• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical studies on four-engine rocket exhaust plume impinging on flame de flectors with afterburning

    2021-09-02 05:36:00ZhitanZhouChangfangZhaoChenyuLuGuigaoLe
    Defence Technology 2021年4期

    Zhi-tan Zhou,Chang-fang Zhao,Chen-yu Lu,Gui-gao Le

    School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China

    Keywords: Four-engine rocket Afterburning Impinging flow field Different de flectors Numerical simulations

    ABSTRACT This paper studies the four-engine liquid rocket flow field during the launching phase.Using threedimensional compressible Navier-Stokes equations and two-equation realizable k-epsilon turbulence model,an impact model is established and flow fields of plume impinging on the two different shapes of flame de flectors,including wedge-shaped flame de flector and cone-shaped flame de flector,are calculated.The finite-rate chemical kinetics is used to track chemical reactions.The simulation results show that afterburning mainly occurs in the mixed layer.And the region of peak pressure occurs directly under the rocket nozzle,which is the result of the direct impact of exhaust plume.Compared with the wedgeshaped flame de flector,the cone-shaped flame de flector has great performance on guiding exhaust gas.The wedge-shaped and cone-shaped flame de flectors guide the supersonic exhaust plume away from the impingement point with two directions and circumferential direction,respectively.The maximum pressure and temperature on the wedge-shaped flame de flector surface are 37.2%and 9.9%higher than those for the cone-shaped flame de flector.The results provide engineering guidance and theoretical signi ficance for design in flame de flector of the launch platforms.

    1.Introduction

    To explore the further deep space,many countries are developing new generation launch vehicles with more effective loads.Particularly,the heavy-lift capability launch vehicle is the focus of recent research in many space programs[1,2].To achieve a large carrying capacity,the propulsion systems usually use multiple engines working simultaneously to improve the launch power[3,4].The multi-engine rockets have certain advantages by comparing with the single-engine rocket,but the impingement flow field is more complex,which caused by the exhaust plume interaction[5].The jet flow impingement has been the vital factor for the launch safety.Since the rocket engines are close to the launch platform during launching phase,the exhaust jets of rocket engine not only disturb the attitude of rocket in the take-off,but also have a thermal impact on the rocket base and ground control system.Therefore,the jet flow characteristics of multi-engine rockets exhaust plume need to be studies carefully for the risk aversion and improvement of achievement ratio in launching[6-9].

    During rocket launching,the exhaust gas impingement induces large aerothermodynamic and acoustic loads on the launch platform[10,11].To reduce the effect of thermal shock and dynamic of the rocket jet flow,flame de flectors have been installed under the rocket engine to guide the exhaust gas of high temperature and velocity away from the channel without recirculation.It is generally known that the shape of de flector surface is the main factor affecting the diversion performance of the flame de flector.The flame de flector structure should be designed to restrain the exhaust plume from backdraft inside the de flector and to protect the rocket from damage of discharged gas during launching[12].The poor ef ficiency of diversion can cause blockage of the de flector channel by the recirculation flow.The accumulation and reflection of the high temperature gas have a negative in fluence on the stability of the flame de flector and security of the launch process.Using the reasonable shape of the flame de flector can reduce the adverse effects caused by the recirculation or backdraft of rocket exhaust gas[13-15].For these reasons,studying the diversion ef ficiency of different shapes of flame de flector is important for the safety of launch.

    With the rapid development of computational facilities and technology,numerical simulations have been utilized more widely in the aerospace science and technology.In addition,the signi ficant experimental cost savings can be realized.Extensive studies on shock characteristics of the launch vehicle exhaust gas have been conducted numerical simulations and launch tests in the past decades.Daniel and Vineet[16]obtained the structure of the ARES V exhaust jet flow and its impingement characteristics on the B-2 flame de flector by using a multi-element flow solver.The results showed that signi ficant reversed flows can be developed on the flame de flector surface due to the larger impingement angle and associated detached flame de flector shock wave.Sachdev et al.[17]investigated the temperature load on the flame de flector by numerical simulations.The ef ficiency and accuracy of the methodology was veri fied through its application in an actual sub-scale test facility.Tsutsumi et al.[18]developed a universal performance assessment and control system-large eddy simulation(UPACS-LES)computational code to study the effect of de flector shape on the plate and the tail shock waves.It showed that the magnitude of the plate shock and acoustic level around the vehicle were weakened by employing steeply inclined de flector plane.Jiang et al.[10]presented an overview on progresses and perspectives of the jet impingement research for rocket launching.A summary of the interactive mechanisms between impinging jets and the launch platform or the flame de flector system was provided.

