• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relaxation of Selective Constraint on the Ultra-Large Mitochondrial Genomes of Arcidae (Mollusca: Bivalvia)

    2021-08-30 06:15:04SUNShaoLIQiandKONGLingfeng
    Journal of Ocean University of China 2021年5期

    SUN Shao’e, LI Qi, 2), *, and KONG Lingfeng

    Relaxation of Selective Constraint on the Ultra-Large Mitochondrial Genomes of Arcidae (Mollusca: Bivalvia)

    SUN Shao’e1), LI Qi1), 2), *, and KONG Lingfeng1)

    1),,,266003,2),,266237,

    The mitochondrial genomes (mitogenomes) are purportedly under selection for smallersize to improve their replication and translation efficiency. However, the mitogenomes of Arcidae species are larger than those of other bivalves, and are among the largest metazoan mitogenomes reported to date. In order to explore the differences of base composition and selective constraints between the large and small mitogenomes, we compared the mitogenomes of 9 large arcid mitogenomes and 77 small bivalves mitogenomes. Base composition analyses indicated that Arcidae mitogenomes have significantly greater GC skews in both their whole genomes and coding sequences. This result suggeststhat the replication of the large mitogenomes in Arcidae may be slower than those in other bivalves, exposing the parental strand to deamination for a longer time. Selection pressure analyses showed that the mitochondrial protein-coding genes of Arcidae species have significantly highera/s ratios than other bivalves, suggesting that they have accumulated more nonsynonymous nucleotide substitutions. Seven protein-coding genes (,,,and) show significant difference fora/s ratios between the Arcidae and non-Arcidae groups. However, these divergences are not observed in the nuclear gene within histone H3. From these observations, we concluded that the large mitogenomes of Arcidae species experienced more relaxed selective constraints. As some Arcidae species are more tolerant to hypoxia that can lead to low metabolic rate, the relaxed selective constraints of mitogenomes may be energy-related. This study provides new insights into the evolution of Arcidae mitogenomes.

    Arcidae; mitochondrial genome; genome size; relaxed selective constraint

    1 Introduction

    The mitochondrial genomes (mitogenomes) of most bi- laterian animals include a standard set of 13 protein-co-ding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22transfer RNA (tRNA) genes, and an A+T-rich region (Boore, 1999). Although there are exceptions, most mitogenomes size are from 14 to 17kb. Typically, few intergenic nucleo- tides exist except for a single large non-coding region, whichwere thought to contain elements that control the initia-tion of replication and transcription of the mitogenome (Boore, 1999; Lavrov, 2007). This consistency in gene con- tent across distantly related lineages, as well as the lack of intergenic spacers, suggests that the mitogenome is under selection for compact size (Rand and Harrison, 1986). Com- pared with nuclear genome, the mitogenome has several advantages including conserved gene content, maternal in- heritance, lack of extensive recombination, and relatively high nucleotide substitution rates (Boore, 1999; Curole and Kocher, 1999; Gissi., 2008). These advantages make it a good model for the studies of evolutionary genomics (Saccone., 1999; Gissi., 2008; Cameron, 2014).

    Molluscs, especially bivalves, usually display an extra- ordinary amount of variation in mitogenome structure and size, even with differences in the closely related species (Gissi., 2008; Simison and Boore, 2008). The size of the bivalve mitogenomes are highly variable, ranging from14622 in(Park and Ahn, 2015) to 46985bp in(Liu., 2013) in length. Several bivalve species have showed large sizes of mitogenomes (greater than 20kb). The mitogenome size of the deep sea scallopis up to 40725bp (Smith and Snyder, 2007) and the mitogenome of Zhikong scallopis 21695bp (Xu., 2011). The mitogenome size of Manila clamis 22676bp in female type and 21441bp in male type (Passamonti and Scali, 2001). The mitogenome of, Clavagellidae, is at least 31969bp long (Wil- liams., 2017). The size of Arcidae mitogenomes are more unusual, of which the largest mitogenome size is 46985bp () (Liu., 2013). The bivalve species have a sedentary lifestyle, with low meta- bolic rate (Sun., 2017). The previous researches pro- posed that the large mitogenome of bivalves perhaps experience weak purifying selection, which may be correlated with their low metabolic rates (Strotz., 2018; Kong., 2020).

    Ark shells are among the oldest bivalve lineages, rea- ching back to the lower Ordovician which is about 450Myr (Morton., 1998). The species of Arcidae are glo- bally distributed, predominantly in the tropical shallow wa- ters and warm temperate seas, containing approximately 260 species and 31 genera (Oliver and Holmes, 2006). Mi- togenomes of ark shell species are among the largest me- tazoan mitogenomes reported to date, ranging from 18 to 56kb in length (Kong., 2020). It has been argued that animal mitogenomes are characterized by a tightly packed collection of conserved genes and other functional ele-ments, accompanying with drastic mitogenome size reduc- tion in evolutionary history of animal (Burger., 2003; Schneider and Ebert, 2004; Signorovitch., 2007). Ar- cidae presented a challenge to the point of selection favoring compact genomes by virtue of large mitogenome size. In our previous studies, we found the mitogenome size is positively correlated with the combined length of,and, the length of, and the combined length ofand(Sun., 2016). Researchers have found the inverted repeat sequences might facilitate the mitogenome expansions (Kong., 2020). It has been believed that metabolic rates influence the selective con- straints acting on the mitogenome, and purify selection act on small genome size (Rand, 1993). However, the natural selection act on the large mitogenome of Arcidae remains unexplored.

    The large size of Arcidae mitogenomes lead to several questions. Firstly, whether the nucleotide compositions of large Arcidae mitochondrial DNA (mtDNA) are different from those of other bivalve species with small ones? Se- condly, what’s the difference in substitution rate of mtDNAbetween Arcidae and other bivalve species? Thirdly, do all the mitochondrial genes of Arcidae experience the same selection pressure? In order to address these questions, we conducted a comparative genomic analysis and test the roles of the evolutionary constraints on the mtDNA of Arcidae to provide a complete view of molecular evolution in the mtDNA.

    2 Materials and Methods

    2.1 Source of Data

    The mtDNA sequences (Table 1) and nuclear gene (his- tone H3) (Table 2) of bivalves were downloaded from Gen- Bank. All the mitochondrial protein-coding genes were ex- tracted from each mitogenome.

    2.2 Base Composition

    AT and GC skew were calculated according to the for- mula defined by Perna and Kocher (1995), AT skew=(A?T)/(A+T) and GC skew=(G?C)/(G+C), which provides an index of compositional asymmetry between strands. Skews were calculated for all sites, and also for fourfold degenerate sites, which are expected to be less constrain- ed (Reyes, 1998). We then compared these measures of nucleotide skew between Arcoidae and non-Arcoidae taxa. All statistical analyses were performed with IBM SPSS Statistics, release 19.0.0.1.

