• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ construction of oxygen-vacancy-rich Bi0@Bi2WO6-x microspheres with enhanced visible light photocatalytic for NO removal

    2021-08-26 02:08:20XioqinXieQdeerUlHssnHunLuFeiRoJinzhiGoGngqingZhu
    Chinese Chemical Letters 2021年6期

    Xioqin Xie,Qdeer-Ul Hssn,Hun Lu*,Fei Ro,Jinzhi Go,*,Gngqing Zhu,*

    a School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710062,China

    b School of Geography and Tourism,Shaanxi Normal University,Xi’an 710062,China

    ABSTRACT Surface oxygen vacancy defects and metal deposition on semiconductor photocatalysts play a critical role in photocatalytic reactions.In this work,oxygen-deficient Bi2WO6 microspheres have been prepared by a facile ethylene glycol-assisted solvothermal method.Bi0 nanoparticles were reduced by in situ thermaltreatment on Bi2WO6 microspheres to obtain Bi0@Bi2WO6-x as well as maintaining the oxygen vacancies(OVs)under N2 atmosphere.Afterwards,photocatalytic NO oxidation removal activities of these photocatalysts were investigated under visible light irradiation and Bi0@Bi2WO6-x shows the best NO removal activity than other samples.The photogenerated charge separation and transfer are promoted by Bi0 nanoparticles deposited on the surface of semiconductor catalysts.OVs defects promote the activation of reactants(H2O and O2),thereby enhancing the formation of the active substance.Moreover,both OVs defects and Bi0 metal have the characteristics of extending light absorption and enhancing the efficient utilization of solar energy.Besides,the photocatalytic NO oxidation mechanism of Bi0@Bi2WO6-x was investigated by in situ FTIR spectroscopy for reaction intermediates and final products.This work furnishes insight into the synthesis strategy and the underlying photocatalytic mechanism of the surfacemodified Bi0@Bi2WO6-x composite for pollutants removal.

    Keywords:Oxygen vacancies Bi metal Photocatalytic reaction In situ FTIR Bi2WO6 microspheres

    Recent investigations have shown that the formation of oxygen vacancy defects is considered an effective method for adjusting the semiconductor band gap and its electronic structure[1-3],thereby enhancing visible light absorption[4-6].Research has confirmed that the construction of oxygen vacancies(OVs)defect promote the activation of reactants(H2O and O2),thereby enhancing the formation of the active substance[7,8].In addition,it is also a wellestablished phenomenon that the catalytic performance of the photocatalysts can improve by depositing metal nanoparticles due to its surface plasmon resonance(SPR)effect[9-13].Compared with precious metals,low-cost Bi0nanoparticles also can produce SPR effect[14,15],which can enhance the visible light adsorption.Furthermore,Bi0metal as a cocatalyst on the surface of the semiconductor can effectively accelerate the charge-carrier separation.Thus,it is of considerable significance to develop a simple and feasible method for constructing OVs and depositing Bi0nanoparticles on the surface of the photocatalyst to improve its photocatalytic performance.

    As a typical visible-light-driven photocatalyst,Bi2WO6can be excited by the light with a wavelength less than 460 nm,which merely occupies a little fraction of the visible light[16-19].Moreover,the fast recombination of photogenerated electron-hole pairs also significantly decrease the photocatalytic efficiency of the pristine Bi2WO6[20].Therefore,expanding the wavelength range of light absorption and promoting the separation of photoinduced charges are two effective methods for enhancing the photocatalytic activity of Bi2WO6[21].

    In this work,a convenient and effective in situ thermaltreatment method was used to simultaneously construct oxygen vacancies and load Bi0nanoparticles on the surface of Bi2WO6microspheres.In the thermal treatment process,Bi3+was reduced by the carbon species on the sample surface and Bi0nanoparticles was loaded on the surface of the Bi2WO6-xmicrospheres under N2atmosphere.The presence of oxygen vacancies and the metal SPR effect can increase the utilization of light and reduce the recombination of photogenerated carriers.Subsequently,photocatalytic NO oxidation removal was investigated under visible light irradiation to evaluate the photocatalytic performance of these obtained photocatalysts.

    A solvothermal method with the assisted of ethylene glycol was conducted in order to prepare Bi2WO6microspheres.The synthesis process is in Text S1(Supporting information).Then,the obtained Bi2WO6was thermal-treated at different temperatures(260,300,350,400 and 450°C,respectively)in a nitrogen surrounding for 2 h.Moreover,the thermal-treated samples were named as BWO-260,BWO-300,BWO-350,BWO-400,and BWO-450,respectively,and pristine Bi2WO6was designated as BWO.In addition,the Bi2WO6powders synthesized with deionized water as solvents are named as BWO-DW.

