• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancement of mass transfer efficiency and photoelectrochemical activity for TiO2 nanorod arrays by decorating Ni3+-states functional NiO water oxidation cocatalyst

    2021-08-26 02:08:06NingchoZhengXiHeWeiqingGuoZhuofengHu
    Chinese Chemical Letters 2021年6期

    Ningcho Zheng,Xi He,Weiqing Guo,Zhuofeng Hu,*

    a School of Environmental Science and Engineering,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,Sun Yat-sen University,Guangzhou 510006,China

    b School of Environmental and Chemical Engineering,Foshan University,Foshan 528000,China

    ABSTRACT Photoelectrochemical(PEC)water splitting is a promising technology to use solar energy.However,current metal oxides photoanode face the problem of sluggish water oxidation kinetic.In this study,we propose that the sluggish water oxidation process will cause slow mass transfer efficiency,which are rarely considered previously,especially at large bias and strong illumination.Mass transfer refers to the migration of reactants(like H2O and OH-)to the photoanode surface,reaction with holes and diffusion of products(like radical and O2)to the bulk of the electrode.If the migration and diffusion are not fast enough,the mass transfer will inhibit the increase of PEC activity.This problem will be more apparent for nanorod arrays(NRAs),where the space among the NRAs is related narrow.Herein,we solve this problem by decorating the surface of the photoanode by NiO clusters with Ni3+state as water oxidation cocatalysts.This work studies the PEC process from the viewpoint of mass transfer and firstly demonstrates that mass transfer in NRAs structure can be promoted by using Ni-based water oxidation cocatalyst.

    Keywords:TiO2 nanorod arrays NiO cluster Cocatalyst Mass transfer Photoelectrochemical performance

    As a high chemical stability,cost-effective and non-toxic earth oxide,metal oxide(like TiO2,Fe2O3,WO3,etc.)has been widely used in photocatalytic water splitting field since TiO2was first used as a photoanode to splitting water into hydrogen and oxygen in 1972[1-4].However,metal oxide photocatalysts suffer from a high recombination rate of photoexcited carriers and low light absorption efficiency,which leads to low photocatalytic activity[5,6].A feasible solution is to design a novel nanostructure,such as one-dimensionally nanorod arrays(NRAs),owing to its large surface area,high aspect ratio and short diffusion length[7].These unique properties of NRAs enhance light adsorption in the axial direction and carrier separation in the radial direction[8].Unfortunately,despite these merits,NRAs still face a serious obstacle:sluggish water oxidation kinetic,which causes a slow onset potential[9,10].

    Generally,the sluggish water oxidation kinetic will cause slow mass transfer efficiency,especially for photoelectrochemical(PEC)system[11,12].At the photoelectrode,there are two kinds of reactions(Fig.S1 in Supporting information):one is the generation and separation of photoexcited carrier including electrons and holes inside the photoelectrode at the depletion layer;The other is the reactant/product-mediated reaction occurs at the interface between the photoelectrode and the electrolyte[13,14].The reactant of water molecules or OH-ions need to arrive at the surface of the photoanode and react with the holes to produce radical(like?OH)or oxygen molecules.Subsequently,the products need to migrate and diffuse to the bulk of the solution[15].This process is defined as mass transfer for photoelectrode.Especially at large bias or under strong illumination,the reaction occurs very fast.If the migration and diffusion are not fast enough,the mass transfer will inhibit the increase of PEC activity.This problem will be more apparent for NRAs,where the space among the NRAs is related narrow[16].As a result,enhancing water oxidation kinetic should be considered for designing an effective photoanode.