    Table 1 The mtDNA sequences of bivalves downloaded from GenBank

    ()

    ()

    SpeciesAccestion no.Ka/KsKaKsatp6cox-1cox-2cox-3cytbnd1nd2nd3nd4nd4lnd5nd6 Chlamys farreriEU7152520.0447 0.0635 1.4216 0.0919 0.0160 0.0688 0.0228 0.0640 0.0291 0.1366 0.0387 0.0374 0.0428 0.0729 0.0382 Mizuhopecten yessoensisAB2717690.0453 0.0571 1.2599 0.0529 0.0189 0.0532 0.0673 0.0564 0.0271 0.0809 0.0303 0.0326 0.0473 0.0454 0.0835 Argopecten irradiansEU0239150.0443 0.0340 0.7672 0.0065 0.0006 0.0887 0.0001 0.0087 –0.0278 0.6156 0.0135 0.0099 0.0439 – Argopecten purpuratusKF6012460.0240 0.0171 0.7128 0.0511 0.0031 0.0157 0.0001 0.0205 0.0372 ––0.0581 –0.0142 0.0405 Argopecten ventricosusKT1612610.0238 0.0061 0.2578 0.0094 0.0083 0.0146 0.0136 0.0408 0.0108 0.1215 0.0262 0.0087 0.0234 0.0373 0.3601 Pinctada margaritiferaHM4678380.0512 0.0648 1.2652 0.2361 0.0034 0.0963 0.0416 0.0429 0.0374 0.0354 0.0053 0.0518 0.0232 0.0419 0.0952 Pinctada maximaGQ4528470.0420 0.0596 1.4187 0.0689 0.0137 0.0321 0.0107 0.0168 0.0361 –0.0493 0.0155 0.0456 0.0071 0.0460 Mytilus trossulusGU9366250.0217 0.0119 0.5481 0.0152 0.0035 0.0026 0.0001 0.0113 0.0145 0.0683 –0.0494 0.0170 0.0424 0.0682 Mytilus californianusGQ5271720.0209 0.0100 0.4802 0.0340 0.0063 0.0078 0.0020 0.0128 0.0323 0.0367 0.0027 0.0186 0.0202 0.0390 0.0266 Mytilus edulisAY4847470.0042 0.0173 4.1351 0.0001 0.0167 0.0001 –0.7360 0.0001 0.4733 0.0001 0.2050 0.0001 0.0530 – Mytilus galloprovincialisAY4972920.0589 0.0006 0.0105 0.0001 0.0001 0.0537 0.0001 0.0001 0.0001 0.2241 0.0001 0.0476 0.0001 0.4803 0.0001 Mytilus coruscusKJ5775490.0406 0.0274 0.6756 0.0060 0.0023 0.0033 0.0076 0.0086 0.0204 0.0453 0.2561 0.1965 0.0226 0.0556 0.0245 Brachidontes exustusKM2336360.0187 0.0803 4.3003 0.0709 0.0101 0.0659 0.0300 0.0057 0.0208 0.0388 0.0121 0.0633 0.0275 0.0362 0.0509 Perna viridisJQ9704250.0328 0.1890 5.7562 0.0037 0.0154 0.0436 0.0477 0.0470 0.0233 0.0176 0.0200 0.0377 0.0017 0.0442 0.0547 Perna pernaKM6558410.0151 0.0801 5.3151 0.0402 0.0106 0.1130 0.0475 0.0013 0.0246 0.0164 0.0257 0.0366 0.0657 0.0140 0.0247 Musculista senhousiaGU0019540.0512 0.2326 4.5476 0.0687 0.0203 0.0706 0.0709 0.0287 0.0702 0.0792 0.0052 0.0777 0.0105 0.0540 0.0585 Meretrix petechialisEU1459770.0803 0.0001 0.0009 0.0000 0.0001 0.0001 0.0000 0.5377 –0.1904 0.0002 0.0002 0.0000 0.0000 0.0001 Meretrix lamarckiiGU0712810.0920 0.0059 0.0638 0.0780 0.0457 0.2167 0.1385 0.0828 0.0066 0.1492 0.0612 0.0442 0.1590 0.0790 0.0142 Meretrix meretrixGQ4635980.0332 0.0000 0.0005 0.2694 0.0000 0.0000 0.0001 0.0001 0.0000 0.0940 0.1328 0.0001 0.0001 0.1120 0.0588 Meretrix lusoriaGQ9033390.0602 0.0008 0.0129 0.0370 0.0251 0.0961 0.0195 0.0499 0.0222 0.0985 0.0001 0.2169 0.1643 0.0792 0.2989 Meretrix lyrataKC8323170.0573 0.0031 0.0541 –0.0473 0.0760 0.1010 0.0476 0.0259 0.1848 0.0084 0.0438 0.0793 0.0350 0.0995 Paphia euglyptaGU2692710.0274 0.0010 0.0375 0.0138 0.0085 0.0448 0.0227 0.0176 0.0327 0.0880 0.0178 0.0762 0.0001 0.0277 0.0646 Paphia undulataJF9692780.0276 0.0010 0.0345 0.0197 0.0088 0.0325 –0.0113 0.0316 0.0492 0.0106 0.0141 –0.0361 0.0311 Paphia textileJF9692770.0282 0.0008 0.0298 0.0208 0.0062 0.0703 0.0048 0.0213 0.0273 0.0315 0.0066 0.0395 0.0146 0.0479 0.0987 Paphia amabilisJF9692760.0600 0.0025 0.0411 0.0222 0.0598 0.0411 0.0369 0.0672 0.0266 0.0408 0.0270 0.0224 –0.0693 0.1035 Venerupis philippinarumAB0653750.0357 0.0078 0.2178 0.0598 0.0073 0.0228 0.0332 0.0277 0.0503 0.0608 0.0861 0.0227 1.1707 0.0070 0.3303 Saxidomus purpuratusKP4199330.0239 0.0031 0.1295 0.0216 0.0169 0.0567 0.0204 0.0452 0.0318 0.1331 0.0966 0.0174 0.0028 0.0184 0.1631 Solenaia oleivoraKF2963200.0556 0.0016 0.0286 0.0426 0.0017 0.0373 0.0269 0.0368 0.0359 0.1227 0.0841 0.0649 0.0559 0.0574 0.0617 Solen strictusJN7863770.0331 0.0011 0.0326 0.0938 0.0042 0.0044 –0.0334 0.0279 0.1669 0.0571 0.0048 0.0135 0.0138 0.0348 Solen grandisHQ7030120.0183 0.0005 0.0263 0.0160 0.0010 –0.0055 0.0123 0.0188 0.0505 0.0109 0.0078 0.0057 0.0072 0.0179 Solenaia carinatusKC8486540.0542 0.0014 0.0251 0.0621 0.0055 0.0319 0.0445 0.0706 0.0395 0.1073 0.1692 0.0374 0.0356 0.0602 0.0910 Lucinella divaricataEF0433420.0094 0.0004 0.0424 0.1626 0.0053 0.0046 0.0027 0.0159 0.0209 0.0647 0.0040 0.0091 0.0233 0.0041 0.2772 Loripes lacteusEF0433410.0105 0.0006 0.0553 0.0124 0.0001 0.0085 0.0017 0.0102 0.0817 0.0926 0.0099 0.0096 0.0178 0.0009 0.0389 Acanthocardia tuberculataDQ6327430.0481 0.0087 0.1819 0.0097 0.0208 0.0074 0.0157 0.0211 0.0478 0.1627 0.0234 0.0751 0.4939 0.1067 0.2459 Fulvia muticaAB8090770.0382 0.0065 0.1699 0.0364 0.0192 0.0072 0.0339 0.0213 0.0555 0.0041 0.0026 0.0377 0.1013 0.0500 0.3063 Tridacna squamosaKP2054280.0624 0.0568 0.9115 0.0054 0.0058 0.0142 0.0487 0.0218 0.3568 0.3273 0.5336 0.1362 0.7820 0.0161 – Semele scabraJN3983650.0185 0.0022 0.1184 0.0081 0.0075 0.0157 0.0167 0.0342 0.0598 0.0711 0.0082 0.0214 0.0453 0.0069 0.0745 Nuttallia olivaceaJN3983640.0176 0.0024 0.1339 0.0559 0.0121 0.0101 0.0112 0.0253 0.0400 0.0916 0.0129 0.0201 0.0359 0.0128 0.0258 Soletellina diphosJN3983630.0134 0.0010 0.0723 0.0137 0.0087 0.0359 0.0905 0.0197 0.0293 0.0881 0.1082 0.0122 0.0265 0.0167 0.0341 Moerella iridescensJN3983620.0151 0.0013 0.0839 0.0241 0.0061 0.0096 0.0031 0.0070 0.0229 0.0085 0.0346 0.0259 0.0015 0.0233 0.0728 Solecurtus divaricatusJN3983670.0169 0.0012 0.0705 0.0202 0.0128 0.0206 0.0990 0.0422 0.0579 0.0764 0.0308 0.0198 0.0445 0.0022 0.0400 Sinonovacula constrictaEU8802780.0385 0.0071 0.1852 0.0165 0.0170 0.0056 0.0139 0.0433 0.0856 0.1151 0.1165 0.0141 0.0168 0.0556 0.1046 Coelomactra antiquataJQ4234600.0122 0.0007 0.0609 0.0006 0.0030 0.0389 0.0067 0.0180 0.0178 0.0509 0.1096 0.0104 0.0583 0.0185 0.0123 Mactra chinensisKJ7548230.0128 0.0007 0.0565 0.0025 0.0010 0.0316 0.0029 0.0167 0.0313 0.0582 0.0054 0.0038 0.0112 0.0269 0.0523 Lutraria rhynchaenaHG7990890.0278 0.0039 0.1406 0.1280 0.0081 0.0222 0.0312 0.0306 0.0820 0.0507 0.0316 0.0172 0.1027 0.0447 0.1188 Arctica islandicaKF3639510.0248 0.0034 0.1386 0.0310 0.0173 0.0093 0.0075 0.0232 0.0169 0.0535 0.0245 0.0270 0.0165 0.0367 0.1801 Calyptogena magnificaKR8623680.0650 0.0181 0.2790 0.1005 0.0383 0.0891 0.0394 0.0681 0.0818 0.1309 0.0365 0.0207 0.0513 0.1166 0.1257 Mya arenariaKJ7559960.0905 0.0363 0.4006 0.1179 0.0732 0.0445 0.1039 0.1126 0.0038 0.2250 0.1928 0.0663 0.0367 0.0564 0.4209 Hiatella arcticaDQ6327420.0990 0.0441 0.4451 0.2868 0.0464 0.1977 0.0127 0.1309 0.0811 0.1201 0.5193 0.1167 –0.0894 0.3495 Panopea generosaKM5800670.0095 0.0005 0.0503 0.0232 0.0030 0.1959 0.0005 0.0399 0.0289 0.0491 0.0068 0.0294 0.0013 0.0071 0.0371 Panopea globosaKM5800680.0080 0.0004 0.0457 0.0039 0.0011 0.0160 0.0024 0.0319 0.0295 0.0961 0.0087 0.0348 0.1062 0.0148 0.0591 Anodonta anatinaKF0309640.0543 0.0015 0.0279 0.0496 0.0090 0.0212 0.0185 0.0405 0.0548 0.0510 0.0301 0.0877 0.1430 0.0665 0.0957 Anodonta arcaeformisKF6675300.0766 0.0003 0.0039 0.1123 0.0145 0.0001 0.0001 0.0442 0.1493 0.1044 0.1981 0.1005 0.3934 0.0886 0.0330 Anodonta lucidaKF6675290.0819 0.0039 0.0473 0.1482 0.0110 0.0603 0.0380 0.0580 0.0938 0.1221 0.1266 0.0470 0.0760 0.1020 0.1669 Anodonta euscaphysKP1878510.0923 0.0007 0.0079 0.1726 0.0891 –0.1114 0.1095 0.0805 0.3326 0.0001 0.4194 –0.1384 0.2573 Hyriopsis cumingiiHM3476680.0596 0.0008 0.0126 0.1685 0.0001 0.0234 0.0119 0.0430 0.1631 0.1192 0.0211 0.0873 –0.0698 0.0650 Hyriopsis schlegeliiHQ6414060.0459 0.0005 0.0115 0.0198 0.0035 0.0531 0.0105 0.0319 0.0351 0.0596 –0.0475 0.0001 0.0514 0.0674 Utterbackia imbecillisHM8566370.0754 0.0029 0.0380 0.1575 0.0081 0.0267 0.0421 0.1127 0.0677 0.0885 0.0812 0.0905 0.1471 0.1252 0.1197 Utterbackia peninsularisHM8566350.0496 0.0102 0.2065 0.0177 0.0191 0.0416 0.0020 0.1196 0.0822 0.1027 0.1512 0.0209 0.3393 0.0371 0.0389 Unio pictorumHM0141300.0561 0.0018 0.0313 0.0910 0.0092 0.0333 0.0171 0.0524 0.0699 0.0522 0.0714 0.0500 0.1272 0.0630 0.1158 Unio douglasiaeKM6579540.0519 0.0015 0.0295 0.0713 0.0085 0.0027 0.0087 0.0712 0.0250 0.0597 0.0245 0.0608 0.0354 0.0560 0.0873