    As shown in Fig.1a,all diffraction peaks of the pristine BWO can be indexed to the orthorhombic russellite phase of Bi2WO6(PDF No.73-2020),and no peak of impurity was observed.With the increasing of the thermal treatment temperature to 450°C,the characteristic peaks of metal bismuth phase that can be accurately indexed to the hexagonal phase of Bi0(PDF No.44-1246).Moreover,with the thermal treatment temperature increased,the color of the synthesized samples gradually darkens from white to black.The above results indicate that Bi0metal phase was increased gradually with the increasing thermal treatment temperature.

    FT-IR spectra were employed to further characterize these samples prepared by different solvents,as shown in Fig.S1a(Supporting information).The peaks in BWO spectrum over the range of 2800-3000 cm-1matched the antisymmetrical and symmetrical vibrations of-CH2[22].The peaks at 1385 and 1086 cm-1can be attributed to the C--OH and C--O bending vibrations[23,24],respectively.However,the vibration of the chemical bond or functional group related to the C element cannot be detected in the BWO-DW sample(Text S4 and Fig.S1 in Supporting information).As shown in Fig.S1b,X-ray diffraction(XRD)patterns also prove that without Bi0metal phase will appear after thermal treatment if there is no organic carbon adsorbed on the sample surface.In Fig.1b,the organic carbon adsorbed on the BWO catalyst surface has been significantly reduced after the thermal treatment process.Therefore,the organic solvent used in the synthesis of BWO is essential for the reduction of Bi0metal from BWO by in situ method.The characteristics absorption bands of pristine BWO sample can be observed in the range of 400-800 cm-1(Fig.1b),which are originated from the Bi-O stretching vibrations,W--O stretching vibrations and W--O--W bridge stretching modes[25,26].These peaks still exist after BWO thermal treatment at different temperatures,which also indicates that the structure of BWO has not changed during the process of generating Bi0phase.

    Based on the Bi 4f spectrum of pristine BWO(Fig.1c),the peaks around 159.05 and 164.35 eV could be ascribed to Bi3+4f7/2and Bi3+4f5/2spin-orbit splitting photoelectrons states being inBi3+chemical state[14,27],respectively.However,two newly peaks located at 157.8and163.25 eVwereobservedinBWO-350,whichareaccording to the Bi04f7/2and Bi04f5/2,respectively.The two peaks are resulted by part of the Bi3+reduced to Bi0phase during thermal treatment process,which also confirm the presence of Bi0metal phase after thermal treatment[15].Furthermore,the Bi 4f peak of the BWO-350 sampleshows a slight shift towards higher bindingenergy dueto the altering of the electron distribution near the Bi atom[28].As shown in Fig.1d,the asymmetric O 1s X-ray photoelectron spectroscopy(XPS)spectrum of BWO can be fitted to three gaussian peaks at 529.75,530.45and531.3eV,which are ascribed to the latticeoxygen,oxygen vacancies and surface chemisorbed oxygen of BWO[29-31],respectively.The formation of Bi0nanoparticles also causes the increasing of oxygen vacancies over BWO-350 during thermal treatment,which is well consistent with the electron paramagnetic resonance(EPR)results in Fig.1f.

    Fig.1.XRD patterns(a)and FT-IR spectra(b)of the samples synthesized at different thermal treatment temperatures.High-resolution XPS spectra of Bi 4f(c)and O 1s(d)of BWO and BWO-350 samples.(e)UV-vis spectra of the sample with different thermal treatment temperatures.(f)EPR spectra of BWO,BWO-260,BWO-300 and BWO-350 samples.

    Pristine BWO exhibited an intrinsic visible light absorption edge of approximately 460 nm(Fig.1e).Interestingly,the samples after thermal-treated exhibited appearance redshift and evident amelioration in visible light absorption compared to pristine BWO.With the thermal treatment temperature increased,photocatalysts exhibited strong absorption in the visible-near infrared(vis-NIR)region due to the OVs and the SPR effect originated from the Bi0metal on the semiconductor surface[32].However,ultravioletvisible diffuse reflectance spectrum(UV-vis DRS)in Fig.S3c(Supporting information)shows that the BWO-DW sample without obvious redshift as well as optical absorption changes after thermal treatment at different temperatures(Text S6 and Fig.S3 in Supporting information).

    EPR analysis was performed to determine the presence of oxygen vacancy visually.As illustrated in Fig.1f,BWO,BWO-260,BWO-300 and BWO-350 samples exhibit a symmetric EPR signal gradient at about g=2.003 attributing to the electrons trapped on the oxygen vacancies,where the EPR signal gradually increases with the increase of thermal treatment temperature[27,28].These results indicate that the samples after thermal-treated has more oxygen vacancies.In addition,the thermal-treatment has little effect on the specific surface area and pore size distribution of the samples(Text S6 and Fig.S3d).

