• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MXene-composited highly stretchable,sensitive and durable hydrogel for flexible strain sensors

    2021-08-26 02:08:14WeiYunXinyuQuYoLuWenZhoYnfngRenQinWngWenjunWngXiochenDong
    Chinese Chemical Letters 2021年6期

    Wei Yun,Xinyu Qu,Yo Lu,Wen Zho,Ynfng Ren,Qin Wng,*,Wenjun Wng,Xiochen Dong,c,*

    a Key Laboratory of Flexible Electronics(KLOFE)& Institute of Advanced Materials(IAM),School of Physical and Mathematical Sciences,Nanjing Tech University(NanjingTech),Nanjing 211800,China

    b School of Physical Science and Information Technology,Liaocheng University,Liaocheng 252059,China

    c School of Chemistry and Materials Science,Nanjing University of Information Science & Technology,Nanjing 210044 China

    ABSTRACT The flourishing development in flexible electronics has provoked intensive research in flexible strain sensors to realize accurate perception acquisition under different external stimuli.However,building hydrogel-based strain sensors with high stretchability and sensitivity remains a great challenge.Herein,MXene nanosheets were composited into polyacrylamide-sodium alginate matrix to construct mechanical robust and sensitive double networked hydrogel strain sensor.The hydrophilic MXene nanosheets formed strong interactions with the polymer matrix and endowed the hydrogel with excellent tensile properties(3150%),compliant mechanical strength(2.03 kPa-1 in Young’s Module)and long-lasting stability and fatigue resistance(1000 dynamic cycles under 1,600%strain).Due to the highly oriented MXene-based three dimensional conductive networks,the hydrogel sensor achieved extremely high tensile sensitivity(18.15 in gauge factor)and compression sensitivity(0.38 kPa-1 below 3 kPa).MXene hydrogel-based strain sensors also displayed negligible hysteresis in electromechanical performance,typical frequent-independent feature and rapid response time to external stimuli.Moreover,the sensor exhibited accurate response to different scales of human movements,providing potential application in speech recognition,expression recognition and handwriting verification.

    Keywords:Hydrogel MXene Strain sensor High stretchablity and sensitivity Durability

    In the fields of wearable devices,medical electronics and intelligent robots[1-3],the applications of conventional sensors,made of rigid semiconductor materials or metal materials[4-6],are severely impeded by the limited flexibility and mechanical compliance.Flexible sensors,with high stretchability and robust mechanical strength,have gradually received extensive attention in flexible electronic devices.Hydrogel,a polymer porous network structure with high content of water,features excellent hydrophilicity,stretchability and mechanical compliance,and have widely emerged in fields of drug delivery[7,8],wound dressings[9]and energy storage[10,11].By incorporating specific functional groups into the polymer network,properties of self-healing[12-14],shape-memory[15]and anti-freezing[16,17],etc.,can also be endowed to fulfill the requirements at different circumstances.However,it remains a great challenge to combine the high stretchablity and high sensitivity in a hydrogel strain sensor for practical sensing applications,which demands maintaining the integrity of the overall polymer matrix under large deformation and revealing violent changes in the conductive network under small deformation simultaneously.

    Methods have been proposed quantitatively to enhance the mechanical and electrical performance of hydrogels.A double network structure,with different kinds of chemical and physical interactions in the polymer matrix,would break the“sacrificial bond”and release the local stress to alleviate stress concentration,improving the stretchability of the hydrogel.The mechanical property can also be enhanced by compositing nanomaterials fillers into the polymer network by providing alternative energy dissipating paths[18,19].Currently,perceptual materials,such as nanoparticles,nanowires and carbon-based materials have been widely introduced into polymer networks to improve the stretchability and sensitivity of strain sensor synchronously.Thereinto,two-dimensional(2D)conductive nanomaterials,for example,graphene and its derivatives[20-23],black phosphorus[24],have attracted intensive attention due to their unique properties of flexibility,plane covalent bonding and mechanical reliance and strength.

    The newly developed 2D laminated transition metal carbide,MXene(Ti3C2),with extrusive hydrophobicity,high electrical conductivity and chemical stability,has provoked in the hydrogels for flexible electronic devices.The surface of MXene nanosheets treated with hydrofluoric acid exposes large numbers of active hydrogen bonds and functional groups(-OH,-F,-O)[25].The highly hydrophilic MXene nanosheets can be uniformly dispersed in the hydrogel without accumulation and stacking,avoiding stress concentration and microcrack proliferation under external stimuli[26].In addition,the large specific surface area and hydrogen bonding also enable strong interface interaction between MXene nanosheets and polymer matrix,endowing the hydrogel with enhanced mechanical strength[26].Moreover,with high electrical conductivity[27,28],MXene nanosheets build up a continuous conductive network throughout the polymer matrix and ensures violent resistance change under external stain,showing apparent improvement on the sensitivity of the hydrogel.With enhancement in electromechanical performance,MXene nanosheets shows promising prospect to improve the mechanical strength,stretchability and sensitivity in hydrogel flexible sensors compared with some carbon nanomaterials.For example,Zhang et al.has incorporated MXene nanosheets into crystal clays to achieve a hydrogel with impressive stretchablity of 2200%strain and tensile strain sensitivity with a gauge factor(GF)of 25[29].Approaches are still under promotion to achieve hydrogel strain sensor with excellent electromechanical performance and high durability to external stimuli.