    Note: –, not available.

    Table 2 The nuclear gene (histone H3) of bivalves downloaded from GenBank

    2.3 Estimation of Nonsynonymous/Synonymous Substitutions Ratios (Ka/Ks)

    The maximum-likelihood phylogenetic relationships werereconstructed based on nucleotide sequences of twelveprotein-coding genes using RAxML v.7.0.4 (Stamatakis, 2006). The twelve-partitioned nucleotide sequences were aligned with ClustalX (Thompson., 1997). The ratios of nonsynonymous to synonymous substitutions (a/s) were estimated for each branch using CodeML implement- ed in the PAML package (Yang, 2007). Model 1 was used, which allows a freea/s ratio. Onlya/s ands va- lues of the external branches were selected in the following analyses,., deleterious mutations (a/s) between modern species and their most recent ancestors. The statistical analyses were performed with IBM SPSS Statistics, release 19.0.0.1.

    3 Results and Discussion

    3.1 Relationship Between Genome Size and Nucleotide Composition in Arcidae

    Arcidae species poss larger mitogenomes than that found in typical animals, challenging the conventional hypo-thesis that a compact mitogenome is a common feature among all animals. The increased size of Arcidae mito- genome is due to the presence of long noncoding regions. Genomic coverage by mitochondrial noncoding regionscan reach up to 71% (33046bp) for(Sun., 2014). Larger size molecules are usually considered to be at a selective disadvantage simply because they take longer time to replicate, leaving fewer copies to be trans- mitted (Boyce., 1989). On the contrary, smaller sized mtDNA molecules are with replicative or selective advan- tage (Boyce., 1989).

    In order to explore if the large Arcidae mtDNA can af- fect replication mechanics, we compared the nucleotide skew of whole genome sequences (PmtDNA), the protein- coding genes at all codon positions (P123), and the four- fold codon positions (P4FD) between Arcidae species and the other bivalve species (Table 3). AT skews for the PmtDNAare the same between Arcidae and non-Arcidae groups (Mann-Whitney U-test,=0.904, Fig.1A);however, the GC skews of Arcidae species are significantly greater than that of the non-Arcidae group (=0.003, Fig.1B). The GC skews of P123in Arcidae species are also significantly greater than those of non-Arcidae group (=0.001, Fig.1C), while AT skews do not differ (=0.076, Fig.1D). This pat- tern is similar when analysis is restricted to the P4FD, which are presumed to be under weaker selection, with the trend toward greater GC skew in Arcidae species (=0.001, Fig.1E) and little difference in AT skew (=0.048, Fig.1F).

    The asymmetric mechanism of mtDNA replication, in which the parental strand is exposed to mutation while it is in a single-stranded state, can account for the strong com- positional asymmetry observed in mitogenomes (Reyes., 1998). According to this hypothesis, a possible explanation for the marked nucleotide skew in Arcidae species migth be that the mitogenome replication in Arcidae is slower than thosein other bivalves, exposing the paren- tal strand to deamination for a longer time. Thus, the data of the compositional asymmetry of Arcidae and non-Ar- cidae group indicated that the presence of the exceptional long no-coding regions may affect replication mechanics. However, the large size of mitogenomes in the Arcidae spe- cies does notmean a significant replicative disadvantage.The exceptional long no-coding regions may provide ad- ditional replication initiation signals, which can increasethe number of genome replicates per template genome (Jiang., 2007; Eberhard and Wright, 2016). This is really ad- vantageous if the replication of Arcidae mtDNA is parti- cularly slow, as reflected by the marked nucleotide skew that were found in Arcidae mitogenomes. One way to test this idea is to map replication initiation sites to see whe- ther Arcidae mitogenomes have more replication initiation zones in the non-coding regions.

