• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate

    2021-08-26 02:08:24YanxiChenShenyuLanMingshanZhu
    Chinese Chemical Letters 2021年6期

    Yanxi Chen,Shenyu Lan,Mingshan Zhu*

    Guangdong Key Laboratory of Environmental Pollution and Health,School of Environment,Jinan University,Guangzhou 511443,China

    ABSTRACT The rapid recombination of charge carriers in piezoelectric materials has always been the problem that limits their piezoelectric performance for removal of organic pollutants in water.Herein,we construct a piezoelectric BaTiO3/MoS2(BTO/MS)that follows a type II heterojunction charge transfer system to inhibit the recombination of electron-hole(e--h+)pairs,which is beneficial to the activation of peroxymonosulfate(PMS)for the removal of antibiotic ornidazole(ORZ)pollutants.The optimal ratio of BTO/MS for ORZ degradation under the piezo/PMS process is 13.9,3.6,62.1 and 2.0 times higher than that of the BTO/piezo,MS/piezo,(BTO/MS)/PMS and(BTO/MS)/piezo processes,respectively.The high efficiency charge separation in the piezoelectric heterojunction of BTO/MS promotes the activation of PMS,resulting in the synergy of pizeocatalysis and PMS oxidation during the process of ORZ degradation.This study provides an idea for enhancing piezo-activation of PMS by constructing heterojunctions in piezoelectric materials.

    Keywords:Piezoelectricity Peroxymonosulfate BaTiO3/MoS2 Heterojunction Ornidazole degradation

    Ornidazole(ORZ,1-(2-hydroxy-3-chloropropyl)-2-methyl-5-nitroimidazole)),a kind of third generation nitroimidazole drug used to treat a variety of infections caused by bacteria,protozoa,and fungi,is increasingly detected in water bodies[1].Due to the high water-solubility and low biodegradability of ORZ,it is not easy to be removed in the environment and finally enrich in the water bodies[2].In addition,it has also been reported that ORZ not only has potential carcinogenic and mutagenic properties,but also leads to the growth and reproduction of resistant bacteria,which does great harm to human health and ecosystem[2-4].Therefore,an efficient way to degrade ORZ is urgently needed.

    Advanced oxidation processes(AOPs)are used to remove organic pollutants[5-7],among which,peroxymonosulfate(PMS)is considered to be an efficient oxidant owing to its low cost,high stability and the production of reactive oxidation species(ROS)with high redox potentials[8-10].Various ways including thermal,ultraviolet,alkaline,and transition metal ions etc.are used to active PMS[10-12].However,thermal and ultraviolet activation both require additional energy,while alkaline and transition metal ions activation are both easily affected by the initial value of pH and unable to be recycled[13-15].Therefore,it is especially important to find a PMS activation method that is energy-efficient and easy to be recycled.

    Piezoelectric materials with both mechanical and electrical behaviors begin to be paid more attention in the application of contaminant degradation in recent years[16-22].Under a certain force like wind,sound and tide pressure,the positive charges and negative charges generated and further separated on the surface of materials.It has been reported that the generated charges can contribute to the decomposition of organic pollutants[23-26].For example,as a traditional piezoelectric material,BaTiO3(BTO)with high piezoelectric coefficient and dielectric constant is widely employed to degrade contaminants[27-31].Recently,our group novelty used the local accumulated charges on the surface of BTO to break O-O bond of PMS to generate sulfate radical(SO4?-),hydroxyl radical(?OH),and singlet oxygen(1O2)for the degradation of benzothiazole in water[23].This result showed a new strategy to promote PMS activation by using a piezoelectricity for the removal of organic pollutants.However,because of its poor conductivity,the degradation ability of BTO is greatly limited[32].In addition,odd-numbered layers MoS2(MS)as another classic piezoelectric material has the defect of fast recombination of electron-hole pairs,which may also restrict the application due to poor electron migration[33-35].It is reported that synthesizing heterojunction to reduce the possibility of carrier recombination for effectively transferring the abundant electrons is an effective way to improve the piezoelectric effect[34,36].Thus,synthesizing BTO/MS heterojunction composite for piezoelectric-PMS activation may be an effective mean to degrade pollutants.

    In this work,BTO/MS heterojunctions with different compound ratio are synthesized to investigate the ability of piezo-activation of PMS for ORZ degradation.The purpose of this study is to(i)select the optimal ratio of the BTO/MS composite for piezoelectric-PMS activation to degrade ORZ;(ii)evaluate the mechanism of piezoelectric-PMS activation;(iii)propose the degradation pathways and products of ORZ.