    The studies above have provided reference and help for the analysis of the engine exhaust impinging on the launch structures,and several dynamics mechanisms are studied separately or in a partially-coupled way.Still,there are many problems about the exhaust jet impingement on different flame de flectors remaining to be solved,especially when considering afterburning effect.This paper studies the in fluences of two shapes of flame de flector configurations which are designed for the four-engine liquid rockets.A comparison of the rocket motor exhaust jet impingement on the different de flectors can re flect the variation of flow field and provides reference for designs of the launch platforms.

    2.Four-engine rocket model

    2.1.Geometric model of the platform

    The system of this study is a three-stage liquid rocket which utilizes kerosene/liquid oxygen(LOX)propellant as propulsion system for the first stage.Fig.1(a)and(b)show the structures of the four-engine rocket with the wedge-shaped and cone-shaped deflectors.Fig.1(c)displays the installation positions of four nozzles.The four Laval nozzles are identical in geometry.As shown in Fig.1(d),the Laval nozzle has an exit half-angle of 3°,a nozzle spacing ratio(Ds/De)of 1.82,and a nozzle expansion ratio(Dt/De)of 0.17.As shown in Fig.1(e),the structure of the two de flectors is identical except for the shapes of positive impulse area,which are the wedge and cone,respectively.The separation distance(Ls)between the nozzle exit and the de flector surface is 5d,whichdcorresponds to the nozzle exit diameter.The appropriate jet impingement angle shall minimize the induced thermal shock loading on the rocket.Therefore,an impingement angle(α1)of 30°is used in the de flector design[19].The exit radius of the cambered surface 1 and 2 are 2 and 1.5 times of the nozzle exit,respectively.More parameters of the de flectors are shown in the flame de flector pro files.

    Fig.1.Computational fluid dynamics models.

    2.2.Computational grids

    Structured mesh with tensor product structure has better numerical ability than unstructured grids using a multi-block.Also structured mesh can improve the fidelity of the flow solutions and assure a good resolution of shock waves in the flow field,the computational mesh of this paper is shown in Fig.2.No-slip adiabatic temperature condition is applied for the solid walls of the rocket and de flectors.The inlet condition is set as the total temperature 3800 K and the total pressure 18.66 MPa.The species mole fractions of exhaust gas at inlet are given in Table 1.

    Table 3 The parameters of freestream at 5,15,25,and 25 km.

    Fig.2.Computational grid and boundary conditions.

    Table 1 The composition and content of exhaust gas at the nozzle inlet.

    3.Numerical method

    3.1.Governing equations

    The liquid rocket exhaust is considered as an ideal gas mixture with the continuum assumption.The numerical solution of the compressible,Reynolds-averaged Navier-Stokes(RANS)methods has been obtained by using second-order total variation diminishing(TVD)schemes with finite volume method[20].The simulations in this paper were performed using CFD++software.The multi-component conservation equation takes the following form

    whereSiis the rate of creation by addition from the dispersed phase.The diffusion fluxJiis defined as

    The governing equations for mass,momentum,and energy conservations for each species are given as follows:

    whereUis the flow variables,F,G,Hare the flow flux vectors,andFv,Gv,Hvare the viscous flux vectors.

    3.2.Turbulence model

    The supersonic jet impingement on de flector was computed using the realizablek-?turbulence model,which has been used for solving the flow field near the wall[21].The transport equations for turbulence kinetic energy,kand its rate of dissipation,?in the realizablek-?model are given as

    and

    In Eqs.(7)and(8),Gkis the generation of turbulence kinetic energy due to the mean velocity gradients.The model constantsC1andC2are 1.44 and 1.9 respectively.

    3.3.Reaction model

    As the fuel burns,gases expand to fill the combustion chamber and create a high pressure.Meanwhile,the unstable components such as CO and H2are emitted.The fuel-rich exhaust gas from the nozzle exit mixes with the ambient atmosphere,and this may lead to afterburning reaction.To ensure the reliability and accuracy of the numerical result,the finite-rate chemical kinetics is used to track chemical reaction system.This method,which based on the Law of Mass Action[22],is applied to calculate the various steps of the chemical mechanism[23].

    The general chemical reactionris given by

    In Eq.(9),v’irand v’’irare the stoichiometric coef ficients of speciesiin reactant and product side of stepr,and the rate of production of speciesifrom the reaction steprcan be written as follows

    whereKfrandKbrare the forward and backward rate constant for reactionrrespectively.The forward rate constant for each reaction stepris given by Arrhenius kinetics

    Here,NTandNPare exponents of temperature in the rate constant of reactionr,the backward rate constantKbris computed from the equilibrium condition

    The change in Gibbs free energyΔGfor reaction stepris given by

    The exhaust gas in the afterburning reactions includes H2O,H2,O2,CO2,CO,and N2,with H,O,and OH as the free radicals of the intermediate products in combustion.Therefore,the 9-species and 14-step chemical mechanism is employed for H2/CO afterburning[24]as shown in Table 2.

    Table 2Reaction mechanism of hydrogen and carbon monoxide.

