• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive control of track tension estimation using radial basis function neural network

    2021-09-02 05:37:26PingxinWngXiotingRuiHilongYuGuopingWngDongyngChen
    Defence Technology 2021年4期

    Ping-xin Wng ,Xio-ting Rui ,Hi-long Yu ,,Guo-ping Wng ,Dong-yng Chen

    a Institute of Launch Dynamics,Nanjing University of Science and Technology,Nanjing,210094,China

    b College of Electrical,Energy and Power Engineering,Yangzhou University,Yangzhou,225000,China

    Keywords: Track tension Monitor Multibody dynamics Neural network Anti-disturbance ability

    ABSTRACT Track tension is a major factor in fluencing the reliability of a track.In order to reduce the risk of track peel-off,it is necessary to keep track tension constant.However,it is dif ficult to measure the dynamic tension during off-road operation.Based on the analysis of the relation and external forces depending on free body diagrams of the idler,idler arm,road wheel and road arm,a theoretical estimation model of track tension is built.Comparing estimation results with multibody dynamics simulation results,the rationality of track tension monitor is validated.By the aid of this monitor,a track tension control system is designed,which includes a self-tuning proportional-integral-derivative(PID)controller based on radial basis function neural network,an electro-hydraulic servo system and an idler arm.The tightness of track can be adjusted by turning the idler arm.Simulation results of the vehicle starting process indicate that the controller can reach different expected tensions quickly and accurately.Compared with a traditional PID controller,the proposed controller has a stronger anti-disturbance ability by amending control parameters online.

    1.Introduction

    Tracked vehicles,especially armored military tanks,work in extremely harsh conditions[1].When a vehicle is running,its track tension varies dramatically on account of the contact and collision among tracks,wheels and the ground[2].Track pre-tension is usually adjusted by moving the position of idler before the vehicle starts.Then tensioners are locked and idlers are fixed relative to the chassis.This limits the ability of the tensioner to control the tension.An ideal track dynamic tensioning control system should be able to maintain the track with relatively stable dynamic tension under all driving conditions,and maintain a relatively small tension as far as possible.This system is conducive to enhance the combat readiness,reliability and maintainability of the track over its life cycle.

    Track tension may change violently with the change of driving condition[3].There are two main movement states of a track:driving mode and braking mode[4].For a tracked vehicle with sprockets rear,along the direction of forward motion,the track segment between the sprocket and the idler is the slack side under driving mode[5].However,this segment will be on tension side in braking mode.Steering operation will also convert the tension distribution.In addition,changes in tension may be exacerbated when vehicles pass through obstacles at high speed.Therefore,if not under control,changes in track tension may provoke a range of malfunctions.For example,when a vehicle moves in a straight line,if the driving torque of the sprocket is too large,the road wheel closest to this sprocket will lift upward,which reduces the wheel envelope perimeter.It makes the track loose and partially detached from the idler.If the vehicle suddenly encounters an obstacle or attempts to swerve,this situation may result in track peel-off[6].

    Many scholars have studied on the adjustment strategy of a tensioner.Ketting[7]designed an elastic connection device between the idler and chassis.It can stabilize track tension by setting a reasonable spring stiffness.If the track around the idler becomes loose,this device will drive the idler forward.Conversely,if the track becomes excessively tight,the idler will be driven backward.But this device can not realize the real-time control of tension.Matej[8]proposed that track tension was a function of terrain.The motion of a tensioner is adjusted based on displacements of all road wheels.Taking the variance of tension as an optimization objective,he obtained the relationship between the displacement of hydraulic piston rod and that of road wheels.However,he did not give a speci fic implementation solution.By establishing a mechanicalelectrical-hydraulic integrated model of a tracked vehicle,Myk[9]simulated obstacle surmounting processes with different piston rod elongations.The motion of an idler is adjusted with a proportional-integral-derivative(PID)hydraulic controller.Simulation results indicate that the extension of piston rod will increase the suspension stiffness of a tracked vehicle,and thus aggravate the vertical and pitching vibration of the chassis.Nevertheless,he has not probed track tension control in much detail.

    This paper proposes a constant track tension estimation control strategy for tensioner.Because the track motion is complicated,it is dif ficult to monitor track tension in real time using force sensors.According to the structural characteristics of tracked vehicles,the forces on the idler,idler arm,road wheel and road arm are analyzed.Then a track tension monitor(TTM)around the idler is designed.Considering the time-varying and nonlinear properties of the vehicle system,a radial basis function neural network PID(RBFNNPID)controller is adopted.RBFNN is a local approximation neural network,which has fast convergence speed and can effectively avoid the problem of local minimum[10].Combining it with PID control can achieve online parameter tuning.

    The novelties of the proposed control strategy are:

    (1)The RBFNNPID controller has good robustness and strong anti-jamming capability.

    (2)The control system can be applied in practice by the aid of TTM.

    (3)Compared with a traditional PID controller,the adaptive control system can availably decrease the maximum between the tension estimation and expected value.

    The main contributions of this paper are summarized as follows.

    (1)A mathematical model of a tracked vehicle system with electro-hydraulic tensioners is established.

    (2)The track tension estimation obtained by TTM can well re flect the variation of actual tension around the idler.

    (3)The proposed control approach can effectively maintain the dynamic track tension constant,which enhances the reliability of tracks.