    The main reagents,preparation and characterization of BTO,MS,and BTO/x%MS(x=10,20,50,where x is the compound ratio of MS),experimental procedure,and analysis methods are exhibited in Text S1(Supporting information).As shown in Texts S2-4 and Figs.S1-3(Supporting information),the synthesized BTO,MS,and BTO/MS were analyzed by transmission electron microscope(TEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS),which suggest the successful composite of BTO/MS.

    In order to obtain an optimal BTO/x%MS,the degradation rates of ORZ were measured to investigate the piezoelectric property of the catalyst.As shown in Fig.1a,the ability of piezoelectric catalytic degradation of BTO,MS,and BTO/x%MS under ultrasonic condition were evaluated.It can be seen that pure BTO and MS both exhibited a restrict piezo ability to remove ORZ,and the degradation ratios were 14.9% and 41.4% within 30 min,respectively.When compositing BTO and 10%MS,about 59.6% degradation ratio was observed,indicating a collaboration of BTO and MS.Moreover,with the x increasing to 20%,the degradation ratio of ORZ enhanced to 69.8%,which is 55.1%,28.4%,10.2% and 32.4%higher than that of BTO,MS,BTO/10%MS and BTO/50%MS,respectively.The improved ORZ degradation efficiency may be attributed to the heterojunction between BTO and MS,which improved the separation efficiency of piezoelectric induced electrons and holes in the composite.

    First-order kinetic model-ln(C/C0)=kt is used to further evaluate the degradation efficiency of ORZ.As shown in Fig.1b,the k of BTO/20%MS displayed the highest value(0.0282 min-1),which is 7.0,1.8,1.7,and 2.7 times higher than that of BTO,MS,BTO/10%MS,and BTO/50%MS,respectively.Thus,the first-order kinetic model further supports that the BTO/20%MS composite displayed a higher piezocatalytic activity,which was selected as the optimal ratio for piezoelectric-PMS activation.The BTO/20%MS composite is abbreviated as BTO/MS in the following description.

    The degradation efficiency of ORZ under various BTO/MS-based systems were displayed in Fig.1c and Fig.S4(Supporting information).It can be observed that almost no degradation of ORZ can be observed within 40 min by PMS alone,ultrasound alone or PMS-ultrasound coupling systems.Therefore,the contribution of ultrasound and PMS on ORZ removal was both negligible.In addition,BTO/MS can hardly absorb ORZ.The degradation capability of ORZ was further evaluated in the(BTO/MS)/PMS,(BTO/MS)/piezo and(BTO/MS)/piezo/PMS processes.Only 4.1%ORZ was removed in the(BTO/MS)/PMS process,implying that PMS is hardly activated by BTO/MS without piezo.With a piezoelectric force on BTO/MS,69.8% removal ratio of ORZ was obtained,insinuating a considerable piezoelectric catalysis performance of BTO/MS.Moreover,with the presence of piezo and PMS simultaneously,a clearly enhancement of ORZ degradation ratio(90.9%)was found within 40 min,which is 84.6%and 21.1%higher than that of only PMS and piezo,respectively.The first-order kinetics model of ORZ degradation were performed,and the k of the(BTO/MS)/piezo/PMS process is 139,62.1 and 2.0 times higher than that of the BTO/MS,(BTO/MS)/PMS,and(BTO/MS)/piezo,respectively,suggesting the synergistic effect of piezocatalysis and PMS activation in the(BTO/MS)/piezo/PMS process(Fig.1d).In addition,cycle experiment was also conducted to indicate the stability of BTO/MS.As shown in Fig.S5(Supporting information),the degradation ratio of ORZ was still maintained about 90% in 5 cycles,which proved the outstanding stability of BTO/MS.

    Fig.1.(a)Degradation ratios and(b)reaction rate constant(k)of ORZ using various piezoelectric systems.(c)Degradation ratios and(d)first-order kinetics model of ORZ using various BTO/MS-based systems.Experimental conditions:[PMS]=0.25 g/L,[catalyst]= 0.10 g/L,[ORZ]=0.050 g/L,pH 5.0,T= 25°C,mechanical force from ultrasonic wave:40 kHz,100 W.