    To overcome this problem,many strategies have been deployed.Such as deposition of water oxidation cocatalysts,doping chargeabundant heteroatoms,decorating with noble metal nanoparticles and constructing heterojunctions[17-19].For example,integrating the photoanode with oxygen evolution cocatalysts like cobaltphosphate(Co-Pi)[20-22]and iridium oxide(IrO2)[23-25]can promote the water oxidation kinetic,but the interface between the main photoanode and the cocatalysts need to be close to ensure effective charge transfer.Besides,doping is a commonly used strategy to tune the electrical properties of semiconductors,but the doping foreign atoms would inevitably introduce some defects,which act as carrier traps and recombination centers during water oxidation[26,27].Thus,the construction heterojunctions in the meantime is an effective method to solve the problem[28,29].However,how to design metal oxide-based heterojunction system with good water oxidation kinetic efficiency is a great challenge.Overall,it is highly desirable to develop photoanodes with highly efficient water oxidation kinetic and mass transfer efficiency[30-32].

    Herein,we introduce a strategy to improve the mass transfer by enhancing the water oxidation kinetic.We prepare very small NiO clusters with Ni3+states on the surface by using a hydrothermal method with Nickel acetylacetonate as Ni source.The NiO cluster can be decorated on TiO2NRAs(TiO2@NiO NRAs).The main step of this fabrication is illustrated in Fig.1a.Ni3+state can greatly promote the water oxidation kinetic on the surface.TiO2NRAs without NiO clusters exhibit a very slow increase of photocurrent density at related bias of 0.7 V vs.RHE when the illumination intensity increases.At larger bias(1.6 V vs.RHE),the increase of photocurrent density becomes slower and slower with stronger illumination intensity.These results indicate that TiO2NRAs suffer from serious mass transfer inhibition,which should be due to its sluggish water oxidation kinetic.With the decoration of NiO clusters,the photocurrent density increases proportionally with increasing illumination,indicating good mass transfer with the help of water oxidation cocatalyst of NiO clusters.The enhancement of water oxidation kinetic by NiO clusters is confirmed by a series of electrochemical measurements.Also,the photocurrent density of TiO2@NiO NRAs(1. mA/cm2)is superior to that of the pristine TiO2NRAs(0.58 mA/cm2)with an on-set potential shifted negatively by 0.18 V vs.RHE.

    Fig.1.(a)Schematic illustration for the fabrication of TiO2 NRAs and TiO2@NiO NRAs.(b)SEM image and(c)TEM image of TiO2 NRAs.(d)TEM image and(e)HRTEM image of TiO2@NiO NRAs.

    The preparation process of TiO2@NiO NRAs was schematically described in Fig.1a( more details about the experiment and XRD analysis are provided in Section and 2 in Supporting information).TiO2NRAs were firstly synthesized on an FTO glass by a simple hydrothermal method.Upon the completion of the reaction,a white homogeneous film of vertically aligned nanorods was observed on the FTO substrate(Fig.1b).The nanorod exhibits a diameter of about 100 nm(Fig.1c).Subsequently,NiO clusters were growing on the surface of TiO2NRAs in a mixture solution of nickel acetylacetonate and tert-butanol solvent.It can be seen that some NiO clusters are immobilized uniformly and intimately on the surface of TiO2NRAs but the structure of nanorod remains after the hydrothermal reaction(Fig.1d).The NiO cluster is about 25 nm in diameter and the single NiO nanoparticle is about 4 nm.Fig.1e exhibits the high-resolution transmission electron microscopy(HRTEM)image of TiO2@NiO NRAs.The lattice fringe spacing of 0.32 nm matches well with the(110)plane of TiO2.While the lattice fringe with the inter-planar distance of 0.24 nm,which corresponds to the(101)plane of NiO.These results indicate that the co-existence of TiO2and NiO,and the heterostructured TiO2@NiO NRAs were formed.Besides,energy dispersive spectroscopy(EDS)displays the elemental analysis(Fig.S3 in Supporting information).Obviously,the TiO2NRAs are only comprised of Ti and O,and the TiO2@NiO NRAs is only consisted of Ti,O and Ni,suggesting that the successful fabrication of purity TiO2NRAs and TiO2@NiO NRAs.