    2.Numerical model of tracked vehicle

    A tracked vehicle can be considered as a complex multibody system.In this paper,Transfer Matrix Method for Multibody Systems(MSTMM)[11,12]is employed for dynamical modeling.It has virtues of low system matrix order,high programming,and high computational ef ficiency.

    2.1.Dynamical model

    Fig.1.Tracked vehicle model(a)and corresponding topology figure(b).

    The dynamical model of a tracked vehicle is exhibited in Fig.1a,which consists of a chassis subsystem and two track subsystems[13,14].According to MSTMM,its topology is illustrated in Fig.1b.The chassis subsystem is comprised of a hull(7),a revolved body(5),a pitch body(3),a barrel(1),two sprockets(60,72),twelve road arms(32-37,39-44),twelve road wheels(61-66,73-78),eight support rollers(67-70,79-82)and two idlers(71,83)with tensioners(38,45).On each side,support rollers,road arms and wheels are numbered in order in the running direction,with the number closest to the idler being 1.

    The hull is modeled as a spatial rigid body with multiple input and single output,and other body components are rigid bodies with single input and single output.Their connections are shown in Fig.2.The hull and road wheels are connected by road arms as the guide mechanism.The torsion bar and damper are simpli fied as a spring damping unit.A rubber bushing on a track pin is simpli fied as a spring damping unit,and two adjacent track links are connected with a single pin[15].The interactions between wheels,the ground and tracks are modeled as contact force units.

    2.2.Dynamics equations

    In MSTMM,the state vector of a connection point between two elements is defined as

    Based on the kinematics information of each element,their transfer matrices are deduced.Then according to the topological structure of the chassis subsystem,its transfer equation is

    where,zallis the overall state vector which includes state vectors of all inputs and outputs of this system

    Its overall transfer matrix isUall,which represents the relationship between each state vector

    Fig.2.Connections of each body elements.

    The generalized coordinates of this system include position coordinates and Euler parameters of element 1 output in the global coordinate system.Also including relative rotation angles of all revolute joints,i.e.,

    where,jis the number of a revolute joint.At timeti,the generalized position and velocity coordinatesare known quantities.By solving Eq.(2),we can obtain accelerations of all connection points.Then generalized accelerations coordinatescan be acquired.Combined with a numerical integration method,at next momentti+1can be fi gured out.

    3.Track tension monitor around the idler

    The driving condition of a tracked vehicle is complicated.There are many factors affecting its track tension,such as the engagement between sprocket and track[16,17],and the collision between track and ground.Therefore,it is dif ficult to measure the dynamic tension[18].In order to evaluate the dynamic performance of track,a theoretical estimation formula for track tension around the idler is deduced,combining the geometric parameters of the tension device.

    3.1.Estimation formula

    The track dynamic tensioning device is installed between the idler and hull,and is assembled by articulating an idler arm and a hydraulic actuator.Fig.3 represents the free body diagram of the idler.The hull is connected with idler arm atP0,and hydraulic actuator atP3.These two are connected at pointP2.In addition,the idler is connected with idler arm atP1.All connections are revolute joints.The in fluence of track gravity is ignored due to its small magnitude.The tension on the upper track isTi1,and its horizontal de flection angle isθ1.The tension on the nether track isTi2,and its vertical de flection angle isθ2.The dynamic equations of the idler are follows:

    Fig.3.Free body diagram of the idler.

    where,Fceis a centrifugal force generated by the track rotation around the idler,and its horizontal de flection angle isθce.The components of the force exerted by the idler arm on the idler inxandy-directions areRixandRiy,respectively.Giis the gravity of the idler,Jithe moment of inertia,rithe radius andωithe angular velocity.The linear density of the track isρ.The formulas forFceand θceare follows:

    Anglesθ1andθ2can be determined from the geometric relation between the idler,support roller and road wheel,as shown in Fig.4.

    Fig.4.Geometric relation between the idler,support roller and road wheel.

    Fig.5.Free body diagram of the idler arm.

    where,rris the radius of support roller.In addition,lΔx3andlΔy3can expressed by the position of road arm

    where,rwis the radius of road wheel.

    The free body diagram of the idler arm is illustrated in Fig.5.It is mainly subject to reaction forcesRixandRiyby the idler through a revolute joint and a driving forceFpexerted by the hydraulic actuator.The rotational equation of the idler arm aroundP0is

    Available from Sine Law

    where,Jiais the moment of inertia of idler arm,Giathe gravity,l0the distance between the center of gravity of idler arm toP0.Combining Eqs.(8)-(10)and(17)and(18)results in calculation formulas ofTi1andTi2:

    It can be seen fromthe above formulas that rack tensions around the idler are only related to the idler’s angular velocity,angular acceleration,rotation angle of idler arm,driving force and length of hydraulic actuator.Considering the frequency response of the hydraulic system,the acceleration of the idler arm is generally small.In addition,during the driving operation,inertia terms are negligible compared to other terms,so the track tension estimation around the idler can be simpli fied into:

    3.2.Multibody dynamics simulation verification

    The track tension estimation around the idler is obtained by assuming that the track is a flexible belt.Compared with this theoretical model,a multibody dynamics(MBD)model of a tracked vehicle takes into account such factors as the plate structure of track,the engagement between track and sprocket,and the contact between track and rollers,which is closer to the actual situation[19].Therefore,the effectiveness of the estimation formula is veri fied with the results acquired from MBD simulations under different operating conditions.