    In order to identify the ROS and their contribution to the degradation of ORZ in the(BTO/MS)/piezo/PMS process,radical capture experiments and electron paramagnetic resonance(ESR)tests were performed.Radical capture experiments were carried out using different scavengers(Fig.2a).Methanol(MeOH),tertbutanol(TBA),L-ascorbic acid(AA),L-histidine(L-His),furfuryl alcohol(FFA),K2Cr2O7,and EDTA-2Na are used to capture?OH and SO4?-,?OH,superoxide radical(O2?-),1O2,1O2,electrons(e-)and holes(h+),respectively[23].As shown in Fig.2a,the ORZ degradation ratios decreased to 24.3% and 26.9% in the presence of TBA and MeOH,respectively,indicating that?OH may play more important role than SO4?-in the(BTO/MS)/piezo/PMS process.The addition of FFA and L-His dramatically inhibited the degradation efficiency of ORZ by 59.1% and 67.2%,respectively,which both exhibited the higher inhibitory effect compared to other scavengers,confirming1O2appears to be the dominant ROSs for ORZ decomposition.In addition,the removal ratios of ORZ decreased to 79.0%,56.6% and 84.0% in the presence of AA,EDTA-2Na and K2Cr2O7,respectively,suggesting the co-existence of O2?-,h+and e-in the(BTO/MS)/piezo/PMS process.Therefore,above results demonstrate that?OH and1O2play a dominant role in the reaction,while other reactive species may be also involved in ORZ removal with a minor contribution.To further determine the reactive species in the(BTO/MS)/piezo/PMS process,ESR experiments were carried out using DMPO and TEMP as capture reagents to detect the radicals and non-radicals.As shown in Fig.2b,the signal of DMPOSO4?-,DMPO-?OH,DMPO-O2?-and TEMP-1O2were observed,implying that SO4?-,?OH,O2?-and1O2were produced in the(BTO/MS)/piezo/PMS process,which is consistent with the results of quenching experiments.In addition,ESR experiments with only BTO/MS process,(BTO/MS)/PMS process and(BTO/MS)/piezo process were also carried out for comparison(Fig.S6 in Supporting information).Specific discussion was displayed in Text S5(Supporting information).

    Generally,the faster charges separation leads to the higher PMS activation capability for generating more SO4?-,?OH,O2?-and1O2[23].The transient piezoelectric current responses and electrochemical impedance spectroscopy(EIS)were carried out to investigate the piezo-charges transport properties of the samples.The transient piezoelectric current responses of BTO,MS,and BTO/MS are shown in Fig.2c.Under the applying force,the piezoelectric current intensity of BTO/MS enhanced obviously,which was higher than that of BTO and MS alone,indicating the highest piezoelectric-induced electron-hole separation efficiency in BTO/MS.In Fig.2d,compared with BTO and MS alone,BTO/MS exhibited the smallest arc in the EIS Nyquist plots,indicating the minimum charge transfer resistance and the solid state interface layer resistance in BTO/MS,which is beneficial to activate PMS to generate SO4?-,?OH,O2?-and1O2for ORZ removal.These results suggest a heterojunction between BTO and MS,which increases the charge separation of piezo charges.

    Fig.2.(a)Degradation ratios of ORZ using various scavengers and(b)ESR in the(BTO/MS)/piezo/PMS system.(c)Transient piezoelectric current responses and(d)EIS Nyquist plots of BTO,MS,and BTO/MS.Experimental conditions:[PMS]= 0.25 g/L,[catalyst]= 0.10 g/L,[ORZ]=0.050 g/L,pH 5.0,T= 25°C,[scavenger]=10 mmol/L,mechanical force from ultrasonic wave:40 kHz,100 W.

    Fig.3.Proposed mechanism of ORZ degradation in the(BTO/MS)/piezo/PMS system.

    It is known that the Mott-Schottky diagrams display positive slopes of n-type semiconductors,the flat charge potential(EFB)of which corresponds to the conduction band(CB)edge potential(ECB).The EFBof BTO and MS were-1.14 and-1.51 eV vs.SCE(Fig.S7 in Supporting information).According to ECB=EFB+0.197(where 0.197 is the standard electrode potential of Ag/AgCl electrode)[37],the ECBof BTO and MS were calculated to be-0.94 and-1.31 eV vs.NHE.Moreover,the valence band(VB)of BTO and MS were calculated to be 2.11 and 0.06 eV vs.NHE through VB-XPS spectra(Fig.S8 in Supporting information),respectively.Therefore,the BTO/MS may follow a typical type II heterostructure charge transfer system,as shown in Fig.3.In this charge transfer mechanism,the piezoelectric-induced e-of MS transfer to the CB of BTO,while the piezoelectric-induced h+of BTO transfer to the VB of MS,resulting in the charge separation of BTO and MS.Thus,the separation of piezoelectric-induced charges in BTO and MS are accelerated in the way of type II heterostructure charges transfer mechanism,thereby inhibiting their recombination rate to improve the PMS activation for generating more ROS.The h+of BTO and e-of MS can attack the O-O bond of PMS,leading the generation of SO4?-,?OH,O2?-and1O2(Eqs.1-6).Under the applying force,a large number of e-and h+are provided on the surface of BTO/MS(Eq.1).The e-accumulated on the surface of BTO not only react with PMS to form?OH and SO4?-,but also reduce O2to O2?-(Eqs.2-4),while h+accumulated on the surface of MS react with PMS and H2O to form PMS anion radical(SO5?-)and?OH(Eqs.5-6).Then1O2would be further produced by the reaction of?OH and O2?-and the self-reaction of SO5?-(Eqs.7 and 8).These ROS are responsible for the degradation of ORZ in the(BTO/MS)/piezo/PMS process.