    4.Model validation

    The Mach number contours on the symmetry plane at different flight altitudes are obtained by numerical method described above.The total pressure and temperature in the chamber are 18.66 MPa and 3800 K.The conditions of freestream at different altitudes are shown in Table 3.Various shock wave structures,including the barrel shock,plume induced shock,and plume boundary,can be observed in Fig.3.As the elevation gradually increases,the ambient pressure decreases,the Mach number increases and underexpanded plume becomes larger.Also the shock reflection gradually moves away from the nozzle.

    Fig.3.Contours of Mach number of the liquid rocket exhaust plume at different altitudes.

    Fig.4 shows the simulated and the measured heating rates at two calorimeters in the rocket base.The heat flux has two peaks with the maximum values at approximately 10 and 20 km.The simulated results are slightly different with the measured data,since governing equations of the model are discretized by using second-order TVD scheme rather than higher order method.In general,the heating rates show the similar trends.These comparisons suggest that our method can produce accuracy and reliable results for such systems.

    Fig.4.Comparison of the heating rates between experiments and simulations.

    To verify the performance of our model in solving the impact problems,the calculation of sonic jet impingement on the plate is carried out and is compared with the measured data from Alvi and Iyer[25].The under-expanded supersonic exhaust plume is based on the Laval nozzle with exit diameter(D)of 2.54 cm.The nozzle upstream of the throat was designed using a third order polynomial with a contraction ratio of approximately 5.Fig.5 shows the flow field structure of Ref.[25](left)and numerical result(right)with different nozzle pressure ratio(NPR)when the distance(h)between the ground plate and the nozzle exit is equal to 2D.The contours from numerical simulations are similar to the flow structure in the experiments.For the NPR is 3.7,the surface pressure coef ficient(Cp)distributions with the change of the radial location(r/D)ath/D=2 to 5 are shown in Fig.6.It is show from the case ofh/D=2 that the realizablek-?model may get better agreement with the experiment results than the SSTk-?model.A comparison between the results of calculations with the measured data veri fies the reliability and accuracy of the jet impinging model.

    Fig.5.Flow field contours of different NPR.

    Fig.6.Comparison of the Cp distributions on ground plate from measure data[25]and calculation results at different h/d radios.

    5.Results and discussion

    5.1.The exhaust plume flow field

    Fig.7.Mach number(a),pressure(b)and temperature(c)contours of the exhaust plume impinging on the wedge-shaped de flector.

    The Mach number,pressure,and temperature contours of the four-engine rockets exhaust plume impinging on the wedgeshaped and cone-shaped de flectors are shown in Figs.7 and 8.Two symmetry planes are cut off along the axis of nonadjacent nozzle respectively.Three shock cells are formed before the plume impacts the de flector surface.Under the combined effect of external air and high-unexpanded exhaust gas,a clear structure of the first shock cell can be observed near the rocket gas field.But the second shock cell-like structure is less clear due to the interaction of the four equal plumes.The plume radius increases gradually in the lower portions of the second shock cell.The third shock cell deforms after the engine exhaust plumes impact the de flector surface.A high temperature region is generated immediately on the de flector surface due to the impingement and accumulation of excessive high temperature gas.The core and developed region and boundary of plume are clearly visible downstream of flow field.Due to the afterburning reaction between exhaust gas and air,high temperature also occurs in the mixed layer and average slightly below accumulation region temperature.

    Fig.8.Mach number(a),pressure(b)and temperature(c)contours of the exhaust plume impinging on the cone-shaped de flector.

    Fig.9.Pressure contours and line charts of the de flector surface.

    As shown by the calculated results,the third shock cell contains a Mach disk,a recirculation region with a wedge or conical shaped to form in front of the plate.Temperature in the accumulation region on the wedge-shaped de flector has increased signi ficantly compared with the cone-shaped de flector.However,due to the restriction of the sidewall of the cone-shaped de flector,part of exhaust gas exits the de flector channel through inlet rather than outlet.Improvements to the cone-shaped de flector design are useful for de flecting exhaust gas smoothly.As the spacing of the sidewalls increases,the cone-shaped de flector could prevent damage to the rocket due to the reverse exhaust plumes.

    Fig.10.Temperature contours on the de flector surface(a)and distribution pro files along the X-axis(b).

    5.2.The impingement surface flow field

    Figs.9 and 10 show the pressure and temperature distribution on the wedge-shaped and cone-shaped de flector surface,respectively.As expected,the region of peak pressure appears under the rocket nozzle,which is the result of the direct impact of exhaust plume.However,since high velocity of the gas flow is unfavorable for the afterburning reaction,the maximum temperature areas are not formed at the impingement point.The temperature drops gradually from the center to the outlet of the flame de flector.Several cell-like shocks are formed along the plate due to the interaction of four plumes.

    Fig.11.Planar static temperature contours of the exhaust gas impingement on wedge-shaped de flector.