    3.2.1.Static condition

    A track pre-tension should be set before the vehicle starts.Different hydraulic driving forces result in different pre-tension.Simulation results from two methods are shown in Table 1.

    According to Table 1,it can be seen that the estimations are basically consistent with MBD simulation results under the static state,and all deviations are within 3%.The reason why the former is greater than the latter is that the track gravity is neglected.

    Table 1 Track pre-tension with different driving forces.

    3.2.2.Acceleration operation

    The vehicle is accelerated from 0 m/s to 10 m/s within 10 s on a flat road.Track tension around the idler is shown in Fig.6.It suggests that the variation patterns of the estimation and MBD simulation are approximately the same.The maximum deviation is 12.6%and the average is 5.4%.

    3.2.3.Off-road operation

    Fig.6.Track tension under acceleration condition.

    In order to verify the general applicability of TTM,a random offroad running is tested.In order to establish the change of road surfaceh(x)with running distancex,the harmonic superposition method is employed[20,21].It assumes that the road surface is a stationary Gaussian process with zero mean.By means of trigonometric series superposition of phase sinusoidal waves,a set of random displacementsh(xi)is obtained.From the generated displacement matrix,a deterministic arrayh(xi)is singled out as the law of road elevation changes with horizontal displacement.According to B-to G-grade of road roughness,six roads with 300 m are simulated.The C-and E-grade road pro files are shown in Fig.7.

    A tracked vehicle is accelerated from 0 km/h to 30 km/h,and then driven at this constant speed.In the process of uniform driving,track tension is shown in Fig.8.Although there are deviations in both,especially the estimated tension is generally a little larger,their variation patterns are the same.Table 2 shows the standard deviation(SD)of track tension with the two methods on different road grades.

    Table 2 SD of track tension on different roads unit:kN.

    According to simulation comparisons of the above three operating conditions,it indicates that the proposed estimation can re flect the variation of track tension around the idler.This veri fies the validity of the theoretical estimation formula.

    4.Track tension control system based on RBFNNPID control

    The track tension control system is shown in Fig.9,which includes a RBFNNPIDcontroller,an electro-hydraulic servo system,an idler arm and a track tension estimator.The angle and force sensor monitor the rotation angleθiof idler arm and the hydraulic driving forceFp,respectively.Then the track tension estimationTiis acquired.By calculating the error between it and the expected tensionTr,the flow of the hydraulic cylinder is adjusted to keepTi=Tr.

    4.1.Mathematical model of a hydraulic system

    An electro-hydraulic servo system consists of a hydraulic cylinder,a servo valve,a servo ampli fier and sensors.When the natural frequency of servo valve is far greater than that of the cylinder,a first-order inertia element[22]can be used to describe the relationship between spool displacementxvand input voltageu:

    where,Kais the servo ampli fier gain,Ksvthe servo valve gain and ωsvthe natural frequency of servo valve.

    The flow equation and continuity equation of the valve are as follows[23]:

    Fig.7.C-(a)and E-grade(b)road pro files.

    Fig.8.Track tension:(a)C-grade,(b)E-grade.

    Fig.9.Track tension control system.

    where,Kqis the flow-gain coef ficient,Kcthe flow-pressure coef ficient,Athe surface area of piston,βethe bulk modulus,Vtthe total oil volume andCtcthe leakage coef ficient.The driving forceFpis

    Available from Cosine Law

    By differentiation w.r.t.time,

    Combining Eqs.(23)-(25)and(27)results in

    4.2.RBFNNPID controller design

    RBFNN is a kind of neural network structure that simulates the local adjustment and mutual coverage of the receptive field in human brain[24].It is a three-layer feedforward network with a single hidden layer,as shown in Fig.10.

    4.2.1.Identification algorithm of controlled object Jacobian information

    In a RBFNN,X=[x1,x2,…,xn]Tis its input vector andH=[h1,…,hj,…,hm]Tis the radial basis vector,wherehjis Gaussian basis function:

    where,Cjis the central vector of thejth node and can be described asCj=[cj1,cj2,…,cjn]T[25,26].The baseband parameter of thejth node isbjand the baseband vector isB=[b1,b2,…,bm]T,wheremis the number of hidden layer nodes.In our case,we use empirical formulas below to determine the number ofm.

    Fig.10.RBFNN structure diagram.

    where,nis the number of neurons in the input layer,λis a constant between 1 and 10.

    For this network,its weight vector isW=[w1,…,wj,…,wm]T,so its output is

    4.2.2.Self-tuning PID control based on RBFNN

    A self-tuning PID control structure model based on RBFNN is shown in Fig.11,whereZ-1denotes a delay link and RBFNNI is the RBFNN identi fication.RBFNNI is used to obtain Jacobian information and its input vector is

    where,u(k)andTi(k)are the control voltage and track tension estimation at thekth step.The approximation error of RBFNN isem(k)=Ti(k)-Tm(k),and the performance indicator of RBFNNI is selected as

    The parameters ofCj,BandW.are trained by supervised learning.A gradient descent method is adopted in the parameter learning.

    where,ηis the learning rate(η>0),andαis the momentum factor(α∈[0,1))[25].

    Fig.11.Self-tuning PID control structure model based on RBFNN.