    It can be observed from the scanning electron microscopy(SEM)and transmission electron microscopy(TEM)images in Figs.2a-c and Fig.S4(Supporting information)that all the prepared samples exhibit a self-assembled microsphere morphology composed of nanosheets with a thickness about 6-7 nm.From the SEM image of BWO-450 in Fig.2b,it can be seen that some irregular nanoparticles loaded on the microspheres.In addition,the high resolution TEM(HRTEM)image of BWO-450 in Fig.2d displays that the lattice fringes is about 0.315 nm,which matching the(113)crystal plane of Bi2WO6crystal.The energy-dispersive spectroscopy(EDS)results in Fig.S5 and Text S7(Supporting information)also demonstrate that the Bi0particles were produced on the surface of BWO photocatalyst during the process of thermal-treatment.According the above discussion and analysis,the generation of Bi0particles and OVs in the BWO during the thermal treatment are illustrated Fig.2e.

    Fig.2.SEM images of BWO(a)and BWO-450(b)samples.TEM image(c)and HRTEM image(d)of BWO-450.(e)Schematic diagram of the generation of OVs and Bi0 nanoparticles during the thermal treatment process.

    In this study,the NO photocatalytic removal performances of the photocatalysts were investigated under visible light irradiation(λ≥420 nm).Fig.3a displays the variation of NO concentration with the illumination time of all samples under visible light irradiation.As shown in Fig.S6b(Supporting information),the photocatalytic removal efficiencies of NO oxidation removal over these samples of BWO,BWO-260,BWO-300,BWO-350,BWO-400 and BWO-450 photocatalysts were about 46.5%,50.5%,51.3%,53.4%,45.1% and 33.1%,respectively.Among them,the BWO-350 sample exhibited the best photocatalytic performance,which may be attributed to the OVs and Bi0nanoparticles with enhanced light utilization and effective charge transfer.In order to further confirm whether OVs and Bi0nanoparticles both have enhanced light utilization and effective charge transfer,the results of controlling a single variable are provided(Text S9 and Figs.S7a-e in Supporting information).The results show that for the synthesized samples,the presence of OVs and Bi0can indeed enhance the effective absorption and utilization of light and the separation and transfer of photogenerated carriers.It also proved that the in-situ synthesized Bi0@Bi2WO6-xcontaining oxygen vacancies has better photocatalytic efficiency than the general chemical loading method.Moreover,the BWO-350 sample has good photocatalytic recyclability and structure stability(Text S10 and Figs.S8a and b in Supporting information).

    In order to investigate the photocatalytic mechanism,active substance trapping experiments were performed.As shown in Fig.3b,the addition of K2Cr2O7into the reaction system obviously reduces the photocatalytic efficiency of BWO-350.In addition,the addition of p-benzoquinone(PBQ),KI and isopropanol(IPA)also have a certain influence on the photocatalytic efficiency of theBWO-350 photocatalyst.The trapping experiments results indicated that theelectrons,holes,O2?-and?OH,especialtheelectrons,playagreat role in th ephotocatalytic NO removal.Electron spinresonance(ESR)spectra were further to verify the presence of O2?-and?OH in the system under visible light illumination over BWO-350 photocatalyst.From Figs.3c and d,there is no signal under dark condition,indicating no active radicals.However,under visible light irradiation,the characteristic peaks of DMPO-?OH and DMPO-O2?-are clearly detected,which indicating that both active substances participated in the photocatalytic NO removal process.The ESR spectra are well consistent with the trapping experiments results.

    The photoluminescence(PL)spectra,photocurrent,electrochemical impedance spectroscopy(EIS)measurements and surface photovoltage spectroscopy(SPS)were conducted to analyze the separation efficiency of photo-induced electron-hole pairs of the samples(Text S11 and Fig.S9 in Supporting information).Compared with other samples,the photo-induced carriers of BWO-350 sample have lower recombination rate,faster transmission rate,and higher separation efficiency.Therefore,the BWO-350 shows better photocatalytic activity than other samples.