    In order to investigate the degradation pathways and products of ORZ,the a dual descriptor(DD)value fA(2)was calculated based on density functional theory(DFT)to predict the most vulnerable sites by nucleophilic and electrophilic attack on the molecular structure of ORZ[38].The labeled ORZ molecule is displayed in Fig.4a and the values of fA(2)are provided in Fig.4b.As can be seen that 3C(fA(2)=0.242)and 5C(fA(2)=0.074)displayed higher value than that of other atoms,suggesting that 3C and 5C may tend to be attacked by nucleophilic species(SO4?-and?OH).Meanwhile,12 N(fA(2)=-0.179),13O(fA(2)=-0.134),14O(fA(2)=-0.119)and 9C(fA(2)=-0.023)displayed lower value than that of other atoms,implying that 12 N,13O,14O,and 9C are more likely to be attacked by electrophilic species(SO4?-,?OH,O2?-and1O2).Thus,ORZ may be decomposed by the cleavages of the 9C-11Cl,8C-10O,and 3C-12 N bonds.

    Fig.4.(a)Pathways proposed for ORZ degradation by the(BTO/MS)/piezo/PMS system;(b)DFT calculation for ORZ molecule.

    Therefore,according to the DFT calculation,liquid chromatography quadrupole time-of-flight tandem mass spectrometer(LCTOF-MS)analysis,and previous studies,five degradation products and two degradation pathways were identified[39,40].Products P1,P2,P3 and P4 were formed by the cleavage of 9C-11Cl and 8C-10O bonds.Specifically,P1 was generated through demethylation,dehydrogenation,and hydrogen chloride cleavage.P2 as one of the most frequently identified substances in previous studies,was yielded by?OH attack,which further changed into P3 by epoxyethane cleavage.The emergence of P4 would be caused by the propylene oxide cleavage of P2 and demethylation of P3.Finally,due to the frangibility of 3C-12N,P5 emerged by dehydrogenation and-NO2cleavage.In summary,ORZ was transformed into these five products,and mineralized into H2O and CO2at last.

    In summary,a heterojunction of BTO/MS with enhanced piezoelectric effect was prepared to activate PMS for ORZ degradation.The optimal ratio of BTO/MS composite was determined to 5/1 and the reaction rate constant of ORZ degradation by the(BTO/MS)/piezo/PMS process was 13.9,3.6,62.1 and 2.0 times higher than that of the BTO/piezo,MS/piezo,(BTO/MS)/piezo,and(BTO/MS)/PMS processes,respectively,indicating the excellent piezoelectric effect and significant synergy of BTO/MS for piezoactivation of PMS.Scavenging experiments and ESR detection proved the generation of SO4?-,?OH,O2?-,1O2,h+and e-,while?OH and1O2were the main reactive substances in the reaction.The BTO/MS follow a type II heterostructure charge transfer system,in which the recombination of e-h+pairs is suppressed,contributing to the PMS activation for ORZ degradation.Moreover,ORZ was transformed into five by-products based on the DFTcalculation and LC-TOF-MS analysis.This study proves that combining BTO and MS can greatly enhance the piezoelectric effect,thereby promoting the efficiency of PMS activation,which provides a new way for enhancing piezo-activation of PMS by constructing heterojunctions in piezoelectric materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by Guangdong Basic and Applied Basic Research Foundation,China(No.2020B1515020038)and the Pearl River Talent Recruitment Program of Guangdong Province(No.2019QN01L148),China.The authors are also grateful to Prof.W.Guo from the Harbin Institute of Technology for assistance of DFT calculation.

    Appendix A.Supplementary data

    Supplementary material related to this articlecanbe found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.11.016.