    To evaluate the chemical composition and oxide state of the TiO2@NiO NRAs,XPS measurements were conducted on the TiO2@NiO NRAs.Fig.S4(Supporting information)shows the high-resolution XPS spectrum of Ti 2p peak of the TiO2@NiO NRAs.The main two peaks at 464.2 eV and 458.3 eV,which corresponds to the Ti 2p1/2and Ti 2p3/2,respectively[33].This result indicates a normal Ti4+oxidation state,which in accordance with the literature reported previously[34].In the Ni 2p XPS spectrum(Fig.2a),the peak at 856.3 eV can be attributed to Ni3+(NiOOH or Ni2O3)in the Ni 2p fine spectrum[35].Peak at 862.2 eV is its satellite peak.This is in good agreement with a previous report[35].It is more reasonable to attribute the Ni3+as Nickle oxyhydroxide(NiOOH)because Ni2O3is not as stable at low temperatures in the presence of water[36].This suggests there is a layer of NiOOH on the surface of the NiO.This layer is possibly formed during the hydrothermal reaction.This indicates that the surface of NiO clusters is rich in Ni3+states.Ni3+states are highly active for water oxidation[37].Therefore,one advantage of the NiO cluster is the presence of plenty of Ni(III)states under ambient conditions.In the O 1s spectrum(Fig.2b),the peak can be deconvoluted into three peaks centered at 529.4 eV,530.9 eV and 532.1 eV,correlating to lattice oxygen,hydroxyl groups and adsorbed water,respectively[38].

    Fig.2.High-resolution XPS spectrum of(a)Ni 2p and(b)O 1s of TiO2@NiO NRAs.(c)Valance XPS spectrum of TiO2@NiO NRAs.(d)Energy diagram of TiO2@NiO NRAs.

    In the valance XPS spectrum,the maximum energy often reflects the distance between the valance band and the Fermi level[39].In Fig.2c,the spectrum displays two appreciable maximum energies at 1.1 eV and 0.4 eV.The former should be attributed to TiO2,which is close to the reported value of 1.2 eV for TiO2powders[40].The small difference may be due to morphology differences.The latter is possibly related to p-type NiO because the valance of near the Fermi level.Thus,the band structure of the TiO2@NiO NRAs can be obtained(Fig.2d).Such a band structure is beneficial to charge separation and transfer.Due to photoexcited holes in the TiO2NRAs will preferentially transfer to the NiO clusters with lower valance band.Then those holes generated in the TiO2NRAs are easy to accumulate on the NiO clusters to participate in the oxidation reaction.

    Fig.3.Voltammograms of TiO2 NRAs and TiO2@NiO NRAs(a)in the dark and(b)under AM 1.5 G simulated sunlight(100 mW/cm2)in 0.1 mol/L Na2SO4.(c)The zoom-in view of the green frame in(b).(d)The first-order derivative of the photocurrent density as a function of potential.Light intensity dependent photocurrent on bare TiO2 NRAs and TiO2@NiO NRAs at(e)0.7 V and(f)1.4 V vs.RHE.

    The on-set potential is one of the most important metrics for the photocurrent curves( more details see Section 3 in Supporting information)[41].It is considered as the potential where PECs begin to generate photocurrent noticeably,and should be as cathodic as possible.In an ideal case,the on-set potential should be very close to the flat band potential.However,it is difficult to reach the flat band potential because of poor charge transfer and slow water oxidation kinetics.The on-set potential of TiO2NRAs(0.64 V vs.RHE)is 0.72 V positive than its flat band potential measured in the Mott-Schottky plot(-0.68 V vs.Ag/AgCl,-0.08 V vs.RHE)(Fig.S5 in Supporting information).This is partially due to slow water oxidation kinetics.Fig.3a shows the current density versus potential in the dark,it can be seen that TiO2NRAs begins to oxidize water at 2.15 V vs.RHE,which is more positive than the theoretical value of 1.23 V.This confirms that TiO2NRAs suffer from sluggish water oxidation kinetic.According to the literature,the onset potential is defined as the potential where the rise of photocurrent exceeds 0.2 mA cm-2V-1in the first-order derivative of photocurrent against the potential[42].It is clear that the onset potential of TiO2@NiO is at 1.62 V vs.RHE,which is much earlier than that of pure TiO2at 2.15 V vs.RHE(Fig.S6 in Supporting information).Besides,the water oxidation current density of TiO2@NiO(1.4 μA/cm2)is much larger than that of pure TiO2(0.05 μA/cm2)at 2.5 V vs.RHE.This all indicates that the NiO cluster with Ni3+state on the surface facilitates the water oxidation kinetic of the TiO2NRAs.