    As shown in Fig.9,the wedge-shaped de flector has a peak pressure of 471.4 kPa in the impingement point,well above the 343.5 kPa in the same position on the cone-shaped de flector.Fig.9(b)displays the pressure distributions along the Y-axis and the projection line which connecting the projection of the nonadjacent nozzle centers on the de flector surface.The pressure changes abruptly in the projection line andY-axis of the wedge surface.As the conical surface has bigger impact area and better flow capacity,the pressure in the projection line of the wedge surface is higher than those on the conical surface,with the biggest difference about 37.2%at the impingement point.

    Fig.10 displays the temperature distributions on the wedgeshaped and cone-shaped de flector surface,where the maximum values are 3182 K and 2896 K,respectively.Meanwhile,a larger high-temperature region appears in the wedge-shaped de flector.Different diversion orientation of the flame de flectors is a prime cause of the difference in temperature distribution.The supersonic exhaust plume was diverted into outlet with two directions in the wedge-shaped de flector.The high temperature jet impingement on the de flector plate produces large thermal loads and possible ablation on the de flector.On the other hand,the cone-shaped de flector can de flect the exhaust gas towards the circumferential direction,which will cause a smaller thermal shock effect.Fig.10(b)displays the temperature distributions along theX-axis andY-axis of the de flector surface.The temperature distribution along theYaxis of the conical surface is smaller than those in the wedge surface.The high temperature region on the wedge surface is much higher and more focused than in the conical surface,which will more easily lead to a signi ficant ablation and damage in the wedgeshaped de flector.Instead,the wedge plate is underutilized.The conical plate has relatively uniformly distributed in temperature and higher utilization ratio with better anti-ablation performance.One of the weaknesses with the conical plate is that the higher temperature regions occur on both sides of theX-axis.The exhaust gas in the cone-shaped de flector is obstructed by the sidewalls and the obstruction enforces the heating effect at the higher temperature regions.The de flecting performance of the cone-shaped de flector could be improved by reforming the sidewalls structure and increasing the sidewalls spacing.

    5.3.Planar static temperature contour

    Figs.11 and 12 show the planar static temperature contours for the rocket motor exhaust gas impinging on wedge-shaped and cone-shaped de flectors at Z/d=3,4,and 5 in axial plume direction,where Z/d=0 corresponds to the nozzle exit.For the supersonic jet impinging on the wedge-shaped de flector,the in fluence of the plume interaction and exhaust gas circulation are weak since the relatively stable individual shock unit can be observed at Z/d=3 and 4.The planar static temperature contour at Z/d=5 is blurred and a circular high temperature region is occurred in the core,which mainly caused by the interaction between exhaust and reverse flow.The exhaust gas inlet of the wedge-shaped de flector has the same temperature as atmosphere except for jet flow region,and not affected by the reverse flow.As shown in Fig.12,a part of gas flow is discharged from the exhaust gas inlet due to the resistance in sidewalls.The temperature in edge region of planar,as well as the central region,is much higher than ambient temperature.The temperature in the edge at Z/d=3,which is closest to the exhaust gas inlet,may reach up to 1000 K.Increasing the distance between the sidewalls of the cone-shaped de flector could be helpful to prevent the damage of the rocket afterbody from high temperature reverse flow.

    Fig.12.Planar static temperature contours of the exhaust gas impingement on cone-shaped de flector.

    6.Conclusion

    Numerical simulations have been performed to investigate the exhaust gas impinging on the wedge-shaped and cone-shaped de flectors.By comparative analysis between the four-engine rockets impinging jet on different de flector,the following conclusions can be made:

    (1)The peak pressure on the de flector surface appears at the intersection of the nozzle axis and the de flector plate,and the temperature drops gradually from the center to the outlet of the de flector.

    (2)The wedge-shaped and cone-shaped de flectors have different diversion directions.The maximum pressure and temperature in the wedge-shaped de flector are,respectively,37.2%and 9.9%higher than those in the cone-shaped flame de flector.

    (3)Compared to the wedge-shaped de flector,the cone-shaped de flector could achieve better performance for de flecting with sufficient distance of the sidewalls.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to in fluence the work reported in this paper.