    When the identi fication is within the allowable error range,the sensitivity information (Jacobian information)of the object’s output to its input can be obtained as

    4.2.3.PID tuning principle based on RBFNN

    An incremental PID controller is implemented in the control system and the control error is

    Three inputs of this PID controller are

    Its output is

    A single neural network controller(NNC)is adopted to updatekP,kIandkDonline through the identi fication model.The tuning index is defined as

    Three parameterskP,kIandkDare amended with gradient descent method[26,27],which is defined as

    Then the learning algorithm of PID parameters is[28].

    where,ηcandαcare the learning rate and momentum factor of PID parameters[29].

    Now that the control process steps based on RBFNNPID can be summarized as follows:

    Step 1:Input the initial data of the system and set the initial values ofC,B,W,m,η,α,ηcandαc.

    Step 2:The actual outputTi(k)and expected inputTr(k)of the system are obtained by sampling,and thenu(k)is calculated from Eqs.29-31.

    Step 3:The current network outputTm(k)is calculated from Eqs.(23)and(24),and Jacobian information is calculated from Eq.(28).

    Step 4:PID parameters are amended using Eqs.(40)and(41).

    Step 5:Adjust network parameters with Eq.(34).

    Step 6:Return to Step 2(k→k+1)and continue the loop until the end.

    5.Simulation results

    During the running process,the dynamic tension should be retained stable as far as possible.Two simulation scenarios are performed,including vehicle starting and passing obstacles procedures.By setting different control signals and adding disturbance,the control effect of RBFNNPID controller is observed.

    5.1.Vehicle starting process

    When the tracked vehicle starts,in order to adjust track tension to a required value quickly,it is necessary to open the hydraulic valve of the tensioner.The number of hidden layer nodes is 10 and parameters of RBFNN areη=0.2,α=0.02.All PID parameters are initialized to 0.Their learning rate and momentum factor are ηc=0.001 andαc=0.0005.Sampling period is 0.01 s.The expected input tensionTris 30 kN,40 kN and 50 kN,respectively.Their PID self-tuning control results based on RBFNN are shown in Figs.12-14.

    Fig.12.Expected tension is 30 kN:(a)control effect and network fitting effect,(b)changes of PID parameters.

    For different control signals,the controller can reach expected values quickly and accurately,indicating that it has good robustness.According to curves ofkP,kI,andkD,during the system operation,the controller has been learning online to realize the online adjustment of PID parameters,which is adaptive.Finally,the vehicle reaches a static equilibrium state and the system disturbance is 0,accordingly PID parameters tend to be stable.With different expected inputs,final values of PID parameters are shown in Table 3.

    Table 3Final values of PID parameters.

    Fig.13.Expected tension is 40 kN:(a)control effect and network fitting effect,(b)changes of PID parameters.

    Fig.14.Expected tension is 50 kN:(a)control effect and network fitting effect,(b)changes of PID parameters.

    Fig.15.Rotation angle of idler arm.

    Fig.16.Locations and sizes of triangular obstacles.

    Fig.17.Block diagram of the whole control system.

    With different expected tensions,rotation angles of the idler arm are presented in Fig.15.The smaller the rotation angle,the longer the distance between the idler and sprocket.It follows that the wheel envelope perimeter becomes longer and the track elongation increases,resulting in increased track tension.

    Fig.19.Changes of PID parameters.

    5.2.Passing obstacles process

    A customized road is adopted for testing the running conditions of a tracked vehicle.As exhibited in Fig.16,it consists of seven triangular obstacles,of which the third and fourth are continuous and the fifth to seventh are also.The vehicles pass through these obstacles at a constant speed of 2 m/s.

    When the vehicle is driven on a rough road,its road arms will swing,causing the track tension to change.In this paper,it is assumed that road wheels are close to the ground,and the road arm swing caused by road undulations is regarded as system disturbance.At the same time,it can be seen from Sec.3.2 that there is a certain deviation between the estimationTiand actual tensionT.Moreover,this deviation is dif ficult to measure accurately.Therefore,a white noise is added on the estimation to simulate the actual tension,so as to calculate the rotation angle of idler arm.The block diagram of the whole control system is shown in Fig.17.

    The track tension estimation around the idler in the process of passing obstacles is delineated in Fig.18.The expected tensionTr=40 kN.The control effect of the proposed controller is compared with that of a traditional PIDcontroller.When driving on the flat road,the two curves roughly coincide.From the second obstacle,the adaptive controller can effectively reduce the tension variation.This is due to the self-tuning of PID parameters,making the control effect more obvious.Over the second obstacle,the maximum difference betweenTiandTrdecreases by 19%,the third to fourth 31%and the fifth to seventh 44%.The changes of PID parameters are shown in Fig.19.The results show that the proposed control system can adaptively and quickly adjust PID parameters according to the system change.

    6.Conclusions

    In this paper,a track dynamic tensioning device is designed,which is composed of an idler arm and an electro-hydraulic servo system.Track tension can be tailored by changing the elongation of the piston rod.Based on MSTMM,a mathematical model of a mechanical-electrical-hydraulic coupling tracked vehicle system is established,which can be utilized for evaluating the control system.Based on the analysis of the relation and external forces depending on free body diagrams of the idler,idler arm,road and road arm,a theoretical estimation model of track tension is built.Comparing estimation results with MBD simulation results,the rationality of TMM is validated.

