁香欧美五月| 中文在线观看免费www的网站 | 极品教师在线免费播放| 黄色成人免费大全| 又大又爽又粗| 精品电影一区二区在线| 国产真实乱freesex| 男人舔女人的私密视频| 狂野欧美激情性xxxx| 欧美黑人精品巨大| 日本三级黄在线观看| 日本精品一区二区三区蜜桃| 精品国产国语对白av| 男女之事视频高清在线观看| 国产视频一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 日本五十路高清| 一卡2卡三卡四卡精品乱码亚洲| 国产精品,欧美在线| 亚洲精品av麻豆狂野| 中文字幕另类日韩欧美亚洲嫩草| 又紧又爽又黄一区二区| 日韩有码中文字幕| 亚洲第一av免费看| 黑人欧美特级aaaaaa片| 天天添夜夜摸| 在线观看66精品国产| 一级作爱视频免费观看| 成人三级黄色视频| 国产又黄又爽又无遮挡在线| 国产精品爽爽va在线观看网站 | 美女高潮到喷水免费观看| 中文字幕精品免费在线观看视频| 丝袜人妻中文字幕| 日韩精品青青久久久久久| 老司机福利观看| 免费在线观看完整版高清| 国产激情偷乱视频一区二区| 国产成人精品久久二区二区91| 日本黄色视频三级网站网址| 国产成人一区二区三区免费视频网站| 男女下面进入的视频免费午夜 | 日韩欧美一区视频在线观看| 欧美最黄视频在线播放免费| 日韩欧美免费精品| 亚洲成人免费电影在线观看| 亚洲欧美激情综合另类| 久久99热这里只有精品18| 窝窝影院91人妻| 51午夜福利影视在线观看| 午夜两性在线视频| 日韩一卡2卡3卡4卡2021年| 日本 av在线| 亚洲 欧美一区二区三区| 制服丝袜大香蕉在线| 一边摸一边做爽爽视频免费| 国内精品久久久久久久电影| 国产精品久久久人人做人人爽| 丁香六月欧美| 两个人视频免费观看高清| 999久久久精品免费观看国产| 两人在一起打扑克的视频| 国产免费av片在线观看野外av| 丁香六月欧美| 免费搜索国产男女视频| 午夜福利高清视频| 国产v大片淫在线免费观看| 1024香蕉在线观看| 久久久久久久久中文| 男女视频在线观看网站免费 | 国产精品九九99| 欧美 亚洲 国产 日韩一| 91国产中文字幕| 人人妻,人人澡人人爽秒播| 日本三级黄在线观看| 亚洲熟妇熟女久久| 国产亚洲精品综合一区在线观看 | 色av中文字幕| 亚洲精品美女久久久久99蜜臀| 欧美日本视频| 嫁个100分男人电影在线观看| 国产av在哪里看| 天堂影院成人在线观看| 黄色视频,在线免费观看| 亚洲五月色婷婷综合| 国产麻豆成人av免费视频| 亚洲精品久久成人aⅴ小说| 看免费av毛片| cao死你这个sao货| 大型黄色视频在线免费观看| 国产久久久一区二区三区| 成人免费观看视频高清| 亚洲欧美精品综合一区二区三区| 午夜激情福利司机影院| 一进一出好大好爽视频| netflix在线观看网站| 日本 欧美在线| 亚洲av成人不卡在线观看播放网| 久久久久精品国产欧美久久久| 精品久久久久久久毛片微露脸| 又紧又爽又黄一区二区| 桃色一区二区三区在线观看| 草草在线视频免费看| 亚洲精品av麻豆狂野| 母亲3免费完整高清在线观看| 久久精品91蜜桃| 成年女人毛片免费观看观看9| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 一进一出抽搐动态| 日韩欧美一区二区三区在线观看| 韩国av一区二区三区四区| 在线观看午夜福利视频| 人人妻人人澡欧美一区二区| 久久久久久久久免费视频了| 亚洲七黄色美女视频| 色哟哟哟哟哟哟| 亚洲av电影不卡..在线观看| 色综合站精品国产| 国产亚洲av高清不卡| 18禁黄网站禁片午夜丰满| 日韩欧美一区二区三区在线观看| 搡老熟女国产l中国老女人| 给我免费播放毛片高清在线观看| 久久国产精品男人的天堂亚洲| 日日夜夜操网爽| 最近最新免费中文字幕在线| 久久欧美精品欧美久久欧美| 级片在线观看| 亚洲九九香蕉| 黄色 视频免费看| 亚洲男人的天堂狠狠| 一个人免费在线观看的高清视频| 黄网站色视频无遮挡免费观看| 成年女人毛片免费观看观看9| 国产黄a三级三级三级人| 亚洲av五月六月丁香网| 国内精品久久久久久久电影| 美女高潮喷水抽搐中文字幕| 亚洲一区中文字幕在线| 中文字幕精品亚洲无线码一区 | 91麻豆av在线| 成人免费观看视频高清| 午夜两性在线视频| 久久久久国产一级毛片高清牌| 久久香蕉国产精品| 亚洲五月色婷婷综合| 狂野欧美激情性xxxx| 欧美激情极品国产一区二区三区| 侵犯人妻中文字幕一二三四区| 国产精品亚洲av一区麻豆| 哪里可以看免费的av片| 久热爱精品视频在线9| 亚洲一区高清亚洲精品| 19禁男女啪啪无遮挡网站| 午夜激情av网站| 成年免费大片在线观看| 久久久水蜜桃国产精品网| 久久国产精品影院| 狂野欧美激情性xxxx| 久久久久久久午夜电影| 日本黄色视频三级网站网址| 熟女少妇亚洲综合色aaa.| 亚洲性夜色夜夜综合| 国产99白浆流出| 国产久久久一区二区三区| 制服丝袜大香蕉在线|