    Table 3 The bivalves mitochondrial genomes included in the analysis of strand asymmetry in nucleotide composition

    ()

    ()

    SpeciesAccession no.mtDNAP123P4FD AT skewGC skewAT skewGC skewAT skewGC skew Lucinella divaricataEF043342?0.240.33?0.310.32?0.310.31 Loripes lacteusEF043341?0.230.32?0.310.33?0.310.46 Acanthocardia tuberculataDQ632743?0.180.17?0.250.18?0.110.25 Fulvia muticaAB809077?0.130.28?0.240.29?0.160.38 Tridacna squamosaKP205428?0.120.19?0.190.26?0.050.34 Semele scabraJN398365?0.230.43?0.320.43?0.360.62 Nuttallia olivaceaJN398364?0.150.32?0.210.33?0.100.54 Soletellina diphosJN398363?0.260.37?0.330.38?0.450.60 Moerella iridescensJN398362?0.220.35?0.300.32?0.360.34 Solecurtus divaricatusJN398367?0.290.38?0.370.39?0.550.50 Sinonovacula constrictaEU880278?0.230.36?0.320.37?0.360.63 Coelomactra antiquataJQ423460?0.200.30?0.290.29?0.270.50 Mactra chinensisKJ754823?0.220.26?0.320.25?0.360.40 Lutraria rhynchaenaHG799089?0.280.40?0.370.40?0.470.60 Arctica islandicaKF363951?0.160.30?0.240.31?0.160.43 Calyptogena magnificaKR862368?0.200.39?0.290.39?0.350.64 Mya arenariaKJ755996?0.130.32?0.200.33?0.250.28 Hiatella arcticaDQ632742?0.150.29?0.220.31?0.280.29 Panopea generosaKM580067?0.210.38?0.290.39?0.310.33 Panopea globosaKM580068?0.270.44?0.350.45?0.380.40 Anodonta anatinaKF030964?0.150.30?0.240.18?0.210.20 Anodonta arcaeformisKF667530?0.120.27?0.240.18?0.180.26 Anodonta lucidaKF667529?0.130.28?0.230.16?0.190.16 Anodonta euscaphysKP187851?0.120.26?0.280.18?0.160.19 Hyriopsis cumingiiHM347668?0.230.36?0.300.21?0.270.30 Hyriopsis schlegeliiHQ641406?0.230.35?0.310.22?0.290.35 Utterbackia imbecillisHM856637?0.150.28?0.230.18?0.200.21 Utterbackia peninsularisHM856635?0.130.26?0.190.13?0.150.18 Unio pictorumHM014130?0.190.32?0.250.19?0.250.22 Unio douglasiaeKM657954?0.180.32?0.250.19?0.240.21

    Fig.1 Nucleotide skew values of the whole mtDNA and protein-coding genes of Arcidae and non-Arcidae bivalve mitochondrial genomes. A, GC skews for mtDNA; B, AT skews for mtDNA; C, GC skews for all sites (P123); D, AT skews for all sites (P123); E, GC skews for the fourfold degenerate sites (P4FD); F, AT skews for the fourfold degenerate sites (P4FD). The average values of each group are indicated along with standard error bars.

    3.2 Relaxed Selective Constraint on Large Mitogenomes of Arcidae

    Previous studies have shown that the mitogenomes are under selection for smaller size, which can cause higher replication and translation efficiency (Rand, 1993). Ac-cording to this hypothesis, the large mitogenomes of Ar- cidae species may under different selective constraint com- pared with small mitogenomes in other bivalves. In order to explore this difference, we assembled a data set of 86 mitogenomes of bivalves and constructed the Maximum Likelihood (ML) phylogenetic tree (Fig.2).

    The ratio of nonsynonymous (change in amino acid) and synonymous (silent) substitutions (a/s) is generally used to measure the selective constraints acting on the protein- coding sequences. The mitochondrial data set of bivalves (listed in Supplementary Table 1) were first divided into ‘Arcidae (large mitogenome)’ and ‘non-Arcidae (small mi- togenome)’ groups to represent groups with different mi- togenome sizes (Fig.2). The Arcidae group has a signifi- cant higher mean value ofa/s (0.0705) than the non- Arcidae group (0.0421) (=0.002, Mann-Whitney U-test, Fig.3A). The mean value fora is also significantly dif- ferent between Arcidae and non-Arcidae groups (0.1094. 0.0238,<0.001, Fig.3B), suggesting that the mitochondrial protein-coding genes of Arcidae accumulate more non-synonymous mutations compared with other bivalves. Con-sidering that the divergences of synonymous mutation rate may bias the results, we compared the averages betweenArcidae and non-Arcidae groups. The mean value ofs in Arcidae group (1.8945) is significantly higher than that of the non-Arcidae group (0.7524;=0.003). The greaters may result in a smallera/s ratio in Arcidae group, making the results more conservative. Therefore, our ana- lyses suggest that the highera/s values in Arcidae groupare not simply originated from the divergences in synony- mous mutation rates.

    To identify which mitochondrial protein-coding genes aremost affected by the selective constraints, we tested thea/s ratio for each of the 12 mitochondrial genes (Table 1). Seven protein-coding genes (,–,,and) show significantly highera/s ratios in Arcidae species (Fig.4). This result suggests that these genes may have experienced more relaxed functional con- straints.

    In order to determine whether thea/s variations de- pend upon the mitogenome size, or they just reflect a ge- neral pattern of molecular evolution for bivalves, we repeated the above analysis for histone H3, a nuclear gene from 49 bivalves, which is independent of mitogenome size(listed in Table 2). However, thea/s ratio of histone H3 gene is not significantly different between the two groups (0.0001. 0.0085,=0.142).

    An alternative hypothesis to explain this finding is that the selective constraints are relaxed on the large mitoge- nomes of Arcidae species. Because mitochondria play a crucial role in energy generation, mitochondrial genes are more sensitive to the energy-related selective pressures. Higher rates of nonsynonymous substitutions in mtDNA genes may lead to more radical amino acid substitutions (Hanada., 2007), resulting a reduction in electron- transferring respiratory chain activity (Weber., 1997; Brown., 2000). Previous study has showed that low metabolic rates is correlated with relaxed selective con- straints on mitochondrial genes (Chong and Mueller, 2012).Based on this hypothesis, Arcidae species may be more likely to survive and reproduce with lower metabolic re- quirementsthan other bivalvesunder similar environment. This coincides with the biological characteristics of Arci- dae species. Some Arcidae species are more tolerant to as- phyxiation as they can moreeconomically consume oxy- gen, such as the arcid clam, whichcan adaptwell to oxygen content change in the water (Ani- stratenko and Khaliman, 2006; Soldatov., 2009). Whenthe organisms expose to environmental hypoxia, the en- ergy production in mitochondria is slowed, and metabolic rate will be suppressed (Richards, 2011). We thus deducedthat the relaxation of selective constraint on large mito- genomes of arcid species is related to their low metabolic rates. The relaxation of selective constraints contributes to generate ‘new’ (adapted) mitochondrial genes, and posi- tive selection is the basis of adaptive evolution (Shen., 2010). Thus the positive selection may have occurred on some mitochondrial genes in Arcidae species to generate the adapted genes.