    A track tension control system is adopted to maintain track tension estimation constant,which includes an RBFNNPID controller,a tensioner and a TTM.Robustness and anti-interference ability of the controller are enhanced by means of the on-line identi fication of RBFNN and self-tuning of PID parameters.Compared with a traditional PID controller,it can effectively keep track tension constant,which enhances the combat readiness,reliability and maintainability of the track over its life cycle.In future research,the neural network parameters can be initialized in combination with optimization algorithms to avoid blindness.In this way,the approximation degree and accuracy of neural network can be improved effectively.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to in fluence the work reported in this paper.

    Acknowledgment

    The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province(No.BK20190871)and Natural Science Foundation of Jiangsu Province(No.BK20190438)for the financial support of this research.

    Appendix A

    Acronym PID proportional-integral-derivative TTM track tension monitor RBFNN radial basis function neural network RBFNNPID radial basis function neural network PID MSTMM transfer matrix method for multibody systems MBD multibody dynamics SD standard deviation RBFNNI RBFNN identi fication

    Appendix B

    Nomenclature

    x y,z translational accelerations Ωx Ωy,Ωz angular accelerations mx my,mz internal moments qx qy,qz internal forces Uall overall transfer matrix zall overall state vector I12 an identity matrix with the dimension of 12×12 O zero matrix U j transfer matrix of element j Hi,j geometric relationship matrix between input ends i and j y generalized position coordinates y generalized velocity coordinates images/BZ_255_2109_1805_2139_1843.png generalized acceleration coordinates ε1,ε2,ε3,ε4 Euler parameters θ α,βrotation angle F external force G gravity J the moment of inertia ω angular velocity ρ linear density r the radius of wheel Ti track tension estimation Tr expected tension u input voltage xv spool position of the servo valve Ka servo ampli fier gain Ksv servo valve gain

    ωsv natural frequency of servo valve Kq flow-gain coef ficient Kc flow-pressure coef ficient A surface area of piston βe bulk modulus Vt total oil volume Ctc total leakage coef ficient kP kI,kD PID parameters λ a constant between 1 and 10 η learning rate of RBFNN α momentum factor of RBFNN ηc learning rate of PID parameters αc momentum factor of PID parameters

