• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction

    2021-08-26 02:08:18XirnZhuZhengHuMingHungYuxinZhoJinqingQuShiHu
    Chinese Chemical Letters 2021年6期

    Xirn Zhu,Zheng Hu,Ming Hung,Yuxin Zho*,Jinqing Qu,**,Shi Hu,b,**

    a Tianjin Key Laboratory of Molecular Optoelectronic Science,Department of Chemistry,School of Science,Tianjin University,Tianjin 300072,China

    b Institute of Energy,Hefei Comprehensive National Science Center,Hefei 230026,China

    c School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    d School of Chemical Engineering and Technology,Xi'an Jiaotong University,Xi'an 710049,China

    ABSTRACT The methanol oxidation reaction(MOR)is the limiting half-reaction in direct methanol fuel cell(DMFC).Although Pt is the most active single-metal electrocatalyst for MOR,it is hampered by high cost and CO poisoning.Constructing a Pt or Ru monolayer on a second metal substrate by means of galvanic replacement of underpotentially deposited(UPD)Cu monolayer has been shown as an efficient catalyst design strategy for the electrocatalysis of MOR because of the presumed 100% utilization of atoms and resistance to CO poisoning.Herein,we prepared one-dimensional surface-alloyed electrocatalyst from predominantly(111)faceted Au nanowires with high aspect ratio as the substrate of under-potential deposition.The electrocatalyst comprises a core of the Au nanowire and a shell of catalytically active Pt coated by Ru.Coverage-dependent electro-catalytic activity and stability is demonstrated on the Pt/Ru submonolayers on Au wires for MOR.Among all these catalysts,Au@PtML@RuML exhibits the best electrocatalytic activity and poisoning tolerance to CO.This presents a viable method for the rational catalyst design for achieving high noble-metal utilization efficiency and high catalytic performance.

    Keywords:Au nanowires Pt/Ru submonolayers Underpotentially deposited Core-shell nanostructure Methanol oxidation reaction

    As the consumption of traditional fossil fuels increases year by year,and environmental problems becomes increasingly serious,it is a challenging task to find new,clean,sustainable,and renewable energy sources to meet the current demands.Due to its high energy density,widely available and feasible transport of the liquid fuel,direct methanol fuel cell(DMFC)stands out from many fuel cells and become one of the most promising fuel cells[1-6].Meanwhile,the methanol oxidation reaction(MOR)is a basic anode reaction of DMFCs and the preparation of efficient MOR electrocatalyst remains as an urgent problem in this field[7-12].

    Pt nanomaterials have received considerable attention because of their superior catalytic nature in MOR[7,13-17].Increasing efforts have been devoted to improving the catalytic activity by atom-precise controlled synthesis of Pt catalysts with tailored morphologies[14,17-20].However,their application is still limited because of the low abundance and high prices of Pt.The design of core-shell nanostructure catalysts with a shell of Pt or Pt alloy is an effective way to reduce Pt content and retain its high activity[21-26].One facile approach of constructing a Pt monolayer(PtML)on a second metal substrate(such as Pd,Au and Ir)is via underpotential deposition(UPD)of Cu monolayer(CuML)followed by galvanic replacement with Pt[27-33].By controlling the amount of charge and deposition voltage in UPD,the coverage of Pt or Ru can be controlled in sub-monolayer(Pts-ML/Rux-ML)precision.Meanwhile,the activity of PtMLelectrocatalysts is also dependent on the substrate metal[28,34,35].The catalytic activity of the surface sites can be modified by manipulation of the local chemical environment through the ligand effect and strain effect[36,37].For instance,the activity of Pt can be enhanced by tensile strain as in PtMLon Au(111)and reduced by compressive strain as in PtMLon Pd(111)[31].The CO poisoning of catalyst surface is another issue in MOR as Pt is easily poisoned by the reaction intermediate of adsorbed CO(COads)from dissociation of methanol molecules to form Pt-COadsduring the electrocatalytic reaction.CO can only be oxidized to CO2at a larger overpotential[36].According to the research on platinum-based catalysts in methanol oxidation electrocatalysis,Pt-Ru bimetallic nanomaterials have been widely recognized as the best CO-tolerant electrocatalysts[38-43].According to Watanabe-Motoo bifunctional mechanism,adding an oxophilic metal such as Ru to Pt provides adsorbed hydroxyl groups(OHads)at a lower potential,which acts as an oxidant to oxidize COadson Pt surface to CO2,thereby improving the activity of methanol oxidation[36].A synthetic protocol combining facile preparation of substrate nanostructure with high surface area,and utilization of the bifunctional effect is still missing[44,45].