    4 Conclusions

    In the present study, we conducted a comparative ana- lysis of 86 bivalve mitogenomes (including 9 arcid mito- genomes) to explore the differences of base composition and selective constraints between the large mitogenomes in Arcidae and small ones in other bivalves. Arcidae mito- genomes have significantly greater GC skews in their co- ding sequences. The mitochondrial protein-coding genes of Arcidae species had significant highera/s than other bi- valves. Seven protein-coding genes (,,,and) are most affected by the selective con- straints. These divergences are not observed in the nu- clear gene (histone H3). The replication of the large mito- genomes in Arcidae may be slower than those in other bivalves. The large mitogenomes of Arcidae experienced more relaxed selective constraints, which is supposed to be related to their low metabolic rates, a response to hypoxia exposure.

    Fig.2 Bivalve phylogenetic tree constructed from 12 mitochondrial protein-coding genes with the Maximum Likelihood method. Arcidae species are marked in blue. The mitogenome size of each bivalve species are indicated. The average mitogenome size of Arcidae and non-Arcidae groups are presented.

    Fig.3 Comparisons of Ka/Ks ratios (A) and Ka (B) between Arcidae and non-Arcidae groups. *0.01

    Fig.4 Comparisons of Ka/Ks ratios of the 12 mitochondrial protein-coding genes between Arcidae and non-Arcidae groups. *0.01

    Acknowledgements

    This work was supported by research grants from the National Natural Science Foundation of China (No. 3177 2414), the Natural Science Foundation of Qingdao City(No. 20-3-4-16-nsh), and the Fundamental Research Funds for the Central Universities (No. 201964001).

    Anistratenko, V. V., and Khaliman, I. A., 2006. Bivalve mollusk(Bivalvia, Arcidae) in the northern part of the Sea of Azov: Final colonization of the Azov-Black Sea basin., 40 (5): 505-511.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27 (8): 1767-1780, DOI: 10.1093/nar/27.8.1767.

    Boyce, T. M., Zwick, M. E., and Aquadro, C. F., 1989. Mitochon-drial DNA in the bark weevils: Size, structure and heteroplasmy., 123 (4): 825-836, DOI: 10.1101/gad.3.12b.2218.

    Brown, M. D., Trounce, I. A., Jun, A. S., Allen, J. C., and Wallace, D. C., 2000. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation., 275 (51): 39831-39836, DOI: 10.1074/jbc.M006476200.

    Burger, G., Gray, M. W., and Lang, B. F., 2003. Mitochondrial ge- nomes: Anything goes., 19 (12): 709-716, DOI: 10.1016/j.tig.2003.10.012.

    Cameron, S. L., 2014. Insect mitochondrial genomics: Implications for evolution and phylogeny., 59 (1): 95-117, DOI: 10.1146/annurev-ento-011613-162 007.

    Chong, R. A., and Mueller, R. L., 2012. Low metabolic rates in salamanders are correlated with weak selective constraints on mitochondrial genes., 67 (3): 894-899, DOI: 10.1111/ j.1558-5646.2012.01830.x.

    Curole, J. P., and Kocher, T. D., 1999. Mitogenomics: Digging deeper with complete mitochondrial genomes., 14 (10): 394-398, DOI: 10.1016/S0169- 5347(99)01660-2.

    Eberhard, J. R., and Wright, T. F., 2016. Rearrangement and evo- lution of mitochondrial genomes in parrots., 94: 34-46, DOI: 10.1016/j.ympev. 2015.08.011.

    Gissi, C., Iannelli, F., and Pesole, G., 2008. Evolution of the mi- tochondrial genome of Metazoa as exemplified by comparison of congeneric species., 101 (4): 301-320, DOI: 10. 1038/hdy.2008.62.

    Hanada, K., Shiu, S. H., and Li, W. H., 2007. The nonsynonymous/synonymous substitution rate ratio versus the radical/ conservative replacement rate ratio in the evolution of mammalian genes.,24 (10): 2235- 2241, DOI: 10.1093/molbev/msm152.

    Jiang, Z. J., Castoe, T. A., Austin, C. C., Burbrink, F. T., Herron, M. D., McGuire, J. A.,., 2007. Comparative mitochondrial genomics of snakes: Extraordinary substitution rate dynamics and functionality of the duplicate control region., 7: 123, DOI: 10.1186/1471-2148-7-123.

    Kong, L., Li, Y., Kocot, K. M., Yang, Y., Qi, L., Li, Q.,., 2020. Mitogenomics reveals phylogenetic relationships of Ar- coida (Mollusca, Bivalvia) and multiple independent expansions and contractions in mitochondrial genome size,, 150: 106857, DOI: 10. 1016/j.ympev.2020.106857.

    Lavrov, D. V., 2007. Key transitions in animal evolution: A mitochondrial DNA perspective., 47 (5): 734-743, DOI: 10.1093/icb/icm045.

    Liu, Y. G., Kurokawa, T., Sekino, M., Tanabe, T., and Watanabe, K., 2013. Complete mitochondrial DNA sequence of the ark shell: An ultra large metazoan mitochondrial genome., 8 (1): 72-81, DOI: 10.1016/j.cbd.2012.12.003.

    Morton, B. S., Prezant, R. S., and Wilson, B., 1998. Class Bival- via. In:. Beesley, P. L.,.,eds., Fauna of Australia, Vol. 5. CSIRO Publishing, Melbourne, 195-234.

    Oliver, P. G., and Holmes, A. M., 2006. The Arcoidea (Mollusca: Bivalvia): A review of the current phenetic-based systematics., 148 (3): 237-251, DOI: 10.1111/j.1096-3642.2006.00256.x.

    Park, H., and Ahn, D. H., 2015. Complete mitochondrial geno- me of the antarctic soft-shelled clam,(Bivalvia; Laternulidae)., 26 (4): 2, DOI: 10. 3109/19401736.2013.836515.

    Passamonti, M., and Scali, V., 2001. Gender-associated mitochon- drial DNA heteroplasmy in the venerid clam(Mollusca Bivalvia)., 39: 117-124, DOI: 10.1097/00000539-200210000-00038.

    Rand, D. M., 1993. Endotherms, ectotherms, and mitochondrial genome-size variation., 37 (3): 281-295, DOI: 10.1007/BF00175505.

    Rand, D. M., and Harrison, R. G., 1986. Mitochondrial DNA trans- mission in crickets., 114 (3): 955-970, DOI: 10.1016/ 0735-0651(86)90016-6.

    Reyes, A., Gissi, C., Pesole, G., and Saccone, C., 1998. Asymme- trical directional mutation pressure in the mitochondrial genome of mammals., 15 (8): 957-966, DOI: 10.1093/oxfordjournals.molbev.a026011.

    Richards, G. J., 2011. HYPOXIA|Metabolic rate suppression as a mechanism for surviving hypoxia. In:. Farren, A. P.,., eds., Academic Press, Amster-dam, 1764-1770, DOI: 10.1016/B978-0-12-374553-8.00155-6.

    Saccone, C., Giorgi, C. D., Gissi, C., Pesole, G., and Reyes, A., 1999. Evolutionary genomics in metazoa: The mitochondrial DNA as a model system., 238 (1): 195-209, DOI: 10.10 16/S0378-1119(99)00270-X.

    Schneider, A., and Ebert, D., 2004. Covariation of mitochondrial genome size with gene lengths: Evidence for gene length reduction during mitochondrial evolution., 59 (1): 90-96, DOI: 10.1007/s00239-004-2607-x.

    Shen, Y. Y., Liang, L., Zhu, Z. H., Zhou, W. P., Irwin, D. M., and Zhang, Y. P., 2010. Adaptive evolution of energy metabolism genes and the origin of flight in bats., 107 (19): 8666-8671, DOI: 10.1073/pnas.0912613107.