    一本色道久久久久久精品综合| 捣出白浆h1v1| 国产色爽女视频免费观看| 黄色 视频免费看| 国产1区2区3区精品| 亚洲成人一二三区av| av电影中文网址| 国产免费视频播放在线视频| 99九九在线精品视频| 久久久精品94久久精品| 18禁裸乳无遮挡动漫免费视频| 免费人妻精品一区二区三区视频| 亚洲第一区二区三区不卡| 捣出白浆h1v1| 国产精品不卡视频一区二区| 国产在线一区二区三区精| 亚洲精品456在线播放app| 一二三四在线观看免费中文在 | 色吧在线观看| 欧美日韩视频精品一区| 亚洲av日韩在线播放| 精品酒店卫生间| 色5月婷婷丁香| 久久久久久久久久成人| 午夜影院在线不卡| 蜜桃国产av成人99| 久久精品夜色国产| 91在线精品国自产拍蜜月| 国产高清国产精品国产三级| 一级片'在线观看视频| 日本vs欧美在线观看视频| 欧美bdsm另类| 国产精品一国产av| 午夜日本视频在线| 男的添女的下面高潮视频| 成年美女黄网站色视频大全免费| av有码第一页| 人妻一区二区av| 免费人成在线观看视频色| av黄色大香蕉| 国产精品蜜桃在线观看| 一级黄片播放器| 在线观看人妻少妇| 如何舔出高潮| 妹子高潮喷水视频| 欧美日韩av久久| 欧美 亚洲 国产 日韩一| 99久久综合免费| 啦啦啦视频在线资源免费观看| 久久久久人妻精品一区果冻| 一边亲一边摸免费视频| 五月玫瑰六月丁香| 精品久久久久久电影网| 欧美bdsm另类| 国产极品粉嫩免费观看在线| 如日韩欧美国产精品一区二区三区| 这个男人来自地球电影免费观看 | 亚洲婷婷狠狠爱综合网| 久久久久人妻精品一区果冻| 国产片内射在线| 男女国产视频网站| 啦啦啦在线观看免费高清www| 少妇人妻 视频| 欧美xxⅹ黑人| 18+在线观看网站| 久久久精品免费免费高清| 午夜福利乱码中文字幕| 精品人妻一区二区三区麻豆| 三上悠亚av全集在线观看| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区国产| 中文乱码字字幕精品一区二区三区| 一级毛片我不卡| 精品国产国语对白av| 精品国产国语对白av| 成人无遮挡网站| 精品卡一卡二卡四卡免费| 精品少妇内射三级| 少妇猛男粗大的猛烈进出视频| 久久99热这里只频精品6学生| 观看美女的网站| 黄片播放在线免费| 两个人看的免费小视频| 青春草亚洲视频在线观看| 久久影院123| 成人漫画全彩无遮挡| 久久综合国产亚洲精品| 久久午夜综合久久蜜桃| 久久ye,这里只有精品| 国产国拍精品亚洲av在线观看| 日韩大片免费观看网站| 99热网站在线观看| 日韩中字成人| 又大又黄又爽视频免费| 国产一区二区在线观看av| 日韩制服骚丝袜av| 亚洲伊人久久精品综合| 波多野结衣一区麻豆| 纵有疾风起免费观看全集完整版| 亚洲丝袜综合中文字幕| 精品一区二区三卡| 国产精品麻豆人妻色哟哟久久| 丝袜喷水一区| 日本91视频免费播放| 免费少妇av软件| 亚洲三级黄色毛片| 精品人妻在线不人妻| 日韩一区二区视频免费看| 免费少妇av软件| 久久这里有精品视频免费| kizo精华| 欧美人与善性xxx| 九草在线视频观看| 少妇高潮的动态图| 日韩熟女老妇一区二区性免费视频| 精品酒店卫生间| 精品国产露脸久久av麻豆| 九九在线视频观看精品| 亚洲一码二码三码区别大吗| a级毛片在线看网站| 国产 一区精品| 最黄视频免费看| 亚洲av.av天堂| 国产男女内射视频| 久久热在线av| 精品卡一卡二卡四卡免费| 22中文网久久字幕| 欧美xxⅹ黑人| 亚洲精品视频女| 久久99精品国语久久久| av在线观看视频网站免费| 看非洲黑人一级黄片| 国产成人免费观看mmmm| 在线观看三级黄色| 精品一区在线观看国产| 久久久久久久精品精品| 丝袜美足系列| 2021少妇久久久久久久久久久| 欧美xxxx性猛交bbbb| 在线观看www视频免费| 午夜精品国产一区二区电影| 久久久久国产精品人妻一区二区| 亚洲av综合色区一区| 精品亚洲成a人片在线观看| av在线老鸭窝| 亚洲精华国产精华液的使用体验| 人妻一区二区av| 久久久久久久久久久免费av| 香蕉丝袜av| 欧美日韩一区二区视频在线观看视频在线| 人成视频在线观看免费观看| 中文欧美无线码| 午夜激情久久久久久久| 天美传媒精品一区二区| 久久国产亚洲av麻豆专区| 99九九在线精品视频| av女优亚洲男人天堂| 中文字幕亚洲精品专区| 国产精品久久久av美女十八| 蜜桃在线观看..