    In this work,we synthesized and crosslinked Ti3C2MXene with acrylamide(AM)and sodium alginate(SA)to form double network hydrogel strain sensor.The content of MXene and SA were valued to assess their influence on the mechanical strength of the hydrogel.The as-prepared MXene composited hydrogel displayed high stretchability and cyclic stability to external stimuli.The hydrogel strain sensor also exhibited impressive sensitivity and rapid response time to both tension and compression,enabling their promising application in different scales of human movement detection,phonetic recognition and handwriting verification.MXene was firstly prepared by a high temperature etching method,as have been reported previously[30].The aluminum layer in Ti3AlC2was etched in a mixed solution of HCl and HF at 180°C and the single-layered Ti3C2nanosheets were achieved(Fig.S1 in Supporting information).In the X-ray diffraction(XRD)patterns in Fig.1a,most peaks of the MAX(Fig.1a)weakened or disappeared after HF etching,and typical characteristic peak appeared at 6.7°for MXene,which can be well indexed to(000 l)plane of Ti3C2,indicating that the MAX phase has converted into MXene[30].As displayed in Fig.1b,the size of the obtained ultrathin MXene nanoplatelets ranges from 400 nm to 800 nm and exhibits high aspect ratio.

    Fig.1.(a)XRD patterns and(b)transmission electron microscopy image of MXene.(c)MXene-based hydrogel network diagram.(d)Description of hydrogen bonding between MXene and PAM,SA and covalent cross-linking of PAM chains.

    The MXene-composited hydrogel was prepared by dispersing the MXene nanosheets in a polymer skeleton of polyacrylamide(PAM)and SA to fabricate three-dimensional(3D)conductive matrix.The detailed materials and synthesis process were illustrated in the Supporting information.Fig.1c schematically sketches the network structure in the hydrogel.The AM monomers covalently crosslink into PAM long chains to provide a stretchable and resilient network,and the strong physical interaction among PAM,MXene and SA forms substantial hydrogen bonding,structuring a double-networked 3D conductive polymer network[31].Fig.1d gives a detailed description of the chemical and physical bonding in the matrix:the amide groups in PAM bond with the hydroxyl groups in SA to form the double-networked hydrogel,and MXene nanosheets,with sufficient hydrophilic terminal functional groups on the surface,build strong interactions both with the PAM and SA chains to reinforce the polymer matrix,enabling the hydrogel with high stretchability and mechanical robustness.

    In the dual network,the long chain SA randomly entangles with the PAM and forms hydrogen bonds with the adjacent long chain,and the“sacrificed bond”could effectively dissipate energy to improve the stretchability of the double-networked hydrogel[32,33].Herein,the tensile property of the SA-PAM hydrogel with different SA contents of 0,0.5,1 and 1.5 wt%are displayed in Fig.2a.It is demonstrated that the added SA significantly improves the stretchability of the SA-PAM hydrogels,and the critical stretch varies with the SA content.When the content of SA increase to 1%,the critical stretch reaches the highest 860%.It suggests that the synergy effect of the dual network can greatly enhance the stretchability of the hydrogel with rapid energy dissipation rate.However,when the SA content is further increased to 1.5 wt%,the critical stretch decreases to 640%.It is speculated that the high viscosity of polymer aggravates the“cage effect”and reduces the free radical efficiency[34],which severely affects the polymerization efficiency of AM monomers and weakens the mechanical properties of the hydrogel.

    The surface functional groups on MXene would behave as the crosslinking center to bond with the polymer matrix,which could effectively enhance the stretchablity and mechanical strength of the hydrogel[35].In Fig.2b,effects of the MXene contents on the mechanical property of the hydrogel are presented.With the addition of a small amount of MXene(0.5%),the critical stretch of the hydrogel increases dramatically from 860%to 2110%.When the MXene content is increased to 1%,an enhanced critical stretch of 3150%is acquired.However,when higher concentration of MXene(1.5 wt%)is further utilized,the stretchability reduces to 1780%.It suggests that the MXene would absorb free radial on the surface to behave as the center of the crosslinking reaction[35].The entangled,flexible long chains formed between the nanosheets will move along with the sliding of the nanosheets under tension,effectively enhancing the stretchability and conductivity of the hydrogel.In addition,the multiple functional groups on the surface of the MXene nanosheets could also form substantial hydrogen bonds with the SA-PAM network,to further improve the mechanical strength.Studies based on MXene have reached consensus that the nanofillers in polymer matrix could rapidly dissipate energy and eliminate stress concentration,thus enhancing the tensile performance[35-38].However,with excess MXene addition,it will destroy the integrity of the polymer network and shorten the average length of the polymer chains between MXene,resulting in significant reduction in elongation at break.

    Fig.2.(a)Stress-strain curves of the hydrogels with different SA loadings(0,5,10 and 15 mg/mL).(b)Stress-strain curves of the hydrogels with different MXene loadings(0,5,10 and 15 mg/mL).(c)Relationship between tensile Young's modulus of hydrogel with different contents of SA and MXene.(d)The durability test of MXene hydrogel-based strain sensor at the tensile strain of 1600%for more than 1000 cycles.(e)The durability test of MXene hydrogel-based strain sensor at the compression deformation of 50%for 100 cycles.