    In this work,we report the Au@Pts-ML@Rux-MLcore-shell nanowires(NWs)with ultralow content of Pt and Ru as a superior MOR electrocatalyst.Au NWs with a diameter of 6.8 nm and Boerdijk-Coxeter helix structure is used as the substrate,which features a low-temperature fast preparation,high surface ratio and well-defined(111)facets[46-48].Au NWs are selected as the substrate because of the high ratio of surface atoms and onedimensional electron pathway[44,46,47].The surface coating is realized by successive UPD of Cu on the Au NWs with high aspect ratio followed by galvanic replacement by Pt and Ru while different coverage of Pt and Ru can be controlled by the amount of deposited Cu.The introduction of Ru to surface Pt further boosts the performance of the bimetallic core-shell structure as compared to the pure Pt monolayer on Au NWs.A volcano plot was derived correlating the Ru coverage and the electrocatalytic performance in MOR.Long-term stability of the most optimum catalyst of Au@PtML@RuMLis also demonstrated.Our results provide a fast but effective method to maximize the precious metals in atomic precision and provide a novel and reasonable way to design MOR electrocatalysts with enhanced activity and durability.

    It is acknowledged that one-dimensional Au NWs with high aspect ratio can provide the large surface area,low Ostwald ripening and fast electron communication[42,44].In this work,the Au NWs were synthesized in a quick protocol and chosen as substrate to construct Au@Pt core-shell NWs.We demonstrate a rapid and feasible fabrication of Au NWs with high aspect ratio(~6.8 nm)and yield(approximately 100%).Fig.1 shows the characterization of the Au NWs obtained after the reduction of HAuCl4for 1 min at 60°C.From the transmission electron microscopy(TEM)image in Fig.1a,the obtained product is uniform NWs with high aspect ratio,i.e.length of up to several hundreds of nanometers and average diameter of 6.8 nm.The observed dark contrast in Fig.1b may be caused by the stronger diffraction of the constituent tetrahedral which are oriented close to specific low-index directions.Like the previous report,the Au NWs adopt a Boerdijk-Coxeter(BC)type helix structure(inset of Fig.1b)and predominantly expose{111}facets[41].The HRTEM image(Figs.1d-f)clearly reveals the dominant{111}facets on the surface of the Au nanowires which are further decorated with rich steps.The measured lattice spacings of~0.232 nm can be assigned to the{111}planes of Au with face-centered cubic(fcc)structure.Furthermore,the varied{111}orientations indicate a possible Boerdijk-Coxeter(BC)type helix structure(Fig.1b)composed of stacked tetrahedra with twisted orientations.Multiple domains can be identified from the NWs with different orientations,which contributes to the blurred lattice image in the HRTEM image.The X-ray diffraction(XRD)pattern(Fig.1c)of the NWs exhibits a set of diffraction peaks corresponding to fcc Au.

    Fig.1.The characterization of the Au wires with high aspect ratio.(a)Low-and(b)high magnification TEM images of the Au NWs.The inset of(b)shows a model illustration of the Boerdijk-Coxeter type helical nanowire.(c)XRD pattern of the Au NWs.(d)HRTEM images of an individual Au nanowire.

    To obtain Au@Pts-MLwith different Pt coverage,Cu was deposited on the Au NWs with controlled coverage via UPD.The UPD deposition of monatomic layer of Cu has been well-developed on single crystalline Au(111)surfaces,but has been rarely observed experimentally on the surface of Au NWs.Fig.2a shows the cyclic voltammogram(CV)of the Au NWs in N2-saturated 0.5 mol/L H2SO4and 0.5 mol/L H2SO4containing 5 mmol/L CuSO4electrolyte.The reduction peak of Au oxide is constantly located at 1.13 V vs.RHE in both cases.Two additional pairs of redox peaks can be identified from the red curve(between 0.2 V and 0.6 V)before the bulk deposition of Cu,which are attributed to the Cu UPD features at Au(111)surfaces.They were ascribed to two different deposition structures including coadsorption of Cu and sulfate anion followed by a complete Cu adlayer deposition.The electrochemical surface area(ECSA)of the as-synthesized Au NWs catalyst was calculated from the charge associated with the Cu UPD peaks.Assuming a charge constant of 420 μC/cm2,the ECSA of the Au NWs was estimated to be around 0.24 cm2.NWs of Au@Cus-MLwith different Cu coverage(0.25,0.5,0.75 and 1.0 ML)can be obtained by negative linear scanning voltammetry from 0.9 V to different termination potentials(Fig.2b).The TEM image of the Au@CuMLin Fig.S1a(Supporting information)shows similar smooth surface and segmented contrast as the initial Au NWs(Fig.1a),indicating an ideal CuMLstructure without obvious island formation.

    Fig.2.The model and the characterization of Au@Pts-ML and Au@PtML@Rux-ML.(a)A model illustration of Pt and Ru deposition on the Boerdijk-Coxeter type helical Au nanowire.(b)Cu UPD on the AuNW/CNT in N2-saturated H2SO4+5 mmol/L CuSO4 solution,the inset four arrows illustrate the preparation of Au@Cus-ML with diffenent Cu coverages.Scan rate:5 mV/s.(c)STEM-HAADF image and EDX elemental mapping of Au@PtML,suggesting a near monatomic-thick monolayer structure of the PtML.(d)HAADF image and EDX elemental mapping of Au@PtML@Ru1/3ML.