| 亚洲成色77777| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品色激情综合| av一本久久久久| 91久久精品国产一区二区三区| 亚洲婷婷狠狠爱综合网| 九色亚洲精品在线播放| 中文字幕免费在线视频6| 国产无遮挡羞羞视频在线观看| 丁香六月天网| 欧美激情 高清一区二区三区| 你懂的网址亚洲精品在线观看| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 日本av免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 欧美国产精品一级二级三级| 最近中文字幕高清免费大全6| 午夜福利影视在线免费观看| 一级黄片播放器| 国产在线一区二区三区精| 免费黄网站久久成人精品| 久久狼人影院| 欧美人与善性xxx| 高清黄色对白视频在线免费看| 欧美亚洲 丝袜 人妻 在线| 国产极品天堂在线| 成人黄色视频免费在线看| 精品久久久久久电影网| 一边亲一边摸免费视频| 最近中文字幕高清免费大全6| 欧美人与性动交α欧美软件 | www.av在线官网国产| 满18在线观看网站| 国产一区二区在线观看av| av一本久久久久| 日日摸夜夜添夜夜爱| 丰满少妇做爰视频| 久久久久网色| 啦啦啦视频在线资源免费观看| 婷婷色综合www| 国产精品久久久久久久久免| 亚洲国产看品久久| 国产成人一区二区在线| 母亲3免费完整高清在线观看 | 国产午夜精品一二区理论片| 国产淫语在线视频| 国产在线免费精品| 亚洲精品自拍成人| 精品国产一区二区久久| 黑人高潮一二区| 日日摸夜夜添夜夜爱| 欧美xxxx性猛交bbbb| 亚洲伊人色综图| 80岁老熟妇乱子伦牲交| 九九在线视频观看精品| 免费观看a级毛片全部| xxx大片免费视频| 热re99久久国产66热| 亚洲欧美中文字幕日韩二区| 国产一级毛片在线| 精品人妻一区二区三区麻豆| 久久久精品免费免费高清| 两个人免费观看高清视频| 免费看光身美女| 男女免费视频国产| 日韩不卡一区二区三区视频在线| 自拍欧美九色日韩亚洲蝌蚪91| 高清不卡的av网站| 国产成人aa在线观看| 久久久a久久爽久久v久久| 女性生殖器流出的白浆| 国产精品一国产av| 亚洲国产精品一区三区| 男男h啪啪无遮挡| 国产精品99久久99久久久不卡 | 26uuu在线亚洲综合色| 一级a做视频免费观看| 日韩欧美精品免费久久| 香蕉精品网在线| 亚洲欧美成人精品一区二区| 全区人妻精品视频| 一区二区三区精品91| 大片电影免费在线观看免费| 18禁在线无遮挡免费观看视频| 性色av一级| 国产高清三级在线| 亚洲成av片中文字幕在线观看 | 亚洲欧美色中文字幕在线| 久久久久久久久久久免费av| 国产黄频视频在线观看| 一边亲一边摸免费视频| 国产精品嫩草影院av在线观看| 亚洲图色成人| 久久女婷五月综合色啪小说| 精品国产乱码久久久久久小说| 91久久精品国产一区二区三区| 国产亚洲精品久久久com| 国产在线一区二区三区精| 91精品三级在线观看| 交换朋友夫妻互换小说| 最近最新中文字幕免费大全7| 日韩成人av中文字幕在线观看| 欧美人与性动交α欧美软件 | 超色免费av| 2018国产大陆天天弄谢| 性色avwww在线观看| 久久久久久人人人人人| 伦精品一区二区三区| 9热在线视频观看99| 免费黄网站久久成人精品| 不卡视频在线观看欧美| 22中文网久久字幕| 国产激情久久老熟女| 精品久久久精品久久久| 久久精品国产a三级三级三级| 黄色配什么色好看| freevideosex欧美| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频 | 两性夫妻黄色片 | 嫩草影院入口| 蜜桃国产av成人99| 欧美激情国产日韩精品一区| 国产精品国产三级专区第一集| 国产成人精品婷婷| 春色校园在线视频观看| 丝袜喷水一区| 九九在线视频观看精品| 一区二区av电影网| 久久韩国三级中文字幕| 香蕉精品网在线| a级片在线免费高清观看视频| 国产永久视频网站| 午夜久久久在线观看| 水蜜桃什么品种好| 午夜福利乱码中文字幕| a级毛片在线看网站| 一级毛片电影观看| 久久久久精品性色| 午夜福利乱码中文字幕| 国产免费福利视频在线观看| 十分钟在线观看高清视频www| 人妻人人澡人人爽人人| 高清在线视频一区二区三区| 99精国产麻豆久久婷婷| 亚洲美女黄色视频免费看| 狂野欧美激情性xxxx在线观看| 九色亚洲精品在线播放| 在线观看免费视频网站a站| 亚洲精品aⅴ在线观看| 午夜精品国产一区二区电影| 一个人免费看片子| 99国产综合亚洲精品| av片东京热男人的天堂| 丝袜美足系列| 纯流量卡能插随身wifi吗| 黄色一级大片看看| 国产一区二区在线观看日韩| 国产免费视频播放在线视频| 高清毛片免费看| 夫妻性生交免费视频一级片| 五月伊人婷婷丁香| 国产成人免费无遮挡视频| 三上悠亚av全集在线观看| 国产一区二区激情短视频 | 婷婷成人精品国产| 久久精品国产亚洲av涩爱| 一区在线观看完整版| 日本爱情动作片www.