    av线在线观看网站| 人妻 亚洲 视频| 超碰成人久久| 国产亚洲欧美精品永久| 日韩人妻精品一区2区三区| 在线观看免费视频网站a站| 少妇人妻精品综合一区二区| 丰满迷人的少妇在线观看| 中文字幕人妻熟女乱码| 亚洲第一青青草原| 一区二区三区激情视频| 日日爽夜夜爽网站| 色吧在线观看| 欧美精品一区二区大全| 亚洲国产精品999| 中文字幕亚洲精品专区| 婷婷色综合www| 国产精品三级大全| 亚洲人成电影观看| 欧美精品一区二区大全| 日韩视频在线欧美| 亚洲,欧美精品.| 纯流量卡能插随身wifi吗| av电影中文网址| 一级毛片电影观看| 免费在线观看黄色视频的| 叶爱在线成人免费视频播放| 久久久精品免费免费高清| 国产一级毛片在线| 夜夜骑夜夜射夜夜干| 欧美国产精品一级二级三级| 婷婷色综合大香蕉| 亚洲第一区二区三区不卡| 人人妻人人澡人人爽人人夜夜| 欧美在线黄色| 人妻系列 视频| 国产日韩一区二区三区精品不卡| 亚洲精品国产av成人精品| 一级毛片电影观看| 国产高清国产精品国产三级| 亚洲av电影在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 9色porny在线观看| 精品第一国产精品| 丰满迷人的少妇在线观看| 国产精品欧美亚洲77777| 少妇的丰满在线观看| 日韩一卡2卡3卡4卡2021年| 五月伊人婷婷丁香| 国产黄频视频在线观看| 伊人亚洲综合成人网| 久久久久久久久久久免费av| 午夜福利,免费看| 亚洲精品久久成人aⅴ小说| 国产伦理片在线播放av一区| 亚洲精华国产精华液的使用体验| 另类精品久久| 美女国产高潮福利片在线看| 免费在线观看视频国产中文字幕亚洲 | videos熟女内射| 人妻系列 视频| 2021少妇久久久久久久久久久| 日本av手机在线免费观看| 亚洲精品国产一区二区精华液| 高清av免费在线| 中文字幕最新亚洲高清| 久久久久久久久免费视频了| 国产老妇伦熟女老妇高清| 国产免费一区二区三区四区乱码| 精品少妇内射三级| 黄色视频在线播放观看不卡| 日韩中文字幕欧美一区二区 | 亚洲国产日韩一区二区| 99精国产麻豆久久婷婷| 日本免费在线观看一区| a级毛片在线看网站| 日产精品乱码卡一卡2卡三| 久久久久久伊人网av| 一本色道久久久久久精品综合| 99久久中文字幕三级久久日本| 伦理电影免费视频| 亚洲 欧美一区二区三区| 亚洲av免费高清在线观看| 三上悠亚av全集在线观看| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频| 国产片特级美女逼逼视频| 青春草视频在线免费观看| 母亲3免费完整高清在线观看 | 一个人免费看片子| 亚洲精品视频女| 国产日韩一区二区三区精品不卡| 久久久久久久国产电影| 亚洲av日韩在线播放| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 免费看不卡的av| 成人手机av| 免费观看性生交大片5| 精品99又大又爽又粗少妇毛片| 国产男女超爽视频在线观看| 午夜久久久在线观看| 99热全是精品| 久久久国产精品麻豆| 久久久久久伊人网av| av不卡在线播放| 午夜免费观看性视频| 亚洲精品久久久久久婷婷小说| 欧美日韩视频高清一区二区三区二| 久久久久久久大尺度免费视频| 亚洲av电影在线进入| 十分钟在线观看高清视频www| 免费日韩欧美在线观看| 亚洲,欧美,日韩| 国产欧美日韩综合在线一区二区| 老司机影院成人| 人妻 亚洲 视频| 久久精品亚洲av国产电影网| 一二三四中文在线观看免费高清| 久久国产精品男人的天堂亚洲| 日韩av不卡免费在线播放| 9色porny在线观看| 国产亚洲午夜精品一区二区久久| 在现免费观看毛片| 亚洲精品一二三| 美女主播在线视频| 日本欧美国产在线视频| 国产成人一区二区在线| 9色porny在线观看| 男人舔女人的私密视频| 男的添女的下面高潮视频| 成人漫画全彩无遮挡| 精品99又大又爽又粗少妇毛片| 国产精品av久久久久免费| 免费久久久久久久精品成人欧美视频| 亚洲精品日本国产第一区| 久久久久久久国产电影| 久久精品国产亚洲av天美| 波多野结衣av一区二区av| 乱人伦中国视频| 免费黄频网站在线观看国产| 日韩在线高清观看一区二区三区| 亚洲欧美一区二区三区黑人 | 久久久国产欧美日韩av| 国产精品无大码| videossex国产| 精品视频人人做人人爽| 久久精品国产自在天天线| 春色校园在线视频观看| 亚洲第一青青草原| 最近最新中文字幕免费大全7| 97人妻天天添夜夜摸| 中文字幕人妻丝袜一区二区 | 丰满少妇做爰视频| 亚洲精品一二三| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | av免费观看日本| 王馨瑶露胸无遮挡在线观看| 午夜免费男女啪啪视频观看| 国产国语露脸激情在线看| 我要看黄色一级片免费的| 亚洲视频免费观看视频| 国产成人91sexporn| 亚洲国产精品成人久久小说| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 乱人伦中国视频| 边亲边吃奶的免费视频| av卡一久久| 日韩视频在线欧美| 人人妻人人澡人人看| 成年人午夜在线观看视频| 高清视频免费观看一区二区| 中文精品一卡2卡3卡4更新| 欧美成人午夜精品| 成年美女黄网站色视频大全免费| 看免费av毛片| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 飞空精品影院首页| 1024视频免费在线观看| 春色校园在线视频观看| 国产一区二区三区综合在线观看| www.