    The NWs of Au@Pts-MLwere derived by subjecting the abovementioned NWs of Au@Cus-MLto galvanic replacement with K2PtCl4in N2-saturated 0.5 mol/L H2SO4.In this process,the Pt shell is deposited on the surface of Au NWs through the displacement with the Cu shell,which can be shown in the following formula:

    The Au@Pts-MLcatalyst was characterized by TEM,HAADFSTEM and energy-dispersive X-ray spectroscopy(EDX)elemental mapping,which reveals that momolayer Pt shell was uniformly coated on the surface of the Au NWs(Fig.2c).On the basis of the Au@Pt core-shell nanostructures,different layers of Ru were further deposited on these core-shell NWs via the UPD of Cu and galvanic replacement with RuCl3.As shown in Fig.S2(Supporting information),the cyclic voltammogram(CV)of the Au@PtMLNWs is obtained in N2-saturated 0.5 mol/L H2SO4containing 5 mmol/L CuSO4electrolyte.NWs of Au@PtML@Rux-MLwith different Ru coverage(x=1/3,2/3,1 and 4/3)can be obtained by negative linear scanning voltammetry from 0.9 V to different termination potential in the above solution followed by adding 25 mL of RuCl3(5 mmol/L)into the solution.The distribution of Ru,Pt and Au in the NWs are provided by the STEM image and EDX elemental mapping(Fig.2d and Fig.S3 in Supporting information)of Au@PtML@Ru1/3ML NWs and Au@PtML@RuMLNWs(Fig.S4 in Supporting information).By comparing the EDX data,the amount of Pt is almost the same and the amount of Ru of Au@PtMLRuMLis three times as much as Au@PtMLRu1/3ML,which is in good agreement with the electrochemistry data.While Pt-Ru alloyed catalysts usually exhibit high activity and enhanced durability toward MOR,systematic study of the structure-dependent electrocatalytic properties of Au@Pts-MLand Au@PtML@Rux-MLcore-shell NWs is conducted to optimize the catalytic performance.Figs.3a and c show MOR activity associated with different Au@Pts-MLand Au@PtML@Rux-MLcatalysts measured in 0.1 mol/L HClO4aqueous solution with 0.5 mol/L CH3OH at a sweep rate of 50 mV/s,and the MOR oxidative current density at 0.8 V vs.RHE are compared in Figs.3b and d.As the nominal Pt coverage increases from 0.25 ML to 1 ML(as indicated in Fig.3b),the MOR activity increases accordingly.

    Fig.3.MOR performance of Au@Pts-MLand Au@PtML@RuX.(a,c)The CV of Au@Pts-ML and Au@PtML@Rux-ML in 0.1 mol/L HClO4+0.5 mol/L CH3OH(at 50 mV/s scan rate).(b,d)Comparison of oxidative MOR current density at 0.8 V vs.RHE.

    This is fully consistent with the trend in the ECSAPtshown in Fig.S5(Supporting information),indicating that the MOR performance directly correlates with ECSAPt.Similar trend can be derived by comparing the magnitude of the Pt-oxide reduction peaks.For these metal overlayers,the activity improvement originates from a combination of Au-Pt ligand effects and local strain effects manipulated by the underlying Au(111)lattice.The Au NWs have a Boerdijk-Coxeter helix-type structure dominated by(111)facets.As studied by Adzic et al.,PtML/Au(111)with tensile strain exhibits over seven-fold enhancement in peak current density with respect to Pt(111)(the most active low-index plane of Pt)[31].In addition,the electronic interaction between PtMLand the Au substrate results in a weakened binding strength of COads,and efficiently catalyze the COadsoxidation,which is the ratelimiting step in the indirect mechanism of the MOR.

    It is widely acknowledged that the MOR could go through a dual-path mechanism:direct pathway(reactive intermediates)and indirect pathway(poisoning intermediates).This is consistent with previous reports that the electrochemical oxidation of methanol on Pt-based surfaces proceeds preferentially through the indirect pathway,where methanol molecules sequentially undergoes dissociative adsorption,dehydrogenation to form COadsand oxidation of the COads,the last step of which is considered to be the rate-limiting step.And the poisoning intermediates are determined mainly as adsorbed COads,which would be hardly stripped out until the OHadsis generated on the Pt surfaces under high electrode potential.Fortunately,the additional Ru atoms can promote water oxidation to increase the availability of OHadsat lower overpotential and consequently enhance the activity via the bifunctional Langmuir-Hinshelwood mechanism:

    As shown in Fig.3c,Au@PtML@RuMLexhibits a negative shift in onset potential and 2.47 times enhancement in peak current density at 0.8 V/RHE with respect to Au@PtML,establishing it as the best-performing catalyst among all the samples.Previous studies by Mavrikakis et al.demonstrated the free energy change of CO adsorption as one of the key descriptors,which determines the onset potential for MOR.So the negative shift of the onset potential toward MOR on Au@PtML@RuMLNWs agrees well with the finding and the higher If/Ib(forward and backward current density respectively)ratio implies that the methanol could be effectively oxidized during the forward potential scan,producing less poisoning species,thereby possessing higher tolerance of CO poisoning.We also found that the activity based on the weight of Pt and all metals(including Au,Pt,Ru)shows similar trend for different alloy catalysts and the performance of the best one Au@PtML@RuMLis superior to that of many similar alloy catalysts in recent studies(Fig.S6 and Table S1 in Supporting information).To further investigate the structure-performance relationship in Au-Pt-Ru trinary system,the current density of nanowires of bare Au,Au@RuMLand Au@RuML@PtMLis evaluated under the same experimental condition,as shown in Fig S7(Supporting information).The nanowires of bare Au and Au@RuMLhave negligible activity in catalyzing MOR while Au@RuML@PtMLexhibits much higher activity.When a monolayer of Ru atoms is deposited on Au NWs firstly,they tend to form islands on Au surface,and the following Pt deposit on the uncovered Au surface,resulting in a similar structure of Ru-Pt interface on Au.However,it is still lower than the performance of Au@PtML@RuML.The inferior performance may come from the direct landing of Ru on Au and less available Au surface for Pt deposition.Hence the atom-precision fine-tune of Au@PtML@RuMLprovides the most favorable catalyst for MOR.