    日韩视频在线欧美| 在线亚洲精品国产二区图片欧美 | 最近2019中文字幕mv第一页| 免费高清在线观看视频在线观看| av天堂中文字幕网| 国产一区二区三区综合在线观看 | 国产精品一区www在线观看| 免费黄色在线免费观看| 国产 精品1| 国产成人精品一,二区| av有码第一页| 美女主播在线视频| 卡戴珊不雅视频在线播放| 国产中年淑女户外野战色| 丝袜喷水一区| 在线天堂最新版资源| 久久久久精品久久久久真实原创| 国产高清有码在线观看视频| 女的被弄到高潮叫床怎么办| 国产成人精品福利久久| 九九久久精品国产亚洲av麻豆| 91在线精品国自产拍蜜月| 性色av一级| 少妇被粗大的猛进出69影院 | 久久这里有精品视频免费| 亚洲第一区二区三区不卡| 精品一区二区免费观看| 嫩草影院入口| 内地一区二区视频在线| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 99久久精品国产国产毛片| 精品人妻一区二区三区麻豆| 欧美最新免费一区二区三区| 人人妻人人澡人人看| 一区二区三区四区激情视频| 三上悠亚av全集在线观看 | 精品久久久精品久久久| 亚洲av在线观看美女高潮| 女性生殖器流出的白浆| 99久久精品热视频| 一本大道久久a久久精品| 新久久久久国产一级毛片| 三级经典国产精品| 国产精品国产三级国产av玫瑰| 丰满少妇做爰视频| 黄色欧美视频在线观看| 高清黄色对白视频在线免费看 | 少妇被粗大的猛进出69影院 | 精品久久久精品久久久| 久久久久久久久大av| 亚洲熟女精品中文字幕| 人人妻人人添人人爽欧美一区卜| 免费黄色在线免费观看| 内射极品少妇av片p| 国产黄频视频在线观看| 嫩草影院新地址| 国产69精品久久久久777片| 国产伦在线观看视频一区| 免费人妻精品一区二区三区视频| 国产精品女同一区二区软件| 三上悠亚av全集在线观看 | 大香蕉97超碰在线| 午夜免费观看性视频| 22中文网久久字幕| 一边亲一边摸免费视频| 国产精品一区www在线观看| 日韩一区二区视频免费看| 久久久久久久久久久久大奶| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产精品国产精品| 寂寞人妻少妇视频99o| 又粗又硬又长又爽又黄的视频| 在现免费观看毛片| 午夜免费男女啪啪视频观看| 日本色播在线视频| 免费观看性生交大片5| 亚洲国产成人一精品久久久| 中文字幕人妻丝袜制服| 男女国产视频网站| 亚洲av不卡在线观看| 看免费成人av毛片| 亚洲美女视频黄频| 亚洲精品国产av成人精品| 丝袜喷水一区| 亚洲电影在线观看av| 亚州av有码| 国产精品熟女久久久久浪| 亚洲丝袜综合中文字幕| 国产 一区精品| 久久99热这里只频精品6学生| 国产精品蜜桃在线观看| 精品国产露脸久久av麻豆| 97超视频在线观看视频| 国产乱来视频区| 中国美白少妇内射xxxbb| 国产真实伦视频高清在线观看| 亚洲国产精品一区三区| 蜜桃久久精品国产亚洲av| 夫妻性生交免费视频一级片| 日韩三级伦理在线观看| 少妇人妻精品综合一区二区| 大香蕉久久网| 自拍欧美九色日韩亚洲蝌蚪91 | 精华霜和精华液先用哪个| 一二三四中文在线观看免费高清| 免费黄频网站在线观看国产| 国产免费一级a男人的天堂| 黑人猛操日本美女一级片| 麻豆乱淫一区二区| 国产黄片美女视频| 免费久久久久久久精品成人欧美视频 | 精品亚洲乱码少妇综合久久| 永久网站在线| 久久精品国产自在天天线| 国产熟女欧美一区二区| 国产亚洲最大av| 噜噜噜噜噜久久久久久91| 日韩一区二区三区影片| 久久久国产精品麻豆| 七月丁香在线播放| 伊人久久精品亚洲午夜| 免费人妻精品一区二区三区视频| 国产精品一区二区在线不卡| 六月丁香七月| 国产欧美亚洲国产| 亚洲精品456在线播放app| 国产淫语在线视频| 亚洲av成人精品一区久久| 黄色一级大片看看| 国产 一区精品| 亚洲情色 制服丝袜| 国产亚洲最大av| 在线观看国产h片| 久久久久久久精品精品| 精品一区二区三区视频在线| 精品亚洲乱码少妇综合久久| 国产一区二区三区综合在线观看 | 香蕉精品网在线| 中文资源天堂在线| 精品国产乱码久久久久久小说| 国产高清有码在线观看视频| 成人二区视频| 国产有黄有色有爽视频| 大片电影免费在线观看免费| 日日摸夜夜添夜夜爱| av在线老鸭窝| av在线观看视频网站免费| 久久国产亚洲av麻豆专区| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 日韩一区二区视频免费看| 国产一区二区三区av在线| 