    Despite the fact that certain SA and MXene both have positive influence on the stretchability of the hydrogel,it is noteworthy that SA and MXene has totally different effects on the toughness of the hydrogels.As shown in Fig.2c,the tensile Young’s modulus of the hydrogels increases slightly with the increase of SA content,while decreases significantly with increasing MXene content.It is demonstrated that hydrogen bonding between SA and PAM can reinforce the toughness of the single-networked PAM hydrogel and form robust double-networked hydrogels.For MXene,it will reduce the amount of free radial in the solution,advance the chain termination during the free radical polymerization and reduce the degree of polymerization of PAM,thus depressing the Young's module of the hydrogel.The compression test(Fig.S2 in Supporting information)also reveals that the modulus of the hydrogel decreases with the addition of MXene,and the hydrogel can be easily knotted(Fig.S3 in Supporting information).Therefore,the optimal content of 1% SA and 1% MXene is designated for subsequent tests.

    The MXene-composited hydrogel is mechanical robust to tolerate extended cyclic compression and tension test.As displayed in Fig.2d and e,the mechanical strength of the MXene-based hydrogel maintains stable with nearly 1000 cycles at a tensile strain of 1600%and a compression deformation of 50%,exhibiting a predominant durability and stability.It is mainly due to the“pinning effect”of MXene nanosheets[39].When the generated microcracks during reproducible cycling tests encounter hard MXene nanosheets,the cracks pinning and deflect,which effectively impedes the continuous microcracks propagation and ensures the hydrogel with excellent anti-fatigue property.Its fatigue resistance in terms of electromechanical performance has been verified,as shown in Fig.S4(Supporting information).

    The electromechanical performances of the hydrogels are evaluated by an intelligent data acquisition device including a computer-controlled dynamic positioning system(ESM303,Mark-10)and a semiconductor characterization analyzer(Keithley 4200-SCS).Sensitivity is a key parameter to evaluate the promising application for strain sensors,andGF,which is definedasGF=(ΔR/R0)/ε,is utilized to quantitatively assess the sensitivity,where R0is the initial resistance,ΔR is the changes in resistance and ε represents the applied strain.In Fig.3a,the sensitivity of the SA-PAM and MXene-SA-PAM hydrogels are clearly compared,and an obvious improvement of sensitivity can be distinguished.The GF curves of MXene-SA-PAM hydrogel can be divided into 3 regions,the GF is 3.08 in the initial strain range of 0~35%,and it increases to 9.17 during 35%~96% strain,and finally rises to 18.15 with the further increasing strain.In comparison,the SA-PAM hydrogel demonstrates depressed GF,and the GF values 1.08 and 1.84 in the strain range of 0~35%and 35%~150%,respectively.

    The underlying mechanism of the discrepancy in sensitivity for the two kinds of hydrogels is closely correlated with the high aspect ratio structure and excellent electrical conductivity in MXene.The conductivity of hydrogel is mainly attributed to the localized directional conduction of ions in the aqueous solutions and electron transport of conductive nanoparticles[40].Figs.3g-k depicts the stacking status of the MXene to simulate the evolution of conductive network in the hydrogels under tension.In the initial static state without external force(Fig.3g),the MXene nanosheets in the hydrogel matrix are randomly distributed,and a face-toedge connection between adjacent nanosheets forms a 3D conductive network.When a tiny tensile force is applied,the connection of the nanosheets converts into edge-to-edge(Fig.3h).With adequate electron conductive path and decreased contact area,an inferior GF is obtained.After the hydrogel is further stretched,partial conductive joints of MXene nanosheets break and the tunneling effect from the incorporated conductive nanoparticles dominate the electron conductive path(Fig.3i),revealing more distinct variation in resistance with mild tensile force.With further increment in tension,the tunneling effect of adjacent MXene nanosheets cut off along with expanded spacings,resulting in sharp increase in resistance,and the GF manifests itself with the highest 18.15.In contrast,the SA-PAM displays apparent sluggishness to strains,which is attributed to the constantly maintained ion conduction to external force in the hydrogel.A similar phenomenon related to facial/marginal distribution has been reported[41,42].

    Fig.3.(a)Relationship between resistance change and strain in a strain sensor.(b)Relationship between current change and stress in a strain sensor.(c)Relative resistance variation as function of time under different tensile strains(50%,100%and 150%).(d)Frequency-dependent behavior of stress sensors different frequencies(0.282,0.194 and 0.105 Hz)of%strain.(e)Under a stable cycling pressure(12.8 kPa),the relative current changes with time.(f)Response time of strain sensor when tension changes.Schematic diagram of electromechanical property of MXene-based hydrogel during tensile compression.(g-k)The conversion of conductive path under different strains:(g)no external force,(h)tiny tension,(i)heavy tension,(j)tiny compression,(k)heavy compression.