    Similar to the trend in Au@Pts-ML,the current density for MOR were found to depend on the surface coverage of Ru atoms,exhibiting an increasing catalytic activity with increasing Ru coverage,until reaching a maximum at nominal surface Ru coverage of 1 ML.From the CV of Au@PtML@RuMLin N2-saturated 0.1 mol/L HClO4solution,the peak of Au oxidation at 1.17 V vs.RHE nearly disappears as compared to the inset figure of Au NWs in 0.5 mol/L H2SO4,suggesting the surface of the electrocatalyst was covered by Pt-Ru atoms(Fig.4a).However,the activity began to subsequently decrease when more than 1 ML of Ru is deposited on the surface(Fig.3d).The volcano trend in the MOR activity suggests a remarkable impact of the Ru amount on the catalytic activity of core-shell nanostructures.With the increase of Ru deposition,the ligand effect on the underlying Pt layer will be enhanced,which contributes to lower the d-band center of Pt and weaken the CO adsorption on Pt.However,less Pt sites will be exposed in this case.The best performance come with a balance between enhanced intrinsic activity and enough active sites and hence with intermediate coverage of Ru on the surface of the Au@PtMLnanowires.Actually,the peak position of the volcano plot indicates an incomplete coverage of the substrate with nominal one monolayer of Ru.

    Fig.4.The electrochemical characterization and stability test.(a)CVs of Au@PtML@RuML in N2-saturated 0.1 mol/L HClO4 solution at 50 mV/s,the inset figure depicts CV of Au NWs in 0.5 mol/L H2SO4.(b)The CO stripping current measured via potential sweep at 5 mV/s in 0.1 mol/L HClO4(adsorptions at 50 mV).Only the positive-going sweeps are shown for clarity.(c)The relationship between the peak current density and the cycle number.(d)CVs of Au@PtML@RuML before and after 800 potential cycles.The 801th cycle in freshly prepared 0.5 mol/L CH3OH+0.1 mol/L HClO4 solution,scan rate:50 mV/s.

    The effect induced by alloying of Ru and Pt is further evaluated by CO stripping voltammetry.As shown in Fig.4b,the CO stripping potential for Au@PtML@RuMLis slightly lower than that of Au@PtML,in agreement with previously established results(Fig.3c),consolidating that the d-band center of the Pt layer is reduced by the ligand effect imposed by Ru.As shown in Fig.3c,the ratio of Ifto Ibfor Au@Pt@RuMLis apparently larger than that for Au@PtML,indicating less poisoning effect for Au@PtML@RuMLthan for Au@PtML,in agreement with the conclusion derived from the CO stripping(Fig.4b).However,the down-shift of the d-band center also reduces the adsorption energy and surface coverage of CO species on the catalyst and lowers the catalytic activity.Only when the two effects strike a balance,the sample of Au@PtML@RuMLachieves the optimum MOR performances and a volcano-shape dependence of the catalytic activity on the coverage is observed.

    The stability or durability of the catalyst is the most critical requirement of catalysts for practical application of fuel cells.The above-mentioned catalysts were further evaluated through an accelerated durability test(Fig.4c).The peak current density of methanol oxidation obtained from forward CV sweep decreases gradually with the increase of the cycle number.After 800 cycles,the Au@PtML@RuMLNWs retains 62.4% of the initial catalytic activity.This phenomenon may result from of methanol consumption during the successive scans and accumulation poisonous species on the surface of the electrocatalyst.Actually the consumption of methanol in the whole process is very low.So it is suggested that the main reason for the decrease of current density in the 800 cycles may be the accumulation poisonous species on the surface of the electrocatalyst.Hence,the catalyst was evaluated again after 800 cycles in freshly prepared electrolyte(0.5 mol/L CH3OH+0.1 mol/L HClO4)and the peak current density was 3.24 mA/cm2,equivalent to 92.4%of the initial value(Figs.4c and d,Fig.S8 in Supporting information).The fresh electrolyte solution provides the diffusion conditions for the poisonous species gathered on the electrocatalyst surface,and leads to the recovery of the MOR performance.The excellent long-term cycle stability of the multilayer nanostructure further reveals that Au@PtML@RuMLcatalyst may be a good alternative catalyst in DMFC.