精品卡一卡二卡四卡免费| 夜夜爽夜夜爽视频| 五月伊人婷婷丁香| 国产精品久久久久久精品电影小说| 少妇的逼水好多| 中文欧美无线码| 国模一区二区三区四区视频| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 99久久精品国产国产毛片| 国产精品国产av在线观看| 看非洲黑人一级黄片| 国产亚洲精品久久久com| 欧美变态另类bdsm刘玥| 国产精品秋霞免费鲁丝片| 久久国内精品自在自线图片| 伦精品一区二区三区| 国产成人91sexporn| 国产精品99久久99久久久不卡 | 26uuu在线亚洲综合色| 我要看黄色一级片免费的| 久久毛片免费看一区二区三区| 日本与韩国留学比较| av国产久精品久网站免费入址| 中文字幕久久专区| 亚洲欧洲国产日韩| 三级国产精品片| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 国产日韩欧美亚洲二区| 22中文网久久字幕| 午夜福利影视在线免费观看| 国产毛片在线视频| 中文精品一卡2卡3卡4更新| 三级国产精品片| 国产av精品麻豆| 狂野欧美激情性xxxx在线观看| 狠狠精品人妻久久久久久综合| 天堂中文最新版在线下载| 18禁在线播放成人免费| 精品久久久噜噜| 国产精品成人在线| 久久久久网色| 黑丝袜美女国产一区| 伦理电影免费视频| 免费黄频网站在线观看国产| 少妇丰满av| 丝袜脚勾引网站| 黄色配什么色好看| 啦啦啦在线观看免费高清www| 麻豆精品久久久久久蜜桃| 免费av不卡在线播放| 伦理电影免费视频| 中文在线观看免费www的网站| 久久久午夜欧美精品| 好男人视频免费观看在线| 80岁老熟妇乱子伦牲交| 最近最新中文字幕免费大全7| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线| 美女xxoo啪啪120秒动态图| 高清在线视频一区二区三区| 亚洲精品国产成人久久av| 青春草国产在线视频| 久久久国产精品麻豆| 一级毛片电影观看| 久久久国产欧美日韩av| 精品久久久久久久久亚洲| 一本一本综合久久| 三级经典国产精品| 国产日韩一区二区三区精品不卡 | 少妇被粗大的猛进出69影院 | 日本-黄色视频高清免费观看| 久久人人爽av亚洲精品天堂| 国产在线男女| 亚洲国产精品专区欧美| 丝袜在线中文字幕| 亚洲激情五月婷婷啪啪| 色婷婷久久久亚洲欧美| 久久久久国产网址| 国产日韩一区二区三区精品不卡 | 日日摸夜夜添夜夜添av毛片| 日韩av免费高清视频| 国产精品蜜桃在线观看| 亚洲精品,欧美精品| av不卡在线播放| 久久精品国产亚洲av涩爱| 日韩av免费高清视频| 丝瓜视频免费看黄片| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 精品酒店卫生间| 国产精品欧美亚洲77777| 熟妇人妻不卡中文字幕| 日本av免费视频播放| 色婷婷久久久亚洲欧美| 久久久久久久久久久免费av| √禁漫天堂资源中文www| 久久久久精品性色| 一级,二级,三级黄色视频| 久久精品国产自在天天线| 午夜免费鲁丝| 少妇被粗大的猛进出69影院 | 色5月婷婷丁香| 日本午夜av视频| 女性被躁到高潮视频| 看十八女毛片水多多多| av在线播放精品| 国产欧美日韩精品一区二区| 国产男人的电影天堂91| 久久久久久久久久久丰满| 欧美日韩视频精品一区| 国产淫片久久久久久久久| .国产精品久久| 国产综合精华液| 久久婷婷青草| 免费不卡的大黄色大毛片视频在线观看| 亚洲av不卡在线观看| 日日啪夜夜撸| 曰老女人黄片| 高清视频免费观看一区二区| 日韩人妻高清精品专区| 精品一区二区三卡| 精品少妇黑人巨大在线播放| 男人舔奶头视频| 亚洲av.av天堂| 日韩欧美精品免费久久| 国产成人精品一,二区| 91午夜精品亚洲一区二区三区| 天堂8中文在线网| 欧美成人精品欧美一级黄| 国产精品一区二区在线观看99| 777米奇影视久久| 亚洲欧美日韩另类电影网站| 日日摸夜夜添夜夜添av毛片| 26uuu在线亚洲综合色| 大香蕉97超碰在线| 国产精品国产av在线观看| av免费观看日本| 人妻人人澡人人爽人人| 国产成人午夜福利电影在线观看| 欧美bdsm另类| 色婷婷久久久亚洲欧美| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线 | av.