    Figs.3b and c show the current density versus potential under simulated sunlight irradiation.The on-set potential under illumination is defined as the potential where the change in photocurrent as a function potential exceeds 0.2 mA cm-2V-1[42].As shown in Fig.3d,the pristine TiO2NRAs shows a late on-set potential(0.64 V vs.RHE),while,the on-set potential of TiO2@NiO NRAs shift negatively by 0.18 V to 0.46 V vs.RHE,which reduces the external power to drive the PEC process.Besides,the photocurrent increases much faster to a higher level of saturated photocurrent density(from 0.58 mA/cm2to 1.1 mA/cm2at 2.5 V vs.RHE).The decreased on-set potential of TiO2@NiO should be attributed to the improvement of water oxidation kinetic.

    In this work,we discover that the enhancement of water oxidation kinetic strongly relates to the mass transfer efficiency.Generally,the PEC performances are expected to produce higher photocurrent density with larger bias and stronger illumination,due to more photoexcited electron/hole pairs will be generated upon stronger illumination.The increase of PEC performance with larger bias or stronger illumination is an important parameter to evaluate the activity of the photoelectrode.The photocurrent of TiO2NRAs as a function of light density is displayed in Figs.3e and f.At small bias(0.7 V,Fig.3e),the photocurrent of TiO2NRAs hardly increases with enhanced illumination.At larger bias(1.4 V,Fig.3f),the photocurrent increase but deviate from linearity.The increase of illumination does not lead to a proportional increase in photocurrent density.Ideally,all of the increased carriers will contribute to a proportional increase of photocurrent.In our experiment,due to slow water oxidation kinetics,the increased holes are not able to transfer time from the photoanode to the electrolyte,thereby resulting in more serious recombination and slower increase of photocurrent.This is adverse to the PEC system because of the lower utilization of solar energy.By contrast,in the presence of NiO cluster water oxidation cocatalyst,the photocurrent increase linearly with increasing illumination at a small bias of 0.7 V vs.RHE.Importantly,it perverse the linearity even at a large bias(1.6 V vs.RHE).With the aid of NiO clusters,the water oxidation kinetic is greatly promoted and the mass transfer will not inhibit at the PEC system.This suggests the NiO clusters facilitate the mass transfer on TiO2NRAs by enhancing the water oxidation kinetic,and enhance the utilization efficiency of solar energy in the PEC performances.

    As presented in Fig.4a,similar to the CV curve,the surface charge transfer efficiency(ηtrans)rise quickly from 0.5 V to 1.0 V due to increased external bias,and saturate at large bias( more details see Section 4 in Supporting information).Due to slow water oxidation kinetics,the ηtransof bare TiO2NRAs is only 65%at 1.23 V vs.RHE,while that of NiO cluster loaded reach a light level of 90%.This confirms the NiO clusters as highly efficient cocatalyst for water oxidation.

    Fig.4.(a)Surface charge transfer efficiency of TiO2 NRAs and TiO2@NiO NRAs.Time dependence of open-circuit potential of(b)TiO2 NRAs and(c)TiO2@NiO NRAs.(d)Applied bias photon-to-current efficiency(ABPE)of water splitting on TiO2 NRAs and TiO2@NiO NRAs.