    In summary,we successfully synthesized nanowires of Au@Pts-MLand Au@PtML@Rux-MLwith ultralow loading of noble metals and high MOR performance via UPD and galvanic replacement.The enhanced MOR activities of these multilayer structures can be attributed to the Au-NW substrate as an electron pathway for Pt monolayer and ligand effect from Ru,which decreases the adsorption energy by lowering the d-band center of Pt.The Ru sites also promote CO oxidation on Pt via the enhanced adsorption of OH groups,as supported by the CO stripping test.We present a correlation between the electrocatalytic activity of the NWs and the surface coverage of noble metals.The optimum Ru coverage in Au@PtML@RuMLcomes at the balance between exposing Pt active sites and imposing ligand effect and bifunctional mechanism by Ru coating.This avenue may shed light on the rational design of cost-efficient electrocatalysts for the portable DMFC in the future.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the Natural Science Foundation of Tianjin,China(No.18JCYBJC20600),the National Natural Science Foundation of China(Nos.62074123,61701543)and Institute of Energy,Hefei Comprehensive National Science Center(No.19KZS207).

    Appendix A.Supplementary data

    Supplementary material related to this articlecanbe found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.11.071.

    日韩大尺度精品在线看网址| 婷婷六月久久综合丁香| 91久久精品国产一区二区三区| 国模一区二区三区四区视频| 干丝袜人妻中文字幕| 久久久a久久爽久久v久久| 久久鲁丝午夜福利片| 亚洲精品亚洲一区二区| 日韩强制内射视频| av女优亚洲男人天堂| 日韩欧美国产在线观看| 永久网站在线| 99久久中文字幕三级久久日本| 岛国在线免费视频观看| 亚洲人成网站在线播| 国产精品不卡视频一区二区| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件| 又爽又黄无遮挡网站| 99久久精品一区二区三区| 成人特级黄色片久久久久久久| 人人妻人人澡欧美一区二区| 欧美一区二区亚洲| 极品教师在线视频| 日本熟妇午夜| 免费看日本二区| 国产精品野战在线观看| 日韩av不卡免费在线播放| 国产精品一区二区三区四区久久| 男人的好看免费观看在线视频| 国产v大片淫在线免费观看| 亚洲精华国产精华液的使用体验 | 久久久久网色| 亚洲丝袜综合中文字幕| 成人特级黄色片久久久久久久| 精品一区二区免费观看| 男人的好看免费观看在线视频| 久久久久久久久久久丰满| 国产精品.久久久| 亚洲真实伦在线观看| 97在线视频观看| 精品一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久 | 亚洲在久久综合| 国产av在哪里看| a级毛片a级免费在线| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看| 99国产极品粉嫩在线观看| 精品午夜福利在线看| 97热精品久久久久久| 亚洲第一电影网av| 免费av不卡在线播放| 午夜a级毛片| 性插视频无遮挡在线免费观看| 亚洲av不卡在线观看| 久久精品国产亚洲av涩爱 | 亚洲人与动物交配视频| 午夜激情欧美在线| 搡女人真爽免费视频火全软件| 久久99热这里只有精品18| 成人国产麻豆网| 亚洲无线在线观看| 99riav亚洲国产免费| 欧美成人免费av一区二区三区| 日韩在线高清观看一区二区三区| 欧美区成人在线视频| 久久精品人妻少妇| 国产一区亚洲一区在线观看| 噜噜噜噜噜久久久久久91| 一本一本综合久久| 老司机福利观看| 18+在线观看网站| av在线蜜桃| 