    In situ FTIR spectra were used to monitor the adsorption and reaction of NO and O2gases on the BWO-350 catalyst surface.Under the dark condition(Fig.3e),the absorption bands at 987,1005 and 1059 cm-1are matched the vibration of the bridging nitrate and the bidentate nitrate(NO2-)[33],while 1085,1131 and 1160 cm-1can be ascribed to the vibration of NO gas adsorbed on the surface of photocatalyst[3,33,34].The absorption peak at 1365 cm-1is ascribed to NO2due to the part of NO oxidized to NO2under dark condition(Eq.1)[3].Furthermore,the absorption bands at 1105,1394,1457 and 1641 cm-1can be properly allocated to trans-hyponitrites(N2O22-),monodentate nitrites,linear nitrites,and NO3-(Eqs.2 and 3)[27,35],respectively.The intensity of the peaks at 1394 and 1641 cm-1increased slightly over time.The possible reaction paths are shown in the following equations(Eqs.1-3):

    Fig.3f shows the photocatalytic NO oxidation process of the BWO-350 sample under visible light irradiation.After light irradiation,a series of new absorption bands at 1008,1068,1116,1276,1342,1434 and 1482 cm-1can be detected.The absorption bands at 1116,1342,and 1482 cm-1could be originated from the bridge nitrites and bidentate nitrates[27,35,36].Also,the absorption bands at 1008,1068,1276 and 1434 cm-1can be assigned to cis-(N2O22-),NO-,monodentate nitrates and NO2-(chelated)[7,15,27,37],respectively.The absorption bands allocated to nitrate species increased significantly with irradiation time.After light on,e-and h+are generated by photoexcited and react with O2and OH-on the catalyst surface to form O2?-and?OH,respectively.Then,the reaction between the NO gas on the catalyst surface and various reactive species is switched in the direction of formation of more stable nitrates.The possible reaction paths of the whole process of photocatalysis are as following(Eqs.4-11):

    Fig.3.(a)Photocatalytic activity under visible light irradiation for the samples undergone at different thermal-treatment temperatures.(b)Photocatalytic activities of BWO-350 photocatalyst in the presence of various scavengers.(c)DMPO-spectra and(d)DMPO-?OH spectra of the BWO-350 sample under visible light irradiation.In situ FTIR spectra under dark condition(e)and visible light(f)reaction processes over BWO-350.

    Based on the discussions made above,a probable mechanism diagram of the improved photocatalytic performance of Bi0@Bi2WO6-xis shown in Fig.4.Under visible light irradiation,the electrons in the valence band(VB)of Bi2WO6-xsemiconductor are excited to undergo energy level transitions,generating photogenerated carriers.Due to the SPR effect,Bi0metal nanoparticles also can generate hot electrons to participate in redox reactions.In this way,O2adsorbed on the photocatalyst surface can capture electrons and react to form the active species O2?-,and then NO and O2?-react more effectively to form nitrates.In addition,holes in the VB of Bi2WO6-xcan oxidize OH-to the active species?OH.In summary,the enhanced photocatalytic removal of NO by as-synthesized samples is mainly due to the synergistic effect of Bi0nanoparticles and oxygen vacancies.

    Fig.4.Mechanism of processes occurring during visible-light-driven photocatalytic NO removal over Bi0@Bi2WO6-x.

    In summary,Bi2WO6microspheres were prepared by a simple hydrothermal method,and then Bi0nanoparticles loaded on Bi2WO6-xwith oxygen vacancies were prepared by thermal treatment method under N2atmosphere condition.The existence of OVs and Bi0nanoparticles not only increases the visible light utilization of the photocatalyst but also enhances the separation and transfer efficiency of photogenerated electron-hole pairs.The photocatalytic performance of Bi0@Bi2WO6-xsignificantly improved by the synergetic effect of the presence of appropriate Bi0nanoparticles content and surface oxygen vacancies.Our work employs a new approach towards controlling oxygen vacancies and Bi0metal nanoparticles loaded on the surface of semiconductor catalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.51772183),the key Research and Development Program of Shaanxi Province(No.2018ZDCXL-SF-02-04),and the Fundamental Research Funds for the Central Universities(Nos.GK201903023 and GK201801005).

    Appendix A.Supplementary data

    Supplementary material related to this articlecanbe found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.10.002.