在线天堂| 欧美少妇被猛烈插入视频| 少妇精品久久久久久久| 日韩制服骚丝袜av| 狠狠精品人妻久久久久久综合| 街头女战士在线观看网站| 欧美xxxx性猛交bbbb| 男女免费视频国产| 欧美 亚洲 国产 日韩一| 亚洲av二区三区四区| 91在线精品国自产拍蜜月| a级片在线免费高清观看视频| 欧美精品国产亚洲| 中文字幕久久专区| 一级片'在线观看视频| 97在线人人人人妻| 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 亚洲天堂av无毛| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 久久久久网色| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 全区人妻精品视频| 我要看黄色一级片免费的| 久久国产精品大桥未久av | 两个人的视频大全免费| 亚洲精品日本国产第一区| 国产精品久久久久久久电影| videossex国产| 看十八女毛片水多多多| 亚洲高清免费不卡视频| 久久女婷五月综合色啪小说| 精品卡一卡二卡四卡免费| 少妇高潮的动态图| 久久韩国三级中文字幕| 免费av不卡在线播放| 久久韩国三级中文字幕| .国产精品久久| 午夜福利视频精品| 免费av不卡在线播放| 美女福利国产在线| 国产黄片美女视频| 在线观看免费高清a一片| 久久久久国产网址| 毛片一级片免费看久久久久| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 国产成人a∨麻豆精品| 少妇高潮的动态图| 王馨瑶露胸无遮挡在线观看| 国产熟女欧美一区二区| 在现免费观看毛片| 男的添女的下面高潮视频| 成年人午夜在线观看视频| 男女免费视频国产| 国产 精品1| 欧美精品人与动牲交sv欧美| 亚洲精品第二区| 午夜日本视频在线| 妹子高潮喷水视频| 久久国产乱子免费精品| 国产爽快片一区二区三区| 看非洲黑人一级黄片| 纯流量卡能插随身wifi吗| 久久国产乱子免费精品| 午夜精品国产一区二区电影| 视频区图区小说| 99热这里只有精品一区| 日日撸夜夜添| 国产成人精品一,二区| 日韩中文字幕视频在线看片| 亚洲丝袜综合中文字幕| 国产亚洲最大av| 日韩在线高清观看一区二区三区| 久久人人爽av亚洲精品天堂| 黄色配什么色好看| videossex国产| 人体艺术视频欧美日本| 夜夜骑夜夜射夜夜干| 夜夜看夜夜爽夜夜摸| 我要看黄色一级片免费的| 永久网站在线| 亚洲人与动物交配视频| 欧美亚洲 丝袜 人妻 在线| 免费在线观看成人毛片| 街头女战士在线观看网站| 超碰97精品在线观看| 如日韩欧美国产精品一区二区三区 | 嫩草影院入口| 日本免费在线观看一区| a 毛片基地| 亚洲精品乱码久久久久久按摩| 久久久久国产精品人妻一区二区| 一区二区三区精品91| 男人狂女人下面高潮的视频| 一区二区av电影网| 免费黄网站久久成人精品| 久久99蜜桃精品久久| 国产成人91sexporn| 日本vs欧美在线观看视频 | 秋霞伦理黄片| 99热国产这里只有精品6| 午夜福利视频精品| 国产伦精品一区二区三区四那| 亚洲av男天堂| 国产精品蜜桃在线观看| 国产亚洲5aaaaa淫片| 水蜜桃什么品种好| 国产免费福利视频在线观看| 一二三四中文在线观看免费高清| 精品少妇黑人巨大在线播放| 啦啦啦在线观看免费高清www| 国产精品伦人一区二区| 麻豆成人av视频| 少妇的逼好多水| 一级毛片aaaaaa免费看小| 少妇的逼好多水| 精品亚洲成a人片在线观看| 欧美区成人在线视频| 在线观看人妻少妇| 精品人妻熟女毛片av久久网站| 啦啦啦在线观看免费高清www| 99热这里只有是精品在线观看| 22中文网久久字幕| 久久国产亚洲av麻豆专区| 国产在线男女| 色哟哟·www| 中文字幕制服av| 亚洲精品日韩在线中文字幕| 亚洲欧美清纯卡通| 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| 日本欧美视频一区| 国产伦精品一区二区三区视频9| 一级av片app| 男女边摸边吃奶| 国产片特级美女逼逼视频| 大陆偷拍与自拍| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频 | 精品少妇内射三级| 国产欧美亚洲国产| 欧美日韩视频高清一区二区三区二| 夜夜爽夜夜爽视频| 一级,二级,三级黄色视频| 国产精品嫩草影院av在线观看| 全区人妻精品视频| 国产精品一区www在线观看| 免费观看无遮挡的男女| 少妇高潮的动态图| 99久国产av精品国产电影| 亚洲av欧美aⅴ国产| 亚洲av免费高清在线观看| 久久国产精品大桥未久av | 亚洲三级黄色毛片| 亚洲久久久国产精品| √禁漫天堂资源中文www| 