哪个播放器可以免费观看大片| 九色成人免费人妻av| 在线观看午夜福利视频| 一卡2卡三卡四卡精品乱码亚洲| 中国美白少妇内射xxxbb| h日本视频在线播放| 国产免费男女视频| 亚洲人成网站在线观看播放| 永久网站在线| 国产成人91sexporn| 91在线精品国自产拍蜜月| 一进一出抽搐动态| 成年av动漫网址| 天堂影院成人在线观看| 成人永久免费在线观看视频| 精品人妻偷拍中文字幕| 久久久成人免费电影| 色哟哟·www| videossex国产| 午夜福利在线观看吧| 最近的中文字幕免费完整| 人妻系列 视频| 亚洲在线自拍视频| 伦理电影大哥的女人| 蜜桃亚洲精品一区二区三区| 十八禁国产超污无遮挡网站| 久久久久国产网址| 91午夜精品亚洲一区二区三区| av免费在线看不卡| 亚洲五月天丁香| 99久久人妻综合| 久久久欧美国产精品| 国产高潮美女av| 变态另类丝袜制服| 国产老妇伦熟女老妇高清| 亚洲av成人精品一区久久| 精品熟女少妇av免费看| 日韩欧美三级三区| 亚洲欧美日韩卡通动漫| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 久久国产乱子免费精品| av视频在线观看入口| 人妻久久中文字幕网| 中国美白少妇内射xxxbb| 国产一区二区三区av在线 | 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看| 日韩精品有码人妻一区| 一夜夜www| 国产精品蜜桃在线观看 | 亚洲av.av天堂| 亚洲av熟女| 亚洲一区高清亚洲精品| 中文资源天堂在线| 国产免费一级a男人的天堂| www.色视频.com| 欧美zozozo另类| 国产v大片淫在线免费观看| 免费人成在线观看视频色| 变态另类成人亚洲欧美熟女| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站| 最近的中文字幕免费完整| 日本一本二区三区精品| 99视频精品全部免费 在线| 91aial.com中文字幕在线观看| 亚洲国产欧美人成| 亚洲最大成人手机在线| 中文字幕精品亚洲无线码一区| 免费av不卡在线播放| 国产精品99久久久久久久久| 国产乱人视频| 国产伦精品一区二区三区视频9| 日韩强制内射视频| 欧美xxxx黑人xx丫x性爽| 成人二区视频| 国内精品久久久久精免费| 婷婷亚洲欧美| 日日啪夜夜撸| 91麻豆精品激情在线观看国产| a级毛片a级免费在线| 可以在线观看的亚洲视频| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av香蕉五月| 午夜免费激情av| 人人妻人人看人人澡| 深夜a级毛片| 亚洲五月天丁香| 亚洲丝袜综合中文字幕| 热99在线观看视频| 午夜激情欧美在线| 插逼视频在线观看| 深爱激情五月婷婷| 啦啦啦观看免费观看视频高清| 欧美+亚洲+日韩+国产| 91在线精品国自产拍蜜月| 男女那种视频在线观看| av国产免费在线观看| 日韩欧美精品免费久久| 国产午夜精品一二区理论片| 精品一区二区免费观看| 成年免费大片在线观看| 亚洲中文字幕日韩| 淫秽高清视频在线观看| 久久人妻av系列| ponron亚洲| 精品免费久久久久久久清纯| 黄色欧美视频在线观看| 精品久久久久久久久亚洲| 男人的好看免费观看在线视频| 小蜜桃在线观看免费完整版高清| 日韩精品有码人妻一区| 桃色一区二区三区在线观看| av福利片在线观看| 我要搜黄色片| 免费人成在线观看视频色| 国产精品无大码| 最后的刺客免费高清国语| 国产av麻豆久久久久久久| 91av网一区二区| 毛片女人毛片| 亚洲最大成人中文| 麻豆国产97在线/欧美| 成人二区视频| 亚洲精品亚洲一区二区| 一本久久精品| 搞女人的毛片| 欧美一区二区国产精品久久精品| 国产精品永久免费网站| 亚洲乱码一区二区免费版| 精品久久久久久久末码| 波多野结衣巨乳人妻| 3wmmmm亚洲av在线观看| 国产中年淑女户外野战色| 国产精品一区二区在线观看99 | 色哟哟哟哟哟哟| 亚洲欧洲日产国产| 精品99又大又爽又粗少妇毛片| 国内精品美女久久久久久| 欧美性感艳星| 国产成人精品一,二区 | 观看免费一级毛片| 久久国产乱子免费精品| 国产精品美女特级片免费视频播放器| 欧美区成人在线视频| 九九热线精品视视频播放| 九九爱精品视频在线观看| 天天躁夜夜躁狠狠久久av| 免费人成视频x8x8入口观看| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| 国产一级毛片在线| 12—13女人毛片做爰片一| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 日本与韩国留学比较| 给我免费播放毛片高清在线观看| 国产精品国产高清国产av| 国产亚洲91精品色在线| 国产久久久一区二区三区| 日韩精品青青久久久久久| 亚洲精品影视一区二区三区av| 亚洲精华国产精华液的使用体验 | 国产午夜精品一二区理论片| 亚州av有码| 国产精品久久久久久久久免| 久久精品人妻少妇| 性色avwww在线观看| 色5月婷婷丁香| 国产精品一及| 日本在线视频免费播放| 波多野结衣高清无吗| 美女内射精品一级片tv| 国产精品乱码一区二三区的特点| 淫秽高清视频在线观看| 大又大粗又爽又黄少妇毛片口| 日韩中字成人| 少妇熟女欧美另类| av在线蜜桃| 