    Signorovitch, A. Y., Buss, L. W., and Dellaporta, S. L., 2007. Com- parative genomics of large mitochondria in placozoans., 3 (1): e13, DOI: 10.1371/journal.pgen.0030013.

    Simison, W. B., and Boore, J. L., 2008. Molluscan evolutionary genomics. In:. Pon- der, W., and Lindberg, D. R., eds., University of California Press, Berkeley, 447-461.

    Smith, D. R., and Snyder, M., 2007. Complete mitochondrial DNA sequence of the scallop: Evidence of transposition leading to an uncharacteristically large mitochondrial genome., 65: 380- 391, DOI: 10.1007/s00239-007-9016-x.

    Soldatov, A. A., Andreenko, T. I., Sysoeva, I. V., and Sysoev, A. A., 2009. Tissue specificity of metabolism in the bivalve mol- luscBr. under conditions of experimen- tal anoxia., 45: 349-355, DOI: 10.1134/S002209300903003X.

    Stamatakis, A., 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models., 22 (21): 2688-2690, DOI: 10.1093/ bioinformatics/btl446.

    Strotz, L. C., Saupe, E. E., Kimmig, J., and Lieberman, B. S., 2018. Metabolic rates, climate and macroevolution: A case study us- ing Neogene molluscs., 285 (1885): 20181292, DOI: 10.1098/rspb. 2018.1292.

    Sun, S., Kong, L., Yu, H., and Li, Q., 2014. The complete mitochondrial genome of(Bivalvia: Arcidae)., 26 (6): 957-958, DOI: 10.3109/ 19401736.2013.865174.

    Sun, S., Li, Q., Kong, L., and Yu, H., 2016. Complete mitochon- drial genomes ofand: Varied mitochondrial genome size and highly rearranged gene order in Arcidae., 6 (1): 33794, DOI: 10.1038/srep 33794.

    Sun, S., Li, Q., Kong, L., and Yu, H., 2017. Limited locomotive ability relaxed selective constraints on molluscs mitochondrial genomes., 7 (1): 10628, DOI: 10.1038/s415 98-017-11117-z.

    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools., 25 (24): 4876- 4882, DOI: 10.1093/nar/25.24.4876.

    Weber, K., Wilson, J. N., Taylor, L., Brierley, E., Johnson, M. A., Turnbull, D. M.,., 1997. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle., 60 (2): 373-380, DOI: 10.1016/S0027-5107(96)00239-4.

    Williams, S. T., Foster, P. G., Hughes, C., Harper, E. M., Taylor, J. D., Littlewood, D. T. J.,., 2017. Curious bivalves: Sys- tematic utility and unusual properties of anomalodesmatan mi- tochondrial genomes., 110: 60-72, DOI: 10.1016/j.ympev.2017.03.004.

    Xu, K. F., Kanno, M., Yu, H., Li, Q., and Kijima, A., 2011. Com- plete mitochondrial DNA sequence and phylogenetic analysis of Zhikong scallop(Bivalvia: Pectinidae)., 38 (5): 3067-3074, DOI: 10.1007/ s11033-010-9974-8.

    Yang, Z., 2007. PAML 4: Phylogenetic analysis by maximum like- lihood., 24 (8): 1586-1591, DOI: 10.1093/molbev/msm088.

    . E-mail: qili66@ouc.edu.cn

    August 2, 2020;

    October 9, 2020;

    December 15, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    (Edited by Qiu Yantao)