    免费av中文字幕在线| 欧美+亚洲+日韩+国产| 99久久人妻综合| 1024香蕉在线观看| 久久99一区二区三区| 女警被强在线播放| 久久热在线av| 亚洲一区中文字幕在线| av天堂在线播放| 91精品三级在线观看| а√天堂www在线а√下载 | 午夜福利欧美成人| 一个人免费在线观看的高清视频| 免费在线观看亚洲国产| 免费一级毛片在线播放高清视频 | 久久久久国产精品人妻aⅴ院 | 亚洲avbb在线观看| 搡老熟女国产l中国老女人| 免费在线观看影片大全网站| 国产欧美亚洲国产| 免费观看a级毛片全部| 久久午夜综合久久蜜桃| av免费在线观看网站| 国产精品久久久av美女十八| 午夜亚洲福利在线播放| 国产成人免费观看mmmm| 热re99久久国产66热| 国产成人欧美| 国产亚洲欧美在线一区二区| 亚洲人成伊人成综合网2020| 精品免费久久久久久久清纯 | 成人国产一区最新在线观看| 亚洲av电影在线进入| 午夜精品久久久久久毛片777| 丰满迷人的少妇在线观看| 国产精品98久久久久久宅男小说| 18禁国产床啪视频网站| 18禁裸乳无遮挡免费网站照片 | 丁香欧美五月| 久久久久久久精品吃奶| 精品午夜福利视频在线观看一区| 免费在线观看视频国产中文字幕亚洲| 国产真人三级小视频在线观看| 午夜亚洲福利在线播放| 欧美一级毛片孕妇| 免费日韩欧美在线观看| 免费少妇av软件| 亚洲九九香蕉| 婷婷丁香在线五月| 在线十欧美十亚洲十日本专区| 男女午夜视频在线观看| 大陆偷拍与自拍| 亚洲人成伊人成综合网2020| 久久精品亚洲熟妇少妇任你| 在线观看免费视频网站a站| 狠狠狠狠99中文字幕| 在线av久久热| 一边摸一边抽搐一进一出视频| 亚洲第一av免费看| 满18在线观看网站| 亚洲精品国产一区二区精华液| 又黄又粗又硬又大视频| 在线观看一区二区三区激情| 亚洲精华国产精华精| 多毛熟女@视频| 国产精品一区二区精品视频观看| 国产精品国产av在线观看| 电影成人av| 色尼玛亚洲综合影院| 老司机亚洲免费影院| 天天影视国产精品| 日本a在线网址| 大码成人一级视频| 下体分泌物呈黄色| 日韩欧美一区二区三区在线观看 | 亚洲一区中文字幕在线| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 久久热在线av| 乱人伦中国视频| 国产男女超爽视频在线观看| 一级片'在线观看视频| www日本在线高清视频| 国产又色又爽无遮挡免费看| 嫁个100分男人电影在线观看| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 日韩三级视频一区二区三区| 日本vs欧美在线观看视频| 亚洲专区字幕在线| 久久精品熟女亚洲av麻豆精品| 免费看十八禁软件| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区mp4| 欧美午夜高清在线| 午夜精品在线福利| 免费一级毛片在线播放高清视频 | 欧美 日韩 精品 国产| 19禁男女啪啪无遮挡网站| av福利片在线| 国产在视频线精品| 亚洲国产看品久久| 丝袜人妻中文字幕| 一级毛片女人18水好多| 女性被躁到高潮视频| 纯流量卡能插随身wifi吗| 久久人人97超碰香蕉20202| av线在线观看网站| 久热这里只有精品99| 人成视频在线观看免费观看| 国产日韩一区二区三区精品不卡| av天堂在线播放| 51午夜福利影视在线观看| 国产单亲对白刺激| 欧美精品亚洲一区二区| 免费在线观看完整版高清| tocl精华| 亚洲一区二区三区不卡视频| 久久精品国产亚洲av香蕉五月 | 一进一出抽搐gif免费好疼 | 中出人妻视频一区二区| 欧美日韩精品网址| 99精品欧美一区二区三区四区| 黄片大片在线免费观看| 99国产精品99久久久久| 91字幕亚洲| 国内毛片毛片毛片毛片毛片| 丰满迷人的少妇在线观看| 一进一出抽搐gif免费好疼 | 男女高潮啪啪啪动态图| 女人被躁到高潮嗷嗷叫费观| 最近最新中文字幕大全免费视频| 两个人看的免费小视频| 伊人久久大香线蕉亚洲五| 亚洲中文av在线| 亚洲免费av在线视频| 激情在线观看视频在线高清 | 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 丝袜人妻中文字幕| 精品高清国产在线一区| tube8黄色片| 午夜福利在线观看吧| 亚洲在线自拍视频| 无遮挡黄片免费观看| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 国产精品久久久av美女十八| 国产欧美日韩一区二区精品| 下体分泌物呈黄色| www.999成人在线观看| 午夜老司机福利片| 欧美激情久久久久久爽电影 | 在线观看免费视频网站a站| 国产精品成人在线| 在线观看免费高清a一片| 