内地一区二区视频在线| av在线亚洲专区| 久久久成人免费电影| 欧美zozozo另类| 亚洲在线自拍视频| 一区二区三区高清视频在线| 久久精品综合一区二区三区| 久久久久性生活片| 一个人看视频在线观看www免费| 午夜福利在线在线| 超碰av人人做人人爽久久| 久久久精品大字幕| 久久精品人妻少妇| 美女内射精品一级片tv| 国产欧美日韩精品一区二区| 日韩欧美 国产精品| 只有这里有精品99| 一个人免费在线观看电影| 成熟少妇高潮喷水视频| 亚洲色图av天堂| 长腿黑丝高跟| 午夜激情欧美在线| 亚洲最大成人中文| 国产私拍福利视频在线观看| 美女cb高潮喷水在线观看| 久久这里有精品视频免费| 人人妻人人澡欧美一区二区| 岛国在线免费视频观看| 欧美成人免费av一区二区三区| 久久久久久久久久久免费av| 黄片wwwwww| 免费人成视频x8x8入口观看| 99热这里只有是精品在线观看| 亚洲在久久综合| 亚洲欧美日韩无卡精品| 久久久精品欧美日韩精品| 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| 九九在线视频观看精品| 国产黄a三级三级三级人| 六月丁香七月| 国产在线精品亚洲第一网站| 国产极品精品免费视频能看的| 在线免费观看的www视频| videossex国产| 天堂网av新在线| 悠悠久久av| 国产精品精品国产色婷婷| 国产亚洲欧美98| 青春草国产在线视频 | 成人无遮挡网站| 欧美最黄视频在线播放免费| 久久99精品国语久久久| 欧美激情在线99| 国产av一区在线观看免费| 日韩人妻高清精品专区| 一区二区三区四区激情视频 | 国产亚洲91精品色在线| 麻豆av噜噜一区二区三区| 亚洲经典国产精华液单| av又黄又爽大尺度在线免费看 | 久久综合国产亚洲精品| 午夜精品国产一区二区电影 | 久久草成人影院| 麻豆成人av视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产一区二区三区在线臀色熟女| 久久草成人影院| 寂寞人妻少妇视频99o| 青青草视频在线视频观看| 女的被弄到高潮叫床怎么办| 看十八女毛片水多多多| 自拍偷自拍亚洲精品老妇| 少妇猛男粗大的猛烈进出视频 | 1000部很黄的大片| 亚洲最大成人av| 国产日本99.免费观看| 国产成人freesex在线| 欧美日韩精品成人综合77777| 亚洲欧美日韩卡通动漫| 真实男女啪啪啪动态图| 国产女主播在线喷水免费视频网站 | 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 色视频www国产| 91午夜精品亚洲一区二区三区| 日韩亚洲欧美综合| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 国内精品宾馆在线| 亚洲电影在线观看av| 高清毛片免费观看视频网站| 日本成人三级电影网站| 一级毛片我不卡| 亚洲av二区三区四区| 日韩成人av中文字幕在线观看| 国产精品人妻久久久久久| 国产一区二区在线av高清观看| 亚洲在线自拍视频| 欧美精品国产亚洲| 国产伦精品一区二区三区四那| 精品午夜福利在线看| 国产大屁股一区二区在线视频| 美女国产视频在线观看| 99久久成人亚洲精品观看| 国内揄拍国产精品人妻在线| 蜜桃久久精品国产亚洲av| avwww免费| 国产单亲对白刺激| 国产精品无大码| 婷婷色av中文字幕| av国产免费在线观看| 欧美成人精品欧美一级黄| 亚洲欧美日韩无卡精品| 免费看日本二区| 日本与韩国留学比较| 亚洲成a人片在线一区二区| 亚洲av中文av极速乱| 久久精品夜色国产| 日韩人妻高清精品专区| 久久人人爽人人片av| 91午夜精品亚洲一区二区三区| 午夜爱爱视频在线播放| 国产极品天堂在线| 99热这里只有是精品在线观看| 日本与韩国留学比较| 日本撒尿小便嘘嘘汇集6| 蜜臀久久99精品久久宅男| 韩国av在线不卡| 此物有八面人人有两片| 麻豆av噜噜一区二区三区| 免费看a级黄色片| 欧美丝袜亚洲另类| 亚洲精品亚洲一区二区| 亚洲一区高清亚洲精品| 精品久久久久久久久亚洲| 亚洲av电影不卡..在线观看| 九九久久精品国产亚洲av麻豆| 亚洲美女搞黄在线观看| 国产精品av视频在线免费观看| 成年av动漫网址| 菩萨蛮人人尽说江南好唐韦庄 | 欧美潮喷喷水| 91久久精品国产一区二区三区| 人人妻人人看人人澡| 成人漫画全彩无遮挡| 亚洲精华国产精华液的使用体验 | 国产高清不卡午夜福利| 久久久久九九精品影院| av在线蜜桃| 日韩 亚洲 欧美在线| 久久久久久九九精品二区国产| 国产精品一区www在线观看| 成人毛片60女人毛片免费| 一进一出抽搐动态| 国产一区二区三区av在线 | 22中文网久久字幕| 久久精品国产亚洲网站| 精品人妻视频免费看| 亚洲av不卡在线观看| 久久婷婷人人爽人人干人人爱| 九九爱精品视频在线观看| 99热网站在线观看| 国产精品电影一区二区三区| 青春草亚洲视频在线观看| 国产午夜精品论理片| 日韩成人av中文字幕在线观看| 亚洲最大成人中文| 99riav亚洲国产免费| 免费观看在线日韩| 最近2019中文字幕mv第一页| 2021天堂中文幕一二区在线观| 国产精品伦人一区二区| 男人舔女人下体高潮全视频| 国产精品蜜桃在线观看 | 少妇人妻一区二区三区视频| 亚洲欧美日韩无卡精品| 一级毛片我不卡| 午夜视频国产福利| 