    The compression sensitivity(S)is also achieved to assess the stress resistance and electrical response to pressure,and S=δ(ΔI/I0)/δP,where I0is the current in the initial state,ΔI is the current change under a certain pressure,and P is the pressure load.Fig.3b exhibits the current variation to different pressure loading.It can be seen that MXene-SA-PAM hydrogel exhibits a high compression sensitivity of 0.383 kPa-1below 3 kPa,and declines to 0.155 kPa-1in the range of 3~13.5 kPa.The SA-PAM hydrogel remains a dreadful sensitivity of 0.018 kPa-1in the full pressure range of 0~13.5 kPa.As can be distinguished from Fig.3j,the geometry of MXene changes gradually from face-to-edge to face-to-face under tiny compressive deformation,resulting in significant resistance decline in small pressure load(0~3.0 kPa).When a higher pressure above 3 kPa is applied,the more oriented MXene nanosheets stack into highly dense conductive network(Fig.3k).With a gentle increase in contact area and limited increase in the numbers of conductive paths,the MXene-based hydrogel reveals a faint compressive sensitivity to higher pressure load.For hydrogel without MXene nanosheets,the Poisson effect of the polymer matrix takes effects and endows the hydrogel low sensitivity to pressure in a wide sensing range.

    Fig.3c shows the resistance response curve of the sensor under different strains.The change of resistance is in close correlation with the variation in strains.The relative resistance variation of the hydrogel under strains of 50%,100%and 150%are measured to be 222%,720%and 1610%,which is highly consistent with the results in Fig.3a.In addition,the resistance response curve coincides with each other in three cycles,suggesting excellent stability and replicability in electrical response.The hydrogel also shows significant electrical response dependence to frequencies.As shown in Fig.3d,the hydrogel exhibits stable output peak shape under same strain amplitude with different loading rates,which is assigned to the highly crosslinked polymer network and the evenly distributed incorporated MXene nanosheets.Fig.3e shows the current response curve of the sensor under cyclic compression at a fixed pressure of 12.8 kPa at 0.267 Hz.The current responses transiently to the loading and unloading of pressure,indicating negligible hysteresis in electromechanical performance.Noteworthy,the current response curve of cyclic compression shows inevitable asymmetry,which can be attributed to the inherent viscoelasticity of polymer matrix and the sliding feature of polymer chain between MXene nanosheets.It takes time for the molecular chain to return to its original state when the pressure is removed,which is ascribed to the local curing of the MXene nanosheets,in terms of bonding with the polymer chains and homogenizing the polymer chain length.The hydrogel also shows a quick response to tension with a response time of 74 ms,as displayed in Fig.3f,which enables a rapid response to external stimuli and is below than the recent researches[43].However,the inherent high viscosity of polymer hinders the molecular chain movement under high pressure,resulting in a slower response time of 120 ms(Fig.S5 in Supporting information).Compared with other work,the sensor shows an enhanced stretchability,as well as wider sensing range for electromechanical response(Fig.S6 in Supporting information).

    The MXene-based hydrogel,with superior stretchability,sensitivity and durability to external strains and pressures,shows promising application in detections of various human motions.Herein,the hydrogel is packaged into specific scales as a strain sensor and fixed at corresponding epidermis to monitor the human movements from tiny deformations to vibrations.The hydrogel strain sensor could precisely respond to different kinds of human motions with reproducible and durable current outputs.In Fig.S7(Supporting information),a piece of sensor(20×10 mm)is attached at different fingers to monitor the finger bending.It can be seen that when the finger is bent at a certain angle,the relative currents variation curves display distinct peaks to demonstrate the deformation in knuckles.In addition,different shapes of patterns can be identified when the sensor is attached to the fore,middle,ring and little finger,respectively,indicating accurate tracking of trajectory of different finger movements.

    Fig.4a shows the relative current response to elbows flexion and Fig.4b displays the electromechanical performance of the strain sensor to shoulder joint motions.Clear and sharp changes in relative current variations are demonstrated,showing accurate response to large-scale human movements.Furthermore,the strain sensor can instruct the discrepancy in movement of muscles and human joints under the same gesture,providing an alternative solution for robot motion capture.In Fig.4c,the sensor is adhered to the opisthenar and joint separately to indicate the electromechanical performance when making a fist.The relative current variation shows two typical peaks to indicate the deformation and resilience of the joint,while the muscles merely display a single peak wave to explicate the movement.When placed at the eyebrow,distinct rise and decline in relative current variation appears in Fig.4d,exhibiting promising application for facial expression identification.

    Fig.4.Photographs of strain sensors used to detect human movement:(a)Elbow flection.(b)Shoulder joint motion.(c)Make a fist.(d)Frown(st:start,sp:stop).

    Similar and reproducible signal patterns can be clearly distinguished when the sensor was attached to the throat for speech recognition.For the two-syllable“yes”,two specific peak shapes reveal(Fig.S8b in Supporting information),while monosyllabic“no”manifests only one peak in the responded current(Fig.S8a in Supporting information).The sensor also can be applied as a flexible touch keyboard for handwriting verification with accurate and repeated response current.When writing“hydrogel”(Fig.S8c in Supporting information),“sensor”(Fig.S8d in Supporting information)and“MXene”(Fig.S8e in Supporting information)on the surface of the sensor with a ballpoint pen,distinguishable and reproducible signal patterns are yielded.It also shows reliable response to the detection of handwriting Arabic numerals 1-9,as displayed in Figs.S8f and S9(Supporting information).