在线观看| 欧美亚洲日本最大视频资源| 亚洲久久久国产精品| 亚洲精品,欧美精品| 青春草亚洲视频在线观看| 婷婷色av中文字幕| 久久精品国产亚洲av涩爱| 免费播放大片免费观看视频在线观看| 嫩草影院入口| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 免费av中文字幕在线| 老司机影院成人| 久久国产精品男人的天堂亚洲 | 91精品伊人久久大香线蕉| 天天躁夜夜躁狠狠躁躁| 久久女婷五月综合色啪小说| 七月丁香在线播放| 欧美人与性动交α欧美软件 | 桃花免费在线播放| 美国免费a级毛片| 久久久国产欧美日韩av| 中文字幕另类日韩欧美亚洲嫩草| 黑人高潮一二区| 老司机影院成人| 午夜视频国产福利| 中文欧美无线码| 久久久久久久精品精品| 国产一级毛片在线| 亚洲成色77777| 黑人高潮一二区| 国产成人aa在线观看| 午夜视频国产福利| 欧美精品一区二区免费开放| 精品少妇久久久久久888优播| 久久久久久人妻| 精品国产一区二区三区久久久樱花| 日韩三级伦理在线观看| 久久精品夜色国产| 亚洲精品美女久久久久99蜜臀 | 桃花免费在线播放| 国产精品久久久久久精品电影小说| 蜜桃在线观看..| 99香蕉大伊视频| 好男人视频免费观看在线| 精品亚洲成国产av| 欧美精品人与动牲交sv欧美| 青春草亚洲视频在线观看| 男人舔女人的私密视频| av有码第一页| 久久久精品94久久精品| 免费黄网站久久成人精品| 国产成人精品久久久久久| 国产日韩一区二区三区精品不卡| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 黑人高潮一二区| 国产日韩欧美视频二区| 日韩,欧美,国产一区二区三区| 亚洲综合色惰| 丝袜脚勾引网站| 国产伦理片在线播放av一区| 欧美bdsm另类| 夜夜骑夜夜射夜夜干| 国产不卡av网站在线观看| 欧美精品亚洲一区二区| 国产精品国产av在线观看| 免费观看a级毛片全部| 午夜老司机福利剧场| 午夜福利乱码中文字幕| 欧美人与性动交α欧美精品济南到 | 亚洲,一卡二卡三卡| av黄色大香蕉| 日韩av在线免费看完整版不卡| 日日摸夜夜添夜夜爱| 亚洲国产毛片av蜜桃av| 大香蕉久久成人网| 最后的刺客免费高清国语| 亚洲丝袜综合中文字幕| 欧美精品一区二区免费开放| 精品国产国语对白av| 男人添女人高潮全过程视频| av播播在线观看一区| 人妻人人澡人人爽人人| 成人午夜精彩视频在线观看| 少妇被粗大猛烈的视频| 国内精品宾馆在线| 亚洲精品一二三| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 少妇高潮的动态图| 国产精品人妻久久久影院| 一级黄片播放器| 老司机影院毛片| 国产精品欧美亚洲77777| 香蕉精品网在线| 一级片免费观看大全| 看免费av毛片| 午夜影院在线不卡| 日本色播在线视频| 国产在视频线精品| 午夜免费男女啪啪视频观看| 久久久久精品久久久久真实原创| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av涩爱| 成人国语在线视频| 免费黄色在线免费观看| 老司机影院毛片| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| a级毛片在线看网站| 毛片一级片免费看久久久久| 久热这里只有精品99| 草草在线视频免费看| 黄色视频在线播放观看不卡| 亚洲国产日韩一区二区| 国产亚洲午夜精品一区二区久久| 久久精品夜色国产| 国产熟女欧美一区二区| 国产精品一区二区在线不卡| 精品亚洲乱码少妇综合久久| 亚洲精品,欧美精品| 午夜老司机福利剧场| 国产毛片在线视频| 国产精品国产三级国产av玫瑰| 亚洲五月色婷婷综合| 天堂中文最新版在线下载| 欧美日韩视频高清一区二区三区二| 老女人水多毛片| 日本色播在线视频| 国内精品宾馆在线| 看免费成人av毛片| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃 | 咕卡用的链子| 人人妻人人爽人人添夜夜欢视频| 