精品一品国产午夜福利视频| 中文精品一卡2卡3卡4更新| 日本91视频免费播放| 日日啪夜夜撸| 久久国产亚洲av麻豆专区| av在线老鸭窝| 国产午夜精品久久久久久一区二区三区| 久久久久久久精品精品| 蜜桃久久精品国产亚洲av| 91aial.com中文字幕在线观看| 国产淫片久久久久久久久| 国产精品久久久久久久电影| 美女内射精品一级片tv| 欧美日本中文国产一区发布| 成人特级av手机在线观看| 国产成人精品一,二区| 国产伦精品一区二区三区视频9| 亚洲国产欧美日韩在线播放 | 性色avwww在线观看| 五月开心婷婷网| 久久99热这里只频精品6学生| 熟女av电影| 伦理电影免费视频| 成人综合一区亚洲| 亚洲精品乱久久久久久| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 欧美成人午夜免费资源| 日韩不卡一区二区三区视频在线| 国产精品伦人一区二区| 国产一区二区三区av在线| 另类精品久久| 观看av在线不卡| 久热久热在线精品观看| 亚洲精品乱久久久久久| 久久狼人影院| 亚洲欧洲日产国产| 乱码一卡2卡4卡精品| 少妇的逼水好多| 五月玫瑰六月丁香| 国产在线一区二区三区精| 男女啪啪激烈高潮av片| 啦啦啦中文免费视频观看日本| 久久久精品免费免费高清| 午夜激情久久久久久久| 久久精品国产a三级三级三级| 国产熟女午夜一区二区三区 | 一本大道久久a久久精品| 熟女电影av网| 精品午夜福利在线看| 99热国产这里只有精品6| 精品人妻一区二区三区麻豆| 大码成人一级视频| 成人综合一区亚洲| av一本久久久久| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 亚洲无线观看免费| 中文字幕av电影在线播放| 欧美最新免费一区二区三区| 美女cb高潮喷水在线观看| 国产熟女欧美一区二区| 国产精品久久久久成人av| 成人毛片60女人毛片免费| 五月天丁香电影| 永久免费av网站大全| 国产精品一区www在线观看| 精品人妻偷拍中文字幕| 在线免费观看不下载黄p国产| 蜜臀久久99精品久久宅男| 三级国产精品片| 日本午夜av视频| 亚洲图色成人| 少妇人妻久久综合中文| 欧美精品高潮呻吟av久久| 又粗又硬又长又爽又黄的视频| a级一级毛片免费在线观看| 我要看日韩黄色一级片| 亚洲久久久国产精品| 99久久精品国产国产毛片| 国产一区二区三区av在线| 日本欧美视频一区| 国精品久久久久久国模美| 成人毛片a级毛片在线播放| 国产爽快片一区二区三区| 夫妻午夜视频| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的| 女人精品久久久久毛片| 色5月婷婷丁香| 亚洲综合精品二区| 国产精品无大码| 夜夜爽夜夜爽视频| 久久 成人 亚洲| 一级,二级,三级黄色视频| 亚洲国产精品国产精品| 99九九线精品视频在线观看视频| 久久人妻熟女aⅴ| 欧美成人精品欧美一级黄| 精品久久久久久久久av| 久久久国产精品麻豆| 秋霞在线观看毛片| 一本—道久久a久久精品蜜桃钙片| 国产成人一区二区在线| 夜夜骑夜夜射夜夜干| 成人黄色视频免费在线看| 夜夜爽夜夜爽视频| 午夜福利视频精品| freevideosex欧美| 久久久久久人妻| 亚州av有码| 国产午夜精品一二区理论片| 少妇猛男粗大的猛烈进出视频| 午夜日本视频在线| 午夜精品国产一区二区电影| 18禁裸乳无遮挡动漫免费视频| a级一级毛片免费在线观看| 一区二区三区免费毛片| 街头女战士在线观看网站| 亚洲三级黄色毛片| 热re99久久国产66热| 亚洲av中文av极速乱| 精品亚洲成a人片在线观看| 综合色丁香网| 欧美精品人与动牲交sv欧美| 高清在线视频一区二区三区| 欧美日韩视频高清一区二区三区二| 两个人的视频大全免费| 乱人伦中国视频| 天堂8中文在线网| 亚洲av欧美aⅴ国产| 日日啪夜夜爽| 亚洲精品久久午夜乱码| 天天躁夜夜躁狠狠久久av| 乱码一卡2卡4卡精品| 啦啦啦中文免费视频观看日本| 男女啪啪激烈高潮av片| 丝袜喷水一区| 国产成人免费无遮挡视频| 汤姆久久久久久久影院中文字幕| 成人美女网站在线观看视频| 国产免费视频播放在线视频| 欧美亚洲 丝袜 人妻 在线| 日韩视频在线欧美| 美女内射精品一级片tv| 91aial.com中文字幕在线观看| 在线观看免费视频网站a站| 最后的刺客免费高清国语| 观看av在线不卡| 18+在线观看网站| 日本欧美国产在线视频| 九九久久精品国产亚洲av麻豆| 久久精品熟女亚洲av麻豆精品| 久久综合国产亚洲精品| .国产精品久久| 最新中文字幕久久久久|