精品亚洲成a人片在线观看| 久久99一区二区三区| 丰满迷人的少妇在线观看| 韩国精品一区二区三区| 久久亚洲真实| 一级毛片女人18水好多| 啦啦啦免费观看视频1| 亚洲五月婷婷丁香| 好看av亚洲va欧美ⅴa在| 国产一区在线观看成人免费| 桃红色精品国产亚洲av| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| 很黄的视频免费| 亚洲国产精品合色在线| 国产一区二区三区综合在线观看| 人妻久久中文字幕网| 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| 可以免费在线观看a视频的电影网站| 国产精品1区2区在线观看. | 一级毛片精品| 国产高清激情床上av| 久久午夜亚洲精品久久| 色婷婷久久久亚洲欧美| 久久久水蜜桃国产精品网| 在线av久久热| 在线观看www视频免费| 露出奶头的视频| 亚洲精品国产一区二区精华液| 欧美亚洲日本最大视频资源| 久久人妻福利社区极品人妻图片| 一级毛片女人18水好多| 国产精品香港三级国产av潘金莲| 国产国语露脸激情在线看| 免费日韩欧美在线观看| 国产午夜精品久久久久久| 亚洲成国产人片在线观看| 建设人人有责人人尽责人人享有的| 亚洲av日韩精品久久久久久密| 亚洲精品国产一区二区精华液| 欧美 日韩 精品 国产| 久久精品国产亚洲av高清一级| 最新美女视频免费是黄的| 国产在线一区二区三区精| 人成视频在线观看免费观看| 午夜91福利影院| 午夜福利一区二区在线看| 中文字幕人妻熟女乱码| 老熟妇乱子伦视频在线观看| 久久国产精品大桥未久av| 日韩欧美在线二视频 | 777米奇影视久久| 建设人人有责人人尽责人人享有的| 99精国产麻豆久久婷婷| 国产aⅴ精品一区二区三区波| 黑人巨大精品欧美一区二区蜜桃| 18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 999久久久精品免费观看国产| 久久中文字幕人妻熟女| 亚洲在线自拍视频| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 成年人午夜在线观看视频| 老汉色av国产亚洲站长工具| 色尼玛亚洲综合影院| 人人妻,人人澡人人爽秒播| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| av欧美777| 精品无人区乱码1区二区| 黄色成人免费大全| 欧美激情高清一区二区三区| 99国产精品99久久久久| 美女高潮喷水抽搐中文字幕| 午夜久久久在线观看| 丝瓜视频免费看黄片| 亚洲国产欧美一区二区综合| 精品久久久精品久久久| 99国产精品免费福利视频| av网站在线播放免费| 每晚都被弄得嗷嗷叫到高潮| 久久久久国内视频| 免费在线观看视频国产中文字幕亚洲| 亚洲av电影在线进入| 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| 麻豆乱淫一区二区| 亚洲七黄色美女视频| 一级毛片女人18水好多| 国产主播在线观看一区二区| 久久久国产成人精品二区 | 一区二区日韩欧美中文字幕| 国产精品美女特级片免费视频播放器 | 欧美一级毛片孕妇| 日韩欧美国产一区二区入口| 欧美日韩视频精品一区| 久久国产精品影院| 天堂中文最新版在线下载| 免费观看精品视频网站| 久久精品国产清高在天天线| 亚洲综合色网址| ponron亚洲| 国产精品 国内视频| 午夜日韩欧美国产| 日本黄色日本黄色录像| 在线播放国产精品三级| 天天躁夜夜躁狠狠躁躁| 日韩大码丰满熟妇| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 9色porny在线观看| 日韩精品免费视频一区二区三区| 久久这里只有精品19| 国产亚洲精品久久久久久毛片 | 777久久人妻少妇嫩草av网站| 国产精品自产拍在线观看55亚洲 | 老司机影院毛片| 丰满迷人的少妇在线观看| 精品国产一区二区三区四区第35| 中文字幕色久视频| av线在线观看网站| bbb黄色大片| 天堂俺去俺来也www色官网| 日本a在线网址| 99久久99久久久精品蜜桃| 欧美老熟妇乱子伦牲交| 免费av中文字幕在线| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 亚洲 国产 在线| 国产色视频综合| 水蜜桃什么品种好| 久久精品国产亚洲av高清一级| 9191精品国产免费久久| 国产三级黄色录像| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 免费av中文字幕在线| 天天影视国产精品| 可以免费在线观看a视频的电影网站| 欧美+亚洲+日韩+国产| tocl精华| 老汉色∧v一级毛片| 