    亚洲伊人色综图| 亚洲欧美成人综合另类久久久| 叶爱在线成人免费视频播放| 亚洲精品美女久久久久99蜜臀 | 亚洲 国产 在线| 亚洲欧美中文字幕日韩二区| 啦啦啦中文免费视频观看日本| 黑人欧美特级aaaaaa片| 午夜视频精品福利| 亚洲图色成人| 亚洲精品久久成人aⅴ小说| 亚洲精品国产区一区二| 国产亚洲av片在线观看秒播厂| 午夜免费男女啪啪视频观看| 国产高清不卡午夜福利| 中文字幕人妻丝袜制服| 亚洲七黄色美女视频| 日韩,欧美,国产一区二区三区| 成在线人永久免费视频| 国产91精品成人一区二区三区 | 欧美日韩亚洲高清精品| 国产无遮挡羞羞视频在线观看| 久久久久国产精品人妻一区二区| 一边摸一边抽搐一进一出视频| 欧美精品啪啪一区二区三区 | 日韩伦理黄色片| 国产成人av教育| e午夜精品久久久久久久| 久久久精品国产亚洲av高清涩受| 中国美女看黄片| 我的亚洲天堂| 国产精品免费大片| 大码成人一级视频| 国产成人啪精品午夜网站| 2018国产大陆天天弄谢| 婷婷丁香在线五月| 久久久久国产一级毛片高清牌| 91麻豆av在线| 欧美日韩亚洲国产一区二区在线观看 | 中文乱码字字幕精品一区二区三区| 91精品伊人久久大香线蕉| av国产精品久久久久影院| 99国产精品99久久久久| av国产久精品久网站免费入址| 精品高清国产在线一区| 王馨瑶露胸无遮挡在线观看| 日本欧美国产在线视频| 人妻人人澡人人爽人人| 久久国产亚洲av麻豆专区| 亚洲,一卡二卡三卡| 久久精品久久精品一区二区三区| 真人做人爱边吃奶动态| 真人做人爱边吃奶动态| 99国产精品一区二区三区| 国产老妇伦熟女老妇高清| 国产亚洲av高清不卡| 女人被躁到高潮嗷嗷叫费观| 久久人人97超碰香蕉20202| tube8黄色片| 免费在线观看完整版高清| 黄色一级大片看看| 丝袜美腿诱惑在线| 汤姆久久久久久久影院中文字幕| 日韩伦理黄色片| 国产成人啪精品午夜网站| 国产日韩一区二区三区精品不卡| 久久午夜综合久久蜜桃| 国产99久久九九免费精品| 午夜91福利影院| 水蜜桃什么品种好| 久久久精品区二区三区| 亚洲专区中文字幕在线| 亚洲国产毛片av蜜桃av| 亚洲成av片中文字幕在线观看| 亚洲国产日韩一区二区| 国产精品国产av在线观看| 99精国产麻豆久久婷婷| 国产免费福利视频在线观看| 亚洲精品日韩在线中文字幕| 精品久久久久久电影网| 一级片'在线观看视频| 日本av手机在线免费观看| 水蜜桃什么品种好| 韩国精品一区二区三区| 午夜福利一区二区在线看| 在线精品无人区一区二区三| 国产伦人伦偷精品视频| 久久九九热精品免费| 一本—道久久a久久精品蜜桃钙片| √禁漫天堂资源中文www| 高清不卡的av网站| 一本久久精品| 手机成人av网站| 丝袜在线中文字幕| 国产成人欧美| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品999| 国产av精品麻豆| 久久中文字幕一级| 成人亚洲欧美一区二区av| 国产伦人伦偷精品视频| bbb黄色大片| 亚洲情色 制服丝袜| 久久精品亚洲熟妇少妇任你| 黄网站色视频无遮挡免费观看| 欧美av亚洲av综合av国产av| 欧美黑人欧美精品刺激| 欧美精品一区二区大全| 亚洲欧洲国产日韩| 国产精品一区二区在线不卡| netflix在线观看网站| 亚洲中文字幕日韩| tube8黄色片| 欧美人与善性xxx| 久久人妻福利社区极品人妻图片 | 五月天丁香电影| 女人被躁到高潮嗷嗷叫费观| 国产精品国产av在线观看| 人体艺术视频欧美日本| 日韩大码丰满熟妇| 女人精品久久久久毛片| 激情五月婷婷亚洲| 真人做人爱边吃奶动态| 黄网站色视频无遮挡免费观看| 亚洲第一av免费看| 亚洲av日韩精品久久久久久密 | 国产精品免费大片| 热re99久久国产66热| 在线观看www视频免费| 新久久久久国产一级毛片| 人妻一区二区av| 51午夜福利影视在线观看| 国产精品国产三级专区第一集| 好男人视频免费观看在线| 热99国产精品久久久久久7| 亚洲成人免费电影在线观看 | 欧美成狂野欧美在线观看| 精品一区在线观看国产| 99九九在线精品视频| 欧美亚洲日本最大视频资源| 免费少妇av软件| 亚洲,欧美,日韩| 在线看a的网站| 视频区图区小说| 欧美大码av| 无限看片的www在线观看| 免费在线观看影片大全网站 | 满18在线观看网站| 操美女的视频在线观看| 国产精品一区二区免费欧美 | 亚洲精品国产av成人精品| 侵犯人妻中文字幕一二三四区| 国产又爽黄色视频| 国产免费现黄频在线看| 久久99精品国语久久久| 中文字幕色久视频| 免费一级毛片在线播放高清视频 | av线在线观看网站| 国产一卡二卡三卡精品| 亚洲九九香蕉| 欧美人与性动交α欧美精品济南到| 夫妻午夜视频| av国产久精品久网站免费入址| 超碰97精品在线观看| 男女无遮挡免费网站观看| 国产在线免费精品| 丝袜人妻中文字幕| 日本午夜av视频| 精品免费久久久久久久清纯 | 国产精品三级大全| 成年av动漫网址| 黄片播放在线免费| 国产精品亚洲av一区麻豆| 香蕉国产在线看| 99热国产这里只有精品6| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| 一区二区三区激情视频| 成年动漫av网址| 国产熟女欧美一区二区| 亚洲色图 男人天堂 中文字幕| 免费久久久久久久精品成人欧美视频| 中文字幕av电影在线播放| 亚洲三区欧美一区| 国产主播在线观看一区二区 | 午夜91福利影院| 999精品在线视频| 国产91精品成人一区二区三区 | 午夜视频精品福利| 久久精品aⅴ一区二区三区四区| 性高湖久久久久久久久免费观看| 婷婷色麻豆天堂久久| 国产亚洲午夜精品一区二区久久| 老司机深夜福利视频在线观看 | 国产亚洲av片在线观看秒播厂| 成人免费观看视频高清| 一级片免费观看大全| 自拍欧美九色日韩亚洲蝌蚪91| 9191精品国产免费久久| 男女午夜视频在线观看| 捣出白浆h1v1| 大型av网站在线播放| 亚洲免费av在线视频| 国产1区2区3区精品| 久久久精品区二区三区| 成年动漫av网址| 美女脱内裤让男人舔精品视频| 99热国产这里只有精品6| 亚洲色图综合在线观看| 精品国产超薄肉色丝袜足j| 国产精品国产av在线观看| 欧美xxⅹ黑人| 18禁裸乳无遮挡动漫免费视频| 一区二区三区乱码不卡18| 日本五十路高清| 老司机影院毛片| 日本色播在线视频| 热re99久久国产66热| 国产一级毛片在线| 国产欧美日韩精品亚洲av| 国产精品国产三级专区第一集| 欧美日韩亚洲国产一区二区在线观看 | 亚洲中文av在线| 交换朋友夫妻互换小说| 婷婷丁香在线五月| 99国产精品一区二区三区| 18禁观看日本| 国产免费现黄频在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品人妻蜜桃| 又紧又爽又黄一区二区| 欧美97在线视频| 狠狠婷婷综合久久久久久88av| 亚洲免费av在线视频| 国产成人a∨麻豆精品| 欧美+亚洲+日韩+国产| 亚洲av美国av| 国产真人三级小视频在线观看| 日韩视频在线欧美| 精品国产乱码久久久久久男人| 十分钟在线观看高清视频www| 无限看片的www在线观看| 精品一区二区三卡| 男的添女的下面高潮视频| 国产男人的电影天堂91| 精品久久久精品久久久| 极品少妇高潮喷水抽搐| 大陆偷拍与自拍| 极品人妻少妇av视频| 亚洲av片天天在线观看| 男人舔女人的私密视频| 99国产综合亚洲精品| 久久精品久久久久久噜噜老黄| 91精品伊人久久大香线蕉| 99久久人妻综合| 精品国产一区二区三区久久久樱花| 国产一区二区在线观看av| 91九色精品人成在线观看| 欧美日韩精品网址| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一av免费看| 国产一区二区激情短视频 | 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜爱| 国产爽快片一区二区三区| 老汉色av国产亚洲站长工具| 国产熟女午夜一区二区三区| 啦啦啦在线免费观看视频4| 18禁观看日本| 亚洲人成77777在线视频| 操美女的视频在线观看| 一本大道久久a久久精品| 搡老岳熟女国产| 99国产精品一区二区蜜桃av | 精品国产国语对白av| 国产深夜福利视频在线观看| 亚洲av日韩精品久久久久久密 | 午夜日韩欧美国产| 亚洲少妇的诱惑av| 黑丝袜美女国产一区| av又黄又爽大尺度在线免费看| 国产老妇伦熟女老妇高清| 国产主播在线观看一区二区 | 97人妻天天添夜夜摸| 国产主播在线观看一区二区 | 国产精品免费视频内射| 亚洲精品久久成人aⅴ小说| a级毛片在线看网站| 久久午夜综合久久蜜桃| 亚洲av综合色区一区| 欧美日本中文国产一区发布| 精品一区二区三区四区五区乱码 | 亚洲av在线观看美女高潮| 天天添夜夜摸| 爱豆传媒免费全集在线观看| 亚洲成人手机| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清 | 亚洲成人免费电影在线观看 | 国产精品一区二区在线不卡| 国产亚洲一区二区精品| 看免费成人av毛片| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品久久二区二区91| 国产精品欧美亚洲77777| 欧美日韩黄片免| 90打野战视频偷拍视频| 