久久久久视频综合| 女人被躁到高潮嗷嗷叫费观| 国产永久视频网站| 天堂中文最新版在线下载| 久久久国产一区二区| 久久人人97超碰香蕉20202| a级毛片在线看网站| 亚洲精品国产av成人精品| 亚洲成av片中文字幕在线观看 | 插逼视频在线观看| 久久午夜综合久久蜜桃| 国产一区有黄有色的免费视频| 69精品国产乱码久久久| 少妇 在线观看| 国产有黄有色有爽视频| 91在线精品国自产拍蜜月| 一区二区日韩欧美中文字幕 | 人人妻人人添人人爽欧美一区卜| 日本欧美视频一区| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站| 在线天堂最新版资源| 9色porny在线观看| 精品国产一区二区三区四区第35| 日韩精品有码人妻一区| 99热全是精品| av网站免费在线观看视频| 亚洲 欧美一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲av.av天堂| 三上悠亚av全集在线观看| 18在线观看网站| 成年人午夜在线观看视频| 久久久久久久久久人人人人人人| 亚洲av电影在线观看一区二区三区| 在线观看一区二区三区激情| 少妇人妻 视频| 美女视频免费永久观看网站| 亚洲av欧美aⅴ国产| 高清欧美精品videossex| 伦理电影大哥的女人| 亚洲情色 制服丝袜| 两个人免费观看高清视频| 十分钟在线观看高清视频www| 日韩制服丝袜自拍偷拍| 母亲3免费完整高清在线观看 | 少妇人妻 视频| 久热久热在线精品观看| av网站免费在线观看视频| 欧美人与性动交α欧美软件 | 在线观看美女被高潮喷水网站| 久久精品aⅴ一区二区三区四区 | 国产高清不卡午夜福利| 黄色怎么调成土黄色| 国产精品人妻久久久久久| 精品久久国产蜜桃| av在线老鸭窝| 精品国产一区二区久久| 国产成人欧美| 男女啪啪激烈高潮av片| 老司机亚洲免费影院| 熟女电影av网| 国产免费一区二区三区四区乱码| 九草在线视频观看| 久久热在线av| 亚洲精品一二三| 色哟哟·www| 精品国产一区二区三区四区第35| 亚洲精品乱久久久久久| videosex国产| 国产av国产精品国产| 亚洲精品美女久久久久99蜜臀 | 黄片播放在线免费| 少妇被粗大的猛进出69影院 | 一区二区三区乱码不卡18| 少妇高潮的动态图| xxxhd国产人妻xxx| 亚洲国产精品999| av天堂久久9| 另类亚洲欧美激情| 国产视频首页在线观看| 成年动漫av网址| 国产成人精品婷婷| 午夜福利视频在线观看免费| 最近最新中文字幕免费大全7| 欧美成人午夜免费资源| 国产一区二区在线观看日韩| 美女视频免费永久观看网站| av播播在线观看一区| 秋霞在线观看毛片| 丝袜人妻中文字幕| 水蜜桃什么品种好| 你懂的网址亚洲精品在线观看| 精品久久久精品久久久| 亚洲av电影在线进入| 中文字幕av电影在线播放| 亚洲,欧美精品.| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 欧美性感艳星| 欧美+日韩+精品| 亚洲情色 制服丝袜| 国产成人午夜福利电影在线观看| 丰满乱子伦码专区| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久 | 老女人水多毛片| av又黄又爽大尺度在线免费看| 国产高清三级在线| 女人精品久久久久毛片| 精品亚洲成a人片在线观看| av免费在线看不卡| 午夜福利视频在线观看免费| 啦啦啦在线观看免费高清www| 丝袜喷水一区| 日韩中文字幕视频在线看片| 亚洲第一av免费看| 国产成人欧美| 亚洲色图 男人天堂 中文字幕 | 看免费成人av毛片| 日日摸夜夜添夜夜爱| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久精品久久久| 免费av不卡在线播放| 成人无遮挡网站| 美女脱内裤让男人舔精品视频| 夜夜骑夜夜射夜夜干| 日本黄大片高清| 欧美日韩av久久| 亚洲精品视频女| 最近的中文字幕免费完整| 汤姆久久久久久久影院中文字幕| 国产69精品久久久久777片| 亚洲熟女精品中文字幕| 中文字幕制服av| 亚洲国产av新网站| 亚洲精品一区蜜桃| 国产精品国产三级国产av玫瑰| 巨乳人妻的诱惑在线观看| 九色成人免费人妻av| 久久久欧美国产精品| 综合色丁香网| videosex国产| 婷婷色综合www| 成人毛片60女人毛片免费| 亚洲精品成人av观看孕妇| 午夜av观看不卡| 久久久久久久国产电影| 精品久久久久久电影网| 91成人精品电影|