    In summary,by polymerizing MXene nanosheets with AM and SA,an impressive highly stretchable and sensitive hydrogel was obtained.MXene nanosheets constructed strong interaction with the polymer network and provided strong mechanical support for the hydrogel,enabling the MXene-based hydrogel sensors enhanced stretchablity(3150%),robust mechanical strength(Young's Modulus 2.03 kPa-1)and anti-fatigue feature(1000 cycles at 1600% stain with negligible decay).In addition,the highly conductive MXene nanosheets matrix ensured high sensitivity to both tension(GF=18.15)and compression(S=0.383 kPa-1)stimuli by autonomously adjusting the contact angel and area among adjacent nanosheet.Moreover,MXenebased hydrogel strain sensors displayed typically dynamic frequency-dependent characteristics and rapid response time of 74 ms with negligible hysteresis in electromechanical performance.In a fabricated strain sensor,the device showed reliable electrical response for body movement detection,voice recognition,facial expression recognition and handwriting verification,suggesting a widespread prospect in robotics,flexible skin and wearable electronics.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work was supported by the National Natural Science Foundation of China(No.61775095),six talent peak innovation team in Jiangsu Province(No.TD-SWYY-009),“Taishan scholars”construction special fund of Shandong Province.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.12.003.

    少妇粗大呻吟视频| 国产女主播在线喷水免费视频网站| 欧美变态另类bdsm刘玥| 精品人妻熟女毛片av久久网站| 国产成人精品久久久久久| 欧美日韩福利视频一区二区| av在线播放精品| 曰老女人黄片| 一个人免费看片子| 少妇人妻 视频| 亚洲情色 制服丝袜| netflix在线观看网站| 欧美日韩亚洲高清精品| 一二三四社区在线视频社区8| 久久天躁狠狠躁夜夜2o2o | 国产亚洲av片在线观看秒播厂| 少妇被粗大的猛进出69影院| 国产黄色免费在线视频| 一区在线观看完整版| av天堂久久9| 777久久人妻少妇嫩草av网站| www.自偷自拍.com| 精品国产一区二区三区久久久樱花| 日本色播在线视频| 国产99久久九九免费精品| 啦啦啦中文免费视频观看日本| 99热网站在线观看| 国产成人av教育| 亚洲色图 男人天堂 中文字幕| 色婷婷av一区二区三区视频| 亚洲伊人久久精品综合| 久久天躁狠狠躁夜夜2o2o | 男男h啪啪无遮挡| 亚洲欧美色中文字幕在线| 国产精品一区二区在线观看99| 在线天堂中文资源库| cao死你这个sao货| 女人精品久久久久毛片| 亚洲av成人精品一二三区| 精品久久蜜臀av无| 亚洲情色 制服丝袜| 久久精品国产综合久久久| 97人妻天天添夜夜摸| 在现免费观看毛片| 最近手机中文字幕大全| 亚洲国产精品成人久久小说| 下体分泌物呈黄色| 女人被躁到高潮嗷嗷叫费观| 青春草视频在线免费观看| 1024香蕉在线观看| 男女之事视频高清在线观看 | 亚洲av国产av综合av卡| 亚洲伊人久久精品综合| 欧美人与性动交α欧美精品济南到| 操出白浆在线播放| 国产成人av教育| √禁漫天堂资源中文www| 久久青草综合色| 一本大道久久a久久精品| 建设人人有责人人尽责人人享有的| 天天躁夜夜躁狠狠躁躁| 国产淫语在线视频| 精品一品国产午夜福利视频| 91老司机精品| 99久久综合免费| 日韩 亚洲 欧美在线| 亚洲精品国产区一区二| 亚洲av美国av| 中文欧美无线码| 多毛熟女@视频| 国产黄色视频一区二区在线观看| 搡老岳熟女国产| 赤兔流量卡办理| 国产一卡二卡三卡精品| 捣出白浆h1v1| 一级毛片黄色毛片免费观看视频| 