99riav亚洲国产免费| 老司机在亚洲福利影院| 亚洲av日韩在线播放| 午夜日韩欧美国产| 久久精品人人爽人人爽视色| 日日爽夜夜爽网站| 久久久水蜜桃国产精品网| 久久热在线av| 午夜福利,免费看| 国产精品久久电影中文字幕 | 亚洲人成伊人成综合网2020| 久久精品国产a三级三级三级| 男人操女人黄网站| 国产亚洲精品久久久久久毛片 | 欧美日韩亚洲高清精品| 成人黄色视频免费在线看| 一边摸一边做爽爽视频免费| 高清毛片免费观看视频网站 | 午夜视频精品福利| 男人操女人黄网站| 飞空精品影院首页| 欧美日韩一级在线毛片| 999久久久国产精品视频| 久久午夜亚洲精品久久| 日本黄色视频三级网站网址 | 三上悠亚av全集在线观看| 黄片大片在线免费观看| 精品国产亚洲在线| 18禁裸乳无遮挡免费网站照片 | 久久99一区二区三区| 无限看片的www在线观看| 亚洲人成77777在线视频| 91精品国产国语对白视频| 91精品三级在线观看| 久久热在线av| 十八禁网站免费在线| 久久久久久久久免费视频了| 国产欧美日韩精品亚洲av| 久久影院123| 久热这里只有精品99| 美女扒开内裤让男人捅视频| 80岁老熟妇乱子伦牲交| 欧美精品av麻豆av| 亚洲,欧美精品.| www.熟女人妻精品国产| 欧美老熟妇乱子伦牲交| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 精品国产乱子伦一区二区三区| 男女床上黄色一级片免费看| 99精品在免费线老司机午夜| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 男女之事视频高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产av精品麻豆| 欧美日韩国产mv在线观看视频| 国产精品.久久久| 亚洲色图综合在线观看| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 极品教师在线免费播放| 日韩免费高清中文字幕av| 久久中文字幕人妻熟女| 老司机亚洲免费影院| 狠狠狠狠99中文字幕| 久久精品亚洲熟妇少妇任你| 久久亚洲真实| 亚洲熟女毛片儿| 国产精华一区二区三区| 国产一区二区三区视频了| 欧美日韩视频精品一区| 亚洲 国产 在线| 美女 人体艺术 gogo| 韩国精品一区二区三区| 成人国语在线视频| 日本欧美视频一区| 亚洲精品国产一区二区精华液| av欧美777| 午夜成年电影在线免费观看| 久久精品国产清高在天天线| 精品国产乱子伦一区二区三区| 精品人妻熟女毛片av久久网站| 亚洲在线自拍视频| 五月开心婷婷网| 中文字幕高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 美女国产高潮福利片在线看| 久久精品91无色码中文字幕| 妹子高潮喷水视频| 精品熟女少妇八av免费久了| 婷婷精品国产亚洲av在线 | 宅男免费午夜| 亚洲欧美日韩高清在线视频| 人人妻人人澡人人爽人人夜夜| 色综合婷婷激情| 精品国产一区二区三区久久久樱花| netflix在线观看网站| 国产精品自产拍在线观看55亚洲 | 十八禁人妻一区二区| 麻豆乱淫一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| aaaaa片日本免费| 成在线人永久免费视频| 无限看片的www在线观看| 亚洲七黄色美女视频| 亚洲色图av天堂| 18在线观看网站| 亚洲精品在线美女| 热99re8久久精品国产| 精品亚洲成a人片在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲精品乱久久久久久| 亚洲精品久久成人aⅴ小说| 久久ye,这里只有精品| 欧美黄色片欧美黄色片| 国产精品电影一区二区三区 | 色老头精品视频在线观看| 人成视频在线观看免费观看| 在线观看免费视频日本深夜| av福利片在线| 久久国产乱子伦精品免费另类| 中出人妻视频一区二区| 欧美午夜高清在线| 国产激情欧美一区二区| 免费观看人在逋| 欧美激情久久久久久爽电影 | 国产成人精品无人区| 九色亚洲精品在线播放| 中文欧美无线码| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| 一区二区日韩欧美中文字幕| 夜夜躁狠狠躁天天躁| 国产精品.