精华液| 欧美 日韩 精品 国产| 久久人妻熟女aⅴ| 黑人欧美特级aaaaaa片| 美女午夜性视频免费| 国产精品无大码| 夜夜骑夜夜射夜夜干| 亚洲第一青青草原| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品自拍成人| 高清欧美精品videossex| 欧美老熟妇乱子伦牲交| 久久久国产一区二区| 亚洲国产欧美日韩在线播放| 麻豆av在线久日| 国产精品久久久久久av不卡| 人人妻人人爽人人添夜夜欢视频| 国产精品免费大片| 涩涩av久久男人的天堂| 久久精品国产自在天天线| av女优亚洲男人天堂| 久久久久国产网址| 搡老乐熟女国产| 女人高潮潮喷娇喘18禁视频| 观看av在线不卡| 男人爽女人下面视频在线观看| 欧美日本中文国产一区发布| 国产人伦9x9x在线观看 | 97在线视频观看| 成年av动漫网址| 电影成人av| 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 国产一区二区在线观看av| 亚洲精品第二区| 99国产综合亚洲精品| 亚洲av电影在线观看一区二区三区| 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| kizo精华| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| 少妇被粗大猛烈的视频| 久久精品久久久久久久性| 成年美女黄网站色视频大全免费| 色播在线永久视频| 看免费成人av毛片| 夫妻午夜视频| 国产色婷婷99| 国产精品亚洲av一区麻豆 | 国产在线视频一区二区| 成人国语在线视频| 91精品国产国语对白视频| 熟女电影av网| 亚洲精品视频女| 国产成人精品无人区| 国产精品偷伦视频观看了| 免费观看a级毛片全部| 亚洲欧美成人综合另类久久久| 91aial.com中文字幕在线观看| 国产成人91sexporn| 亚洲成国产人片在线观看| 欧美精品国产亚洲| 免费av中文字幕在线| 国产片内射在线| 我的亚洲天堂| 黑丝袜美女国产一区| 国产又色又爽无遮挡免| 免费人妻精品一区二区三区视频| 一边亲一边摸免费视频| 秋霞在线观看毛片| 亚洲第一青青草原| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利网站1000一区二区三区| 亚洲熟女精品中文字幕| 多毛熟女@视频| 91精品伊人久久大香线蕉| 性色avwww在线观看| 极品少妇高潮喷水抽搐| 97在线人人人人妻| 欧美av亚洲av综合av国产av | 日韩中文字幕欧美一区二区 | 国产一区二区三区综合在线观看| 街头女战士在线观看网站| 国产免费视频播放在线视频| 久久久国产欧美日韩av| a级毛片在线看网站| 校园人妻丝袜中文字幕| 97在线人人人人妻| 黄色一级大片看看| 最近中文字幕2019免费版| 日本免费在线观看一区| 日韩大片免费观看网站| av国产久精品久网站免费入址| 91成人精品电影| 欧美日韩一区二区视频在线观看视频在线| 国产成人精品婷婷| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区 | 18禁裸乳无遮挡动漫免费视频| a级毛片黄视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产高清国产精品国产三级| 欧美亚洲日本最大视频资源| 国产免费现黄频在线看| 国产精品人妻久久久影院| 亚洲精品第二区| www.av在线官网国产| 亚洲av电影在线观看一区二区三区| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 亚洲伊人久久精品综合| 亚洲国产精品国产精品| 极品人妻少妇av视频| 国产成人欧美| 亚洲色图 男人天堂 中文字幕| 亚洲精品第二区| 纵有疾风起免费观看全集完整版| 中文乱码字字幕精品一区二区三区| 成人亚洲欧美一区二区av| 久久 成人 亚洲| 人妻一区二区av| 一级毛片电影观看| 国产午夜精品一二区理论片| 激情五月婷婷亚洲| 午夜福利一区二区在线看| 又粗又硬又长又爽又黄的视频| 伊人久久国产一区二区| 亚洲美女视频黄频| 乱人伦中国视频| 少妇被粗大猛烈的视频| 999久久久国产精品视频| 国产精品无大码| 午夜激情av网站| 欧美xxⅹ黑人| 又黄又粗又硬又大视频| 欧美xxⅹ黑人| 久久久久网色| 亚洲av欧美aⅴ国产| 亚洲av免费高清在线观看| 久久国产精品大桥未久av| 午夜福利视频精品| 夫妻性生交免费视频一级片| 国产免费一区二区三区四区乱码| 欧美最新免费一区二区三区| 久久精品国产综合久久久| 久久久国产精品麻豆| 国产成人av激情在线播放| 亚洲欧美成人精品一区二区| 精品第一国产精品| 青草久久国产| 亚洲欧美一区二区三区国产| 亚洲精品视频女| a 毛片基地| 在线看a的网站| 国产精品久久久久成人av| 国产一区二区激情短视频 | 久久女婷五月综合色啪小说| 久久99热这里只频精品6学生| 国产成人一区二区在线| 午夜免费鲁丝| 国产在线免费精品| 中文字幕最新亚洲高清| 国产不卡av网站在线观看| 激情五月婷婷亚洲| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 久久久精品免费免费高清| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产三级国产专区5o| 成年动漫av网址| 天天躁夜夜躁狠狠躁躁| 黄色配什么色好看| 欧美日韩成人在线一区二区| 国产亚洲午夜精品一区二区久久| 国产成人a∨麻豆精品| 99热全是精品| 午夜福利视频在线观看免费| 欧美激情极品国产一区二区三区| av在线观看视频网站免费| 欧美日韩亚洲国产一区二区在线观看 | 精品国产一区二区三区久久久樱花| 一边亲一边摸免费视频| 婷婷色av中文字幕| 交换朋友夫妻互换小说| xxxhd国产人妻xxx| 国产色婷婷99| 亚洲一区二区三区欧美精品| 午夜免费男女啪啪视频观看| 超色免费av| 色播在线永久视频| 黑人巨大精品欧美一区二区蜜桃| 黄频高清免费视频| 可以免费在线观看a视频的电影网站 | 免费人妻精品一区二区三区视频| 亚洲成人手机| 亚洲视频免费观看视频| 日韩中文字幕视频在线看片| 国产亚洲一区二区精品| 日本免费在线观看一区| 人人澡人人妻人| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 亚洲国产欧美网| 一区二区日韩欧美中文字幕| 国产极品粉嫩免费观看在线| 久久久久国产精品人妻一区二区| 久久久久久久久久久免费av| 中国国产av一级| 老熟女久久久| 80岁老熟妇乱子伦牲交| 久久精品aⅴ一区二区三区四区 | 老汉色av国产亚洲站长工具| 日韩一本色道免费dvd| 午夜激情久久久久久久| 欧美日韩国产mv在线观看视频| 午夜福利视频在线观看免费| 成人亚洲精品一区在线观看| 婷婷色综合大香蕉| 综合色丁香网| 纯流量卡能插随身wifi吗| 伦理电影大哥的女人| av片东京热男人的天堂| 欧美成人午夜精品| 亚洲欧美精品自产自拍| 天美传媒精品一区二区| 欧美在线黄色| 亚洲欧美成人综合另类久久久| 97精品久久久久久久久久精品| 90打野战视频偷拍视频| 搡老乐熟女国产| 天天影视国产精品| 精品国产乱码久久久久久小说| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 久久影院123| 美女中出高潮动态图| 亚洲国产av新网站| 欧美成人午夜精品| 满18在线观看网站| 久久 成人 亚洲| 黄片小视频在线播放| 国产片内射在线| 欧美激情 高清一区二区三区| 制服人妻中文乱码| 国产av一区二区精品久久| 免费人妻精品一区二区三区视频| 好男人视频免费观看在线| 十八禁高潮呻吟视频| 蜜桃在线观看..