亚洲av日韩在线播放| 亚洲av电影在线进入| 国产高清不卡午夜福利| av片东京热男人的天堂| 亚洲欧美中文字幕日韩二区| 国产成人一区二区在线| 精品国产乱码久久久久久小说| av国产精品久久久久影院| 热re99久久精品国产66热6| 午夜福利,免费看| 免费观看a级毛片全部| 啦啦啦中文免费视频观看日本| 国产高清视频在线播放一区 | 视频在线观看一区二区三区| 欧美中文综合在线视频| 热re99久久精品国产66热6| 国产欧美亚洲国产| 纯流量卡能插随身wifi吗| 亚洲国产精品999| 国产精品成人在线| 亚洲色图综合在线观看| 伊人久久大香线蕉亚洲五| 99精国产麻豆久久婷婷| 欧美国产精品一级二级三级| 国产亚洲av高清不卡| 国产一卡二卡三卡精品| 久久九九热精品免费| 一级毛片女人18水好多 | 18禁裸乳无遮挡动漫免费视频| 亚洲国产最新在线播放| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| 国产精品免费大片| 亚洲精品成人av观看孕妇| 欧美变态另类bdsm刘玥| 精品国产一区二区久久| 亚洲午夜精品一区,二区,三区| 国产主播在线观看一区二区 | 亚洲国产成人一精品久久久| 免费观看人在逋| 国产亚洲午夜精品一区二区久久| 久久国产精品影院| 亚洲中文av在线| 桃花免费在线播放| 亚洲一区中文字幕在线| 91精品三级在线观看| 日韩伦理黄色片| 欧美日韩国产mv在线观看视频| 国产亚洲av片在线观看秒播厂| 免费观看人在逋| 欧美中文综合在线视频| 性色av一级| 国产一区二区激情短视频 | 超碰成人久久| 一二三四社区在线视频社区8| 国产成人av教育| 亚洲自偷自拍图片 自拍| 51午夜福利影视在线观看| 女人精品久久久久毛片| 热re99久久精品国产66热6| 亚洲av日韩精品久久久久久密 | 久久人人爽人人片av| 老汉色av国产亚洲站长工具| 狂野欧美激情性xxxx| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 亚洲伊人久久精品综合| 久热爱精品视频在线9| 国产午夜精品一二区理论片| 美女主播在线视频| 777久久人妻少妇嫩草av网站| 国产精品久久久人人做人人爽| 亚洲人成电影观看| 亚洲自偷自拍图片 自拍| 午夜福利一区二区在线看| 成人手机av| 真人做人爱边吃奶动态| 日本欧美视频一区| 成人黄色视频免费在线看| 国产成人精品久久二区二区免费| 美女中出高潮动态图| 国产色视频综合| 真人做人爱边吃奶动态| 热99久久久久精品小说推荐| 久久久久久亚洲精品国产蜜桃av| 久久人人爽人人片av| 美女高潮到喷水免费观看| 少妇的丰满在线观看| 亚洲欧美一区二区三区国产| 90打野战视频偷拍视频| 一级毛片电影观看| 国产爽快片一区二区三区| 你懂的网址亚洲精品在线观看| 夫妻午夜视频| 午夜免费成人在线视频| 超色免费av| 国产1区2区3区精品| 一个人免费看片子| 久9热在线精品视频| 9191精品国产免费久久| 考比视频在线观看| 亚洲免费av在线视频| 水蜜桃什么品种好| www.av在线官网国产| av片东京热男人的天堂| 亚洲欧美激情在线| 欧美激情高清一区二区三区| 国产99久久九九免费精品| 搡老岳熟女国产| 两性夫妻黄色片| 精品卡一卡二卡四卡免费| 青春草视频在线免费观看| 男人操女人黄网站| 高清欧美精品videossex| 久久毛片免费看一区二区三区| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| a级片在线免费高清观看视频| 日韩伦理黄色片| 美女国产高潮福利片在线看| 美女高潮到喷水免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看www视频免费| 大陆偷拍与自拍| svipshipincom国产片| 亚洲专区中文字幕在线| 丝袜人妻中文字幕| 欧美人与性动交α欧美软件| 一二三四社区在线视频社区8| 在线av久久热| 婷婷色av中文字幕| 久久天躁狠狠躁夜夜2o2o | 天天操日日干夜夜撸| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 各种免费的搞黄视频| 亚洲av综合色区一区| 欧美激情高清一区二区三区| 久久 成人 亚洲| 午夜免费观看性视频| 中文字幕人妻熟女乱码| 一二三四在线观看免费中文在| 黄色视频不卡| 国产成人啪精品午夜网站| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 制服人妻中文乱码| 国产xxxxx性猛交| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 国产成人系列免费观看| bbb黄色大片| 一级黄片播放器| 久久国产精品大桥未久av| 国产高清videossex| 日韩制服丝袜自拍偷拍| 最新的欧美精品一区二区| 99久久99久久久精品蜜桃| 少妇被粗大的猛进出69影院| 啦啦啦在线观看免费高清www| 亚洲av综合色区一区| 嫁个100分男人电影在线观看 | 亚洲人成77777在线视频| 青春草亚洲视频在线观看| 涩涩av久久男人的天堂| 麻豆国产av国片精品| 在现免费观看毛片| 亚洲九九香蕉| 久久 成人 亚洲| 久久天堂一区二区三区四区| 日韩大片免费观看网站| 久久人人97超碰香蕉20202| 国产精品国产三级专区第一集| 天天躁日日躁夜夜躁夜夜| 尾随美女入室| 伦理电影免费视频| 精品一区二区三卡| 亚洲免费av在线视频| 