久久久| 亚洲一区二区三区不卡视频| 老熟妇仑乱视频hdxx| 国产熟女午夜一区二区三区| av中文乱码字幕在线| 亚洲成国产人片在线观看| 亚洲精品久久成人aⅴ小说| 国产aⅴ精品一区二区三区波| 国产一区二区三区综合在线观看| 香蕉久久夜色| 亚洲精品自拍成人| ponron亚洲| 最新在线观看一区二区三区| 日韩欧美一区视频在线观看| 精品国产乱子伦一区二区三区| 人人妻人人澡人人爽人人夜夜| 不卡av一区二区三区| 欧美精品人与动牲交sv欧美| 国产99白浆流出| 日韩有码中文字幕| 免费少妇av软件| 国产人伦9x9x在线观看| 女性生殖器流出的白浆| 757午夜福利合集在线观看| 这个男人来自地球电影免费观看| 天天躁夜夜躁狠狠躁躁| 成人三级做爰电影| 欧美老熟妇乱子伦牲交| 亚洲国产欧美网| 男女下面插进去视频免费观看| 亚洲五月色婷婷综合| 欧美日韩一级在线毛片| 亚洲欧美色中文字幕在线| 亚洲精品国产色婷婷电影| 久久久水蜜桃国产精品网| 国产在视频线精品| 18在线观看网站| 18禁观看日本| 校园春色视频在线观看| 亚洲熟妇中文字幕五十中出 | 午夜免费成人在线视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品中文字幕一二三四区| 国产精品一区二区精品视频观看| 别揉我奶头~嗯~啊~动态视频| 免费看a级黄色片| 国产精品久久电影中文字幕 | 国产高清国产精品国产三级| 欧美激情极品国产一区二区三区| 欧美国产精品va在线观看不卡| 99riav亚洲国产免费| 好男人电影高清在线观看| 国产成人欧美在线观看 | 国产1区2区3区精品| 狠狠婷婷综合久久久久久88av| 一二三四在线观看免费中文在| 一级作爱视频免费观看| 国产在线观看jvid| 久久人妻av系列| 亚洲av日韩精品久久久久久密| 色老头精品视频在线观看| 久久午夜亚洲精品久久| 国产一区有黄有色的免费视频| 制服人妻中文乱码| 日韩视频一区二区在线观看| 麻豆成人av在线观看| 三级毛片av免费| 国产真人三级小视频在线观看| 黄色a级毛片大全视频| 成在线人永久免费视频| 国产精品亚洲一级av第二区| 国产成人av教育| 精品一区二区三卡| 亚洲在线自拍视频| 性色av乱码一区二区三区2| 一区二区三区激情视频| 色婷婷av一区二区三区视频| 国产一卡二卡三卡精品| 亚洲av成人一区二区三| av超薄肉色丝袜交足视频| 老熟妇仑乱视频hdxx| 成熟少妇高潮喷水视频| 亚洲精品粉嫩美女一区| 欧美日韩av久久| 操出白浆在线播放| 巨乳人妻的诱惑在线观看| 淫妇啪啪啪对白视频| 亚洲九九香蕉| 精品国产亚洲在线| 国产成人av教育| 人人妻,人人澡人人爽秒播| 亚洲免费av在线视频| 国产精品免费一区二区三区在线 | 国产亚洲精品第一综合不卡| 久久精品国产99精品国产亚洲性色 | 久久国产亚洲av麻豆专区| 国产成人精品无人区| 欧美 日韩 精品 国产| 成熟少妇高潮喷水视频| 岛国毛片在线播放| 97人妻天天添夜夜摸| 视频区图区小说| 两个人免费观看高清视频| 中文字幕高清在线视频| 一边摸一边抽搐一进一小说 | www.熟女人妻精品国产| 天天添夜夜摸| 日本黄色视频三级网站网址 | 欧美黄色片欧美黄色片| 欧美人与性动交α欧美软件| 成人黄色视频免费在线看| 99re在线观看精品视频| 看片在线看免费视频| 一级,二级,三级黄色视频| 乱人伦中国视频| 91大片在线观看| 亚洲性夜色夜夜综合| 一级黄色大片毛片| e午夜精品久久久久久久| 午夜福利,免费看| 亚洲va日本ⅴa欧美va伊人久久| 久9热在线精品视频| av欧美777| 热re99久久国产66热| 又大又爽又粗| 波多野结衣av一区二区av| 精品国产乱子伦一区二区三区| 国产成人精品久久二区二区91| 女人被躁到高潮嗷嗷叫费观| 法律面前人人平等表现在哪些方面| 90打野战视频偷拍视频| 黄网站色视频无遮挡免费观看| 狂野欧美激情性xxxx| 中文字幕人妻丝袜一区二区| 超碰成人久久| 久99久视频精品免费| 国产精品久久久人人做人人爽| 精品国产国语对白av| 欧美日韩成人在线一区二区| 丁香欧美五月| 久久国产亚洲av麻豆专区| 在线观看午夜福利视频| 欧美av亚洲av综合av国产av| 窝窝影院91人妻| 日韩人妻精品一区2区三区| av天堂在线播放| 亚洲在线自拍视频| 精品福利永久在线观看| 婷婷精品国产亚洲av在线 | 国内毛片毛片毛片毛片毛片| 丝袜在线中文字幕| 亚洲国产中文字幕在线视频| 老司机影院毛片| 超碰97精品在线观看| 成人三级做爰电影| 91成年电影在线观看| 麻豆乱淫一区二区| 欧美一级毛片孕妇| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲五月婷婷丁香| 国产xxxxx性猛交| 一级毛片高清免费大全| 免费看十八禁软件| 国产在线观看jvid| 热re99久久国产66热| 久久精品亚洲av国产电影网| 一a级毛片在线观看| 午夜91福利影院| 国产欧美日韩一区二区精品| av视频免费观看在线观看| 女人爽到高潮嗷嗷叫在线视频| 69精品国产乱码久久久| 欧美午夜高清在线| www日本在线高清视频| 精品无人区乱码1区二区| 亚洲久久久国产精品|