精品一区二区免费观看| 又爽又黄无遮挡网站| av天堂在线播放| 国产麻豆成人av免费视频| 精品人妻偷拍中文字幕| 成人性生交大片免费视频hd| 亚洲国产高清在线一区二区三| 久久6这里有精品| 欧美+日韩+精品| 青春草亚洲视频在线观看| 国产精品野战在线观看| 哪里可以看免费的av片| 久久久a久久爽久久v久久| 日韩制服骚丝袜av| 99热这里只有精品一区| av国产免费在线观看| 嘟嘟电影网在线观看| 亚洲乱码一区二区免费版| 亚洲成a人片在线一区二区| 91久久精品电影网| 99久久精品国产国产毛片| 天天一区二区日本电影三级| 久久久精品欧美日韩精品| 成人午夜精彩视频在线观看| 黄片wwwwww| 亚洲不卡免费看| 久久精品夜夜夜夜夜久久蜜豆| 欧美3d第一页| 国产真实伦视频高清在线观看| 欧美xxxx性猛交bbbb| 欧美激情国产日韩精品一区| 免费大片18禁| 亚洲最大成人中文| av在线播放精品| 少妇高潮的动态图| 久久6这里有精品| av天堂中文字幕网| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99 | 国产午夜精品论理片| 黄色视频,在线免费观看| 亚洲国产日韩欧美精品在线观看| 一级二级三级毛片免费看| 国产亚洲精品av在线| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区 | 三级毛片av免费| 2022亚洲国产成人精品| 美女高潮的动态| 91av网一区二区| 人妻久久中文字幕网| 亚洲美女视频黄频| 亚洲国产精品国产精品| 草草在线视频免费看| 中文在线观看免费www的网站| 国产精品国产三级国产av玫瑰| 亚洲三级黄色毛片| 国产av不卡久久| 国产伦精品一区二区三区四那| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 综合色丁香网| www.av在线官网国产| 久久6这里有精品| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 国产高清不卡午夜福利| 午夜福利在线观看吧| 亚洲中文字幕一区二区三区有码在线看| 久久九九热精品免费| 午夜福利在线观看免费完整高清在 | 国产亚洲av片在线观看秒播厂 | 欧美高清成人免费视频www| 舔av片在线| 成人高潮视频无遮挡免费网站| 毛片一级片免费看久久久久| 女同久久另类99精品国产91| 国产亚洲精品久久久com| 麻豆久久精品国产亚洲av| 99在线视频只有这里精品首页| 久久精品人妻少妇| 色视频www国产| 哪个播放器可以免费观看大片| 在线播放国产精品三级| 97超视频在线观看视频| 亚洲在线自拍视频| 综合色av麻豆| 久久久久久久久久成人| 男女视频在线观看网站免费| .国产精品久久| 精品一区二区三区视频在线| 亚洲精品日韩在线中文字幕 | 深夜a级毛片| 亚洲久久久久久中文字幕| 久久久久久久久久黄片| 可以在线观看毛片的网站| 亚洲av一区综合| 少妇高潮的动态图| 高清毛片免费观看视频网站| 日韩人妻高清精品专区| 麻豆av噜噜一区二区三区| 国产精品av视频在线免费观看| 午夜久久久久精精品| 亚州av有码| 赤兔流量卡办理| 99九九线精品视频在线观看视频| 国产精品乱码一区二三区的特点| 国产成人a∨麻豆精品| 人体艺术视频欧美日本| 美女cb高潮喷水在线观看| 男的添女的下面高潮视频| 秋霞在线观看毛片| 成人三级黄色视频| 久久精品国产亚洲av天美| 高清日韩中文字幕在线| 丝袜喷水一区| 亚洲内射少妇av| 久久久欧美国产精品| 综合色丁香网| 免费无遮挡裸体视频| 性插视频无遮挡在线免费观看| 天堂中文最新版在线下载 | 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av香蕉五月| 乱码一卡2卡4卡精品| 亚洲国产欧洲综合997久久,| kizo精华| 91在线精品国自产拍蜜月| 黄色日韩在线| 在现免费观看毛片| 神马国产精品三级电影在线观看| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 亚洲在线自拍视频| 成人漫画全彩无遮挡| 成年版毛片免费区| 性色avwww在线观看| 亚洲激情五月婷婷啪啪| 久久精品国产99精品国产亚洲性色| 中文欧美无线码| 国产在视频线在精品| 国产精品三级大全| 特级一级黄色大片| 欧美xxxx黑人xx丫x性爽| 国产一级毛片七仙女欲春2| 成人av在线播放网站| 午夜视频国产福利| 免费大片18禁| 国产精品一区二区三区四区免费观看| 好男人视频免费观看在线| av.在线天堂| 99riav亚洲国产免费| 我的老师免费观看完整版| 国产视频内射| 草草在线视频免费看| 国产日韩欧美在线精品| 免费不卡的大黄色大毛片视频在线观看 | 国产老妇女一区| 最近手机中文字幕大全| 身体一侧抽搐| 在线免费观看不下载黄p国产| 亚洲精品日韩在线中文字幕 | 久久国产乱子免费精品| 亚洲人成网站在线播| 久久久久久伊人网av| 麻豆一二三区av精品| 国产精品三级大全| 尾随美女入室| 国产成人a∨麻豆精品| 精品不卡国产一区二区三区| 男人和女人高潮做爰伦理| 此物有八面人人有两片| 一级av片app| 日韩精品有码人妻一区| 中文字幕制服av| 国产成人91sexporn| 大又大粗又爽又黄少妇毛片口| 国产精品女同一区二区软件| 看十八女毛片水多多多|