| 人人妻人人澡人人看| av不卡在线播放| 成年动漫av网址| 日本wwww免费看| 欧美成人午夜精品| 叶爱在线成人免费视频播放| 黄片播放在线免费| 欧美av亚洲av综合av国产av | 欧美亚洲 丝袜 人妻 在线| 亚洲综合精品二区| 亚洲,欧美,日韩| 欧美日韩亚洲国产一区二区在线观看 | 婷婷色av中文字幕| 91国产中文字幕| 国产精品嫩草影院av在线观看| 国产精品不卡视频一区二区| 又大又黄又爽视频免费| 亚洲欧美一区二区三区久久| 亚洲精华国产精华液的使用体验| 欧美人与性动交α欧美精品济南到 | 精品久久蜜臀av无| 日本欧美国产在线视频| tube8黄色片| 久久精品国产亚洲av高清一级| 日本av手机在线免费观看| 亚洲美女搞黄在线观看| 中文天堂在线官网| av卡一久久| 中文字幕人妻丝袜一区二区 | 中文字幕最新亚洲高清| 少妇精品久久久久久久| 欧美日韩一级在线毛片| 国产无遮挡羞羞视频在线观看| 99热国产这里只有精品6| 亚洲av在线观看美女高潮| av又黄又爽大尺度在线免费看| 人妻 亚洲 视频| 在线观看美女被高潮喷水网站| videosex国产| 亚洲欧美一区二区三区久久| 欧美精品一区二区大全| 国产精品久久久久久精品古装| 菩萨蛮人人尽说江南好唐韦庄| 精品国产一区二区三区四区第35| 观看美女的网站| 久久久久久久久久人人人人人人| 黄色视频在线播放观看不卡| 男人操女人黄网站| 日日啪夜夜爽| 日本猛色少妇xxxxx猛交久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久狼人影院| 久久热在线av| 色94色欧美一区二区| 色婷婷久久久亚洲欧美| 欧美精品一区二区免费开放| 在线免费观看不下载黄p国产| 男女下面插进去视频免费观看| 黄色毛片三级朝国网站| 人妻一区二区av| 亚洲av男天堂| 秋霞在线观看毛片| 久久久国产精品麻豆| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品电影小说| 国产精品.久久久| 自拍欧美九色日韩亚洲蝌蚪91| 少妇 在线观看| 国产在线视频一区二区| 啦啦啦在线观看免费高清www| 性色av一级| 美女大奶头黄色视频| 日韩免费高清中文字幕av| 日韩熟女老妇一区二区性免费视频| 观看美女的网站| 午夜免费男女啪啪视频观看| 免费久久久久久久精品成人欧美视频| 天天躁狠狠躁夜夜躁狠狠躁| 色吧在线观看| 宅男免费午夜| av国产久精品久网站免费入址| 老鸭窝网址在线观看| 婷婷色av中文字幕| 一级毛片 在线播放| 赤兔流量卡办理| 久久国产亚洲av麻豆专区| 亚洲欧美一区二区三区黑人 | 久久这里只有精品19| 成年动漫av网址| 亚洲 欧美一区二区三区| 久久精品国产亚洲av高清一级| 精品国产超薄肉色丝袜足j| 日韩大片免费观看网站| 国产伦理片在线播放av一区| 人妻人人澡人人爽人人| 久久精品亚洲av国产电影网| 亚洲少妇的诱惑av| 美女xxoo啪啪120秒动态图| 久久国产精品大桥未久av| 一级黄片播放器| 2022亚洲国产成人精品| 欧美成人午夜免费资源| 国产亚洲午夜精品一区二区久久| 在线天堂中文资源库| 老司机亚洲免费影院| 香蕉国产在线看| 一个人免费看片子| 黄片播放在线免费| 国产av一区二区精品久久| 男女边吃奶边做爰视频| 久久国产精品男人的天堂亚洲| 男人操女人黄网站| 亚洲五月色婷婷综合| 国产福利在线免费观看视频| 9191精品国产免费久久| 18禁国产床啪视频网站| 99热网站在线观看| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 久久韩国三级中文字幕| 免费看不卡的av| 中国三级夫妇交换| 国产亚洲一区二区精品| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说| 天堂中文最新版在线下载| www日本在线高清视频| 99国产综合亚洲精品| 国产精品久久久久成人av| 母亲3免费完整高清在线观看 | 亚洲人成网站在线观看播放| 国产一区二区 视频在线| 中文字幕人妻丝袜制服| 亚洲精品在线美女| 大码成人一级视频| 久久久久国产网址| a 毛片基地| 亚洲国产av新网站| 亚洲第一青青草原| 中文字幕精品免费在线观看视频| 中文欧美无线码| 欧美av亚洲av综合av国产av | 午夜精品国产一区二区电影| 欧美中文综合在线视频| 日韩,欧美,国产一区二区三区| 亚洲国产精品成人久久小说| 久久精品国产自在天天线| 国产av一区二区精品久久| 久久午夜福利片| 大香蕉久久成人网| 国产精品麻豆人妻色哟哟久久| 久久青草综合色| 成人毛片a级毛片在线播放| 久久精品国产亚洲av天美| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av高清一级| 欧美 日韩 精品 国产| 亚洲av福利一区| 五月开心婷婷网| 韩国av在线不卡| 亚洲成国产人片在线观看| 捣出白浆h1v1| 亚洲欧美精品综合一区二区三区 | 狠狠精品人妻久久久久久综合| 丰满乱子伦码专区| 熟女电影av网| 在线亚洲精品国产二区图片欧美| 丰满乱子伦码专区| 久久鲁丝午夜福利片| 五月天丁香电影| 日产精品乱码卡一卡2卡三| 国产欧美日韩一区二区三区在线| 少妇人妻久久综合中文| 国产又爽黄色视频| 黑人猛操日本美女一级片| 免费看不卡的av| av天堂久久9|