黄色视频在线播放观看不卡| av在线app专区| 欧美另类一区| 国产成人免费无遮挡视频| 欧美日韩av久久| 久久国产精品男人的天堂亚洲| 久久精品aⅴ一区二区三区四区| 亚洲人成77777在线视频| 精品久久久久久电影网| 日日爽夜夜爽网站| 国产在线一区二区三区精| 国产av精品麻豆| 可以免费在线观看a视频的电影网站| 我要看黄色一级片免费的| 精品视频人人做人人爽| 国产成人影院久久av| 黑人欧美特级aaaaaa片| 黄色 视频免费看| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 后天国语完整版免费观看| 青春草亚洲视频在线观看| 波多野结衣av一区二区av| 欧美人与性动交α欧美精品济南到| 欧美精品亚洲一区二区| cao死你这个sao货| 一本综合久久免费| 国产免费现黄频在线看| 免费一级毛片在线播放高清视频 | 亚洲av综合色区一区| 亚洲一码二码三码区别大吗| 一本久久精品| 亚洲成色77777| 亚洲精品久久午夜乱码| 亚洲久久久国产精品| 熟女少妇亚洲综合色aaa.| videos熟女内射| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产区一区二| 香蕉国产在线看| 老司机在亚洲福利影院| 亚洲七黄色美女视频| av国产久精品久网站免费入址| 午夜福利,免费看| 欧美国产精品一级二级三级| 久热这里只有精品99| 精品久久蜜臀av无| 日本欧美视频一区| 欧美黄色淫秽网站| 亚洲少妇的诱惑av| 精品一区二区三区四区五区乱码 | 久久久亚洲精品成人影院| 国产精品久久久久成人av| 夫妻性生交免费视频一级片| 美女福利国产在线| 欧美激情极品国产一区二区三区| 人人澡人人妻人| 国产精品国产av在线观看| 精品久久蜜臀av无| 国产xxxxx性猛交| 老司机午夜十八禁免费视频| www.自偷自拍.com| 国产麻豆69| 天天躁夜夜躁狠狠躁躁| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品古装| 亚洲精品自拍成人| 欧美成人午夜精品| 18在线观看网站| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区91| 国产在视频线精品| 成人亚洲欧美一区二区av| 免费在线观看日本一区| 精品人妻熟女毛片av久久网站| 中国国产av一级| 热99久久久久精品小说推荐| 久久影院123| 两个人免费观看高清视频| 大码成人一级视频| 日韩精品免费视频一区二区三区| 狂野欧美激情性xxxx| 亚洲成人免费av在线播放| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 韩国精品一区二区三区| 免费不卡黄色视频| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 欧美 日韩 精品 国产| 欧美人与性动交α欧美精品济南到| 亚洲自偷自拍图片 自拍| 日韩欧美一区视频在线观看| 久久亚洲国产成人精品v| 亚洲精品中文字幕在线视频| 国产主播在线观看一区二区 | bbb黄色大片| 欧美国产精品一级二级三级| 精品久久久精品久久久| 日本五十路高清| 夫妻性生交免费视频一级片| 亚洲天堂av无毛| 一本综合久久免费| 男女床上黄色一级片免费看| 久久久久国产一级毛片高清牌| 水蜜桃什么品种好| 国产精品一区二区在线观看99| 欧美另类一区| 人人妻,人人澡人人爽秒播 | 久久午夜综合久久蜜桃| 亚洲国产精品国产精品| 日韩av在线免费看完整版不卡| 高清不卡的av网站| 午夜免费观看性视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品99久久99久久久不卡| 中文字幕人妻丝袜一区二区| 制服人妻中文乱码| 捣出白浆h1v1| 亚洲国产欧美网| 精品国产一区二区三区久久久樱花| 亚洲国产最新在线播放| 天堂中文最新版在线下载| 2021少妇久久久久久久久久久| 一级毛片黄色毛片免费观看视频| 日本欧美国产在线视频| 日韩人妻精品一区2区三区| 久热爱精品视频在线9| 一级,二级,三级黄色视频| 秋霞在线观看毛片| 中文欧美无线码| 国产一级毛片在线| 18禁黄网站禁片午夜丰满| 在线亚洲精品国产二区图片欧美| 视频区图区小说| 亚洲伊人色综图| 欧美黄色淫秽网站| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| h视频一区二区三区| 国产成人啪精品午夜网站| 久久这里只有精品19| 999精品在线视频| 欧美日韩福利视频一区二区| 亚洲av在线观看美女高潮| 桃花免费在线播放| av欧美777| 国产视频首页在线观看| 久久精品国产亚洲av涩爱| 免费在线观看日本一区| 久久av网站| 国产99久久九九免费精品| 女性生殖器流出的白浆| 国语对白做爰xxxⅹ性视频网站| 国产亚洲精品久久久久5区| a级毛片黄视频| 色精品久久人妻99蜜桃| 老汉色∧v一级毛片| 99香蕉大伊视频| 好男人电影高清在线观看| 两人在一起打扑克的视频| 午夜影院在线不卡| 久久ye,这里只有精品| 赤兔流量卡办理| 黄片播放在线免费| 国产成人精品在线电影| www日本在线高清视频| 日韩一本色道免费dvd| 水蜜桃什么品种好| 制服诱惑二区| www.