首页视频小说图片口味搜索 | 国产免费福利视频在线观看| 大片电影免费在线观看免费| 丝袜脚勾引网站| 80岁老熟妇乱子伦牲交| 午夜av观看不卡| 一级毛片女人18水好多 | 欧美人与性动交α欧美精品济南到| 免费在线观看日本一区| 嫩草影视91久久| 国产成人精品久久久久久| 一边亲一边摸免费视频| 日韩中文字幕欧美一区二区 | 一区二区三区四区激情视频| 自线自在国产av| 高清黄色对白视频在线免费看| 黑人猛操日本美女一级片| 亚洲熟女毛片儿| 久久鲁丝午夜福利片| 18禁黄网站禁片午夜丰满| 99九九在线精品视频| 亚洲国产看品久久| 日韩av在线免费看完整版不卡| 国产一区二区 视频在线| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| 少妇人妻 视频| 欧美人与性动交α欧美软件| 热99久久久久精品小说推荐| 国产熟女午夜一区二区三区| av国产久精品久网站免费入址| 国产精品香港三级国产av潘金莲 | 欧美乱码精品一区二区三区| 一区福利在线观看| 亚洲五月婷婷丁香| 亚洲欧美一区二区三区久久| 美女午夜性视频免费| 欧美亚洲 丝袜 人妻 在线| 精品第一国产精品| 久久人人97超碰香蕉20202| 亚洲av欧美aⅴ国产| av国产精品久久久久影院| 一个人免费看片子| 又大又爽又粗| 丝袜美足系列| 午夜福利乱码中文字幕| 成年人黄色毛片网站| 大片免费播放器 马上看| tube8黄色片| 日韩av不卡免费在线播放| 亚洲一区二区三区欧美精品| 丰满少妇做爰视频| 久久亚洲国产成人精品v| 国产一区二区在线观看av| 欧美成人午夜精品| 99精国产麻豆久久婷婷| 激情五月婷婷亚洲| 嫩草影视91久久| 交换朋友夫妻互换小说| 一级毛片女人18水好多 | 麻豆av在线久日| 色播在线永久视频| 人妻 亚洲 视频| 少妇人妻久久综合中文| 狂野欧美激情性bbbbbb| 国产在线免费精品| av又黄又爽大尺度在线免费看| 在线观看www视频免费| 亚洲av日韩在线播放| 午夜免费鲁丝| 国产精品香港三级国产av潘金莲 | 欧美亚洲日本最大视频资源| 天天操日日干夜夜撸| 免费一级毛片在线播放高清视频 | 制服诱惑二区| 欧美日韩国产mv在线观看视频| 亚洲人成网站在线观看播放| 日韩伦理黄色片| 狂野欧美激情性bbbbbb| videosex国产| 国产一区二区 视频在线| 亚洲第一av免费看| 少妇人妻 视频| 日韩一区二区三区影片| 久久精品国产亚洲av高清一级| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 爱豆传媒免费全集在线观看| 亚洲av综合色区一区| 久久精品国产亚洲av高清一级| 啦啦啦在线免费观看视频4| 久久久精品免费免费高清| 日韩伦理黄色片| 欧美日韩av久久| videosex国产| 久久ye,这里只有精品| 国产在线一区二区三区精| 亚洲五月婷婷丁香| 热99国产精品久久久久久7| 啦啦啦 在线观看视频| 亚洲精品国产一区二区精华液| 丝瓜视频免费看黄片| 青草久久国产| 又黄又粗又硬又大视频| www.av在线官网国产| 男女高潮啪啪啪动态图| 亚洲图色成人| 国产色视频综合| 黄色视频在线播放观看不卡| 免费高清在线观看日韩| 人人澡人人妻人| 亚洲国产看品久久| 久久久精品国产亚洲av高清涩受| 欧美精品亚洲一区二区| 亚洲成色77777| 亚洲情色 制服丝袜| 美女中出高潮动态图| 日本vs欧美在线观看视频| 亚洲熟女毛片儿| 国产成人精品无人区| 亚洲成人手机| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 亚洲伊人色综图| 婷婷色综合大香蕉| 精品少妇一区二区三区视频日本电影| 香蕉丝袜av| 亚洲国产欧美网| 在线天堂中文资源库| 搡老乐熟女国产| 国产日韩欧美在线精品| 久久久精品国产亚洲av高清涩受| 妹子高潮喷水视频| 免费看十八禁软件| 美女国产高潮福利片在线看| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 亚洲视频免费观看视频| xxx大片免费视频| 亚洲专区中文字幕在线| 只有这里有精品99| 9热在线视频观看99| 人体艺术视频欧美日本| 国产欧美日韩一区二区三区在线| 999久久久国产精品视频| 国产精品 国内视频| av不卡在线播放| 90打野战视频偷拍视频| 国产99久久九九免费精品| 日韩精品免费视频一区二区三区| 国产97色在线日韩免费| 久久久久久久国产电影| 久久精品亚洲av国产电影网| 国产精品久久久久久精品电影小说| 最近中文字幕2019免费版| 色视频在线一区二区三区| 国产主播在线观看一区二区 | 欧美+亚洲+日韩+国产| 中文欧美无线码| 欧美精品亚洲一区二区| 人体艺术视频欧美日本| 午夜福利视频精品| 亚洲,欧美,日韩| 久久久久精品国产欧美久久久 | 欧美日韩精品网址| 香蕉丝袜av| 亚洲 欧美一区二区三区| 尾随美女入室| 国产精品欧美亚洲77777| 国产真人三级小视频在线观看| 操美女的视频在线观看| 久久人人97超碰香蕉20202| 久9热在线精品视频| 国产精品一二三区在线看| 一级片免费观看大全| 我要看黄色一级片免费的| 久久女婷五月综合色啪小说| 中文字幕最新亚洲高清| 日韩欧美一区视频在线观看| xxx大片免费视频| 日本五十路高清| 黄色片一级片一级黄色片| 999精品在线视频| 欧美成狂野欧美在线观看| 亚洲欧美激情在线| 久久久亚洲精品成人影院| 又黄又粗又硬又大视频| 美女脱内裤让男人舔精品视频| 男男h啪啪无遮挡| 一二三四社区在线视频社区8| 亚洲国产精品一区三区| 欧美黑人精品巨大| 免费av中文字幕在线| 男女无遮挡免费网站观看| 18禁裸乳无遮挡动漫免费视频| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级| 国产精品香港三级国产av潘金莲 | 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 国产视频一区二区在线看| 久久久亚洲精品成人影院| 九色亚洲精品在线播放| 亚洲国产精品一区二区三区在线| 夜夜骑夜夜射夜夜干| 免费高清在线观看日韩| 真人做人爱边吃奶动态| 国产一区二区激情短视频 | 久久人人爽av亚洲精品天堂| 亚洲成人国产一区在线观看 | 一本一本久久a久久精品综合妖精| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 久久亚洲精品不卡| 国产亚洲午夜精品一区二区久久| 男人添女人高潮全过程视频| 一本色道久久久久久精品综合| 国产亚洲av片在线观看秒播厂| 老司机午夜十八禁免费视频| 伊人久久大香线蕉亚洲五| 99热国产这里只有精品6| 美女视频免费永久观看网站| 后天国语完整版免费观看| 国产精品99久久99久久久不卡| 一本一本久久a久久精品综合妖精| 18禁裸乳无遮挡动漫免费视频| 精品人妻1区二区| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 香蕉丝袜av| 国产精品久久久久成人av| 国产亚洲精品久久久久5区| 我要看黄色一级片免费的| 少妇裸体淫交视频免费看高清 | 丝瓜视频免费看黄片| 久久这里只有精品19| 丝瓜视频免费看黄片| 日本wwww免费看| 国产在线一区二区三区精| 国产97色在线日韩免费| 涩涩av久久男人的天堂| 国产成人欧美在线观看 | 国产精品.久久久| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡| 欧美亚洲 丝袜 人妻 在线| 飞空精品影院首页| 国产成人一区二区三区免费视频网站 | 午夜激情av网站| 亚洲精品自拍成人| 侵犯人妻中文字幕一二三四区| 久久精品亚洲av国产电影网| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 国产深夜福利视频在线观看| 亚洲欧美成人综合另类久久久| 国产野战对白在线观看| 国产男人的电影天堂91| 日韩电影二区| 国产精品一区二区在线不卡| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 午夜福利在线免费观看网站| 夜夜骑夜夜射夜夜干| 天天操日日干夜夜撸| 97精品久久久久久久久久精品| 视频在线观看一区二区三区| 亚洲精品国产区一区二| 人人妻人人澡人人看| 国产日韩欧美亚洲二区| 91麻豆av在线| 赤兔流量卡办理| 欧美久久黑人一区二区| 国产在线免费精品| 99久久99久久久精品蜜桃| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 亚洲欧美成人综合另类久久久| av在线老鸭窝| 午夜久久久在线观看| 亚洲av美国av| 在线观看免费高清a一片| 精品国产一区二区三区久久久樱花| 老司机亚洲免费影院| 最近最新中文字幕大全免费视频 | 交换朋友夫妻互换小说| 国产精品一二三区在线看| 日本一区二区免费在线视频| 精品亚洲成a人片在线观看| 成人三级做爰电影| 亚洲精品一二三| 啦啦啦视频在线资源免费观看| 99国产综合亚洲精品| 老司机在亚洲福利影院| 如日韩欧美国产精品一区二区三区| 国产日韩欧美视频二区| 少妇人妻 视频| av欧美777| 久久久久久久精品精品| 国产熟女欧美一区二区| 国语对白做爰xxxⅹ性视频网站| 久久天躁狠狠躁夜夜2o2o |