自偷自拍.com| 中文精品一卡2卡3卡4更新| 欧美变态另类bdsm刘玥| 免费在线观看日本一区| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 久久久久精品人妻al黑| 亚洲综合色网址| 美女国产高潮福利片在线看| 亚洲av日韩精品久久久久久密 | 久久 成人 亚洲| 久久亚洲精品不卡| 欧美人与性动交α欧美精品济南到| 国产免费视频播放在线视频| 精品一区二区三卡| av福利片在线| 亚洲精品日本国产第一区| 国产精品.久久久| 2018国产大陆天天弄谢| 黄色视频在线播放观看不卡| 性高湖久久久久久久久免费观看| 中文字幕高清在线视频| 久久人妻福利社区极品人妻图片 | 久久精品亚洲av国产电影网| 天天躁夜夜躁狠狠躁躁| 大码成人一级视频| 黄片小视频在线播放| 亚洲 欧美一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲国产最新在线播放| 天天躁夜夜躁狠狠久久av| 欧美日韩黄片免| 性少妇av在线| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 国产精品久久久人人做人人爽| 久久久久久久久免费视频了| 大陆偷拍与自拍| 老司机在亚洲福利影院| 日本午夜av视频| 99久久人妻综合| 91麻豆av在线| 亚洲,欧美,日韩| 男男h啪啪无遮挡| 最近最新中文字幕大全免费视频 | 视频区图区小说| 国产在线观看jvid| 久久人人爽av亚洲精品天堂| 亚洲成色77777| 男人爽女人下面视频在线观看| 十八禁人妻一区二区| 久久人人97超碰香蕉20202| 大码成人一级视频| 中文字幕人妻丝袜一区二区| 日韩免费高清中文字幕av| 麻豆av在线久日| 美女视频免费永久观看网站| 两人在一起打扑克的视频| 成人午夜精彩视频在线观看| 免费一级毛片在线播放高清视频 | 亚洲人成77777在线视频| 国产精品久久久久久精品电影小说| 这个男人来自地球电影免费观看| 久久人人97超碰香蕉20202| 色综合欧美亚洲国产小说| 深夜精品福利| 91精品伊人久久大香线蕉| 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 欧美日韩综合久久久久久| 成年人午夜在线观看视频| 制服诱惑二区| 在线观看一区二区三区激情| 中国国产av一级| 欧美激情 高清一区二区三区| 伦理电影免费视频| 国产一区二区三区综合在线观看| 精品卡一卡二卡四卡免费| 最近中文字幕2019免费版| 大片免费播放器 马上看| 国产av精品麻豆| 亚洲精品第二区| 视频区图区小说| 一区福利在线观看| 黄色毛片三级朝国网站| 国产精品久久久久久人妻精品电影 | 亚洲av国产av综合av卡| av线在线观看网站| 国产激情久久老熟女| www.av在线官网国产| 久久久久网色| 欧美日韩福利视频一区二区| 国产成人系列免费观看| 高潮久久久久久久久久久不卡| 国产有黄有色有爽视频| 国产精品久久久久久精品电影小说| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 精品福利永久在线观看| 无限看片的www在线观看| 叶爱在线成人免费视频播放| 精品久久久精品久久久| 中文字幕另类日韩欧美亚洲嫩草| av国产久精品久网站免费入址| 亚洲精品美女久久久久99蜜臀 | 精品人妻一区二区三区麻豆| 欧美日韩一级在线毛片| 97精品久久久久久久久久精品| 男女免费视频国产| 色婷婷久久久亚洲欧美| 国产黄色免费在线视频| 一区二区三区激情视频| 中文欧美无线码| 成人国产一区最新在线观看 | 欧美97在线视频| 免费久久久久久久精品成人欧美视频| 少妇被粗大的猛进出69影院| 成人18禁高潮啪啪吃奶动态图| 大香蕉久久网| 黄色毛片三级朝国网站| 国产有黄有色有爽视频| 亚洲欧美精品综合一区二区三区| 国产黄频视频在线观看| 亚洲国产成人一精品久久久| 女人精品久久久久毛片| 午夜免费观看性视频| 国产精品一区二区在线不卡| 久久久久精品人妻al黑| 亚洲欧美一区二区三区久久| 天堂中文最新版在线下载| 免费日韩欧美在线观看| 男女边摸边吃奶| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 老熟女久久久| 91麻豆av在线| 另类亚洲欧美激情| 国产视频首页在线观看| 亚洲,欧美,日韩| av国产久精品久网站免费入址| 亚洲国产精品一区二区三区在线| 丝袜美足系列| 久久国产精品大桥未久av| 日日夜夜操网爽| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 99re6热这里在线精品视频| 黄片播放在线免费| 亚洲成av片中文字幕在线观看| 丰满迷人的少妇在线观看| 久久亚洲国产成人精品v| 亚洲国产精品一区三区| 国产不卡av网站在线观看| 看免费av毛片| 国产有黄有色有爽视频| 亚洲精品成人av观看孕妇| 女警被强在线播放| 巨乳人妻的诱惑在线观看| 丰满人妻熟妇乱又伦精品不卡| 老汉色av国产亚洲站长工具| 午夜91福利影院| 亚洲一码二码三码区别大吗| 国产欧美日韩综合在线一区二区| 狠狠精品人妻久久久久久综合| 黄色片一级片一级黄色片| 97在线人人人人妻| 日本猛色少妇xxxxx猛交久久| 1024香蕉在线观看| xxxhd国产人妻xxx| 老司机影院毛片| 在现免费观看毛片| 一级,二级,三级黄色视频| 丰满饥渴人妻一区二区三| 久久性视频一级片| 成年av动漫网址| 精品久久蜜臀av无| 久热这里只有精品99| 久久午夜综合久久蜜桃| 久久鲁丝午夜福利片| netflix在线观看网站| 男女下面插进去视频免费观看| 久久精品久久久久久久性| 69精品国产乱码久久久| 午夜免费成人在线视频| 91麻豆av在线| 考比视频在线观看|