    In addition,the enhancement of water oxidation kinetic and mass transfer efficiency can also be confirmed by measuring open circuit potential(Voc)(more details see Section 5 in Supporting information).Vocin the dark is determined by the electronic property,carrier density and surface state of the semiconductors[43].As shown in Figs.4b and c,the addition of NiO cluster increases the photovoltage(Vph)by 0.07 V,suggesting higher carrier density(nc).This result can be attributed to the faster charge and mass transfer and faster water oxidation kinetic on the NiO-covered surface.Photoexcited holes migrate from the photoanode body to the electrolyte more easily and diminish the possibility of recombination with electrons,then increasing the carrier density in the photoanode(Details see Section 6 in Supporting information).

    In general,an external bias is required to activate and promote a PEC.From this viewpoint,a PEC is driven by both external bias and light.Higher bias will boost the solar energy conversion efficiency,but will also lead to direct electrolysis.It is very important to evaluate the contribution of solar energy without considering that of the external bias.The applied bias photon-to-current efficiency(ABPE)can be calculated according to the equation bellows:

    where η is the efficiency of PEC water splitting,jpis the photocurrent density at the measured potential,I0is the power density of incident light(100 mW/cm2),and ERHEis the bias potential vs.RHE.

    As shown in Fig.4d,it is obvious that the ABPE of TiO2@NiO NRAs covers a larger potential window than the bare TiO2NRAs.This is consistent with its earlier on-set potential.Also,the ABPE of TiO2@NiO NRAs is about 3.3 times higher than bare TiO2NRAs,and it reaches the climax(at 0.89 V)about 0.04 V earlier than the bare TiO2NRAs.Such a higher ABPE and earlier peak climax indicate that NiO cluster greatly improves the photoconversion efficiency of the TiO2NRAs.

    Besides,to analysis the ABPE after 1.23 V vs.RHE,we also use the following equation bellows to calculate the ABPE:

    The negative value after 1.23 V vs.RHE can also be considered and the result is shown in Fig.S7a(Supporting information).It is obvious that the ABPE of TiO2@NiO is higher than TiO2even in large bias.

    In addition,as the water oxidation potential in our experiment is 2.15 V vs.RHE,we also attempt to use 2.15 V vs.RHE as the water oxidation potential to calculate the ABPE(Eq. 3).The calculated result is shown in Fig.S7b(Supporting information).It can be found that the efficiency of TiO2@NiO is also higher than TiO2at large bias.

    Except for TiO2,other frequently-used semiconductors,such as WO3and Fe2O3have been also investigated as a supporter of cocatalyst NiO,due to their low-cost and earth-abundant.Figs.S8 and S9(Supporting information)show the current density versus potential under WO3@NiO and Fe2O3@NiO,respectively.The photocurrent can be greatly improved after loading of the cocatalyst NiO in both dark and simulated sunlight.It indicates that NiO can enhance the PEC performance of WO3and Fe2O3.In addition,ABPE measurement provides another way to illustrate the enhanced PEC activity.As displayed in Fig.S10(Supporting information),after loading of NiO,the ABPE of WO3@NiO is about 2.9 times higher than bare WO3,and it reaches the climax(at 1.03 V)about 0.09 V earlier than the bare WO3.For Fe2O3,after loading of NiO,the ABPE of Fe2O3@NiO is about 3.5 times higher than bare Fe2O3,and it reaches the climax(at 0.98 V)about 0.12 V earlier than the bare Fe2O3(Fig.S11 in Supporting information).This result indicates loading of NiO can not only enhance the photoconversion efficiency,but also reduce the applied potential.In summary,we develop a novel strategy to improve the mass transfer of NRAs photoanode by using Ni-based water oxidation cocatalysts.The TiO2NRAs suffer from low mass transfer efficiency and sluggish water oxidation kinetic.The photocurrent increase is inhibited,especially at large bias and strong illumination.However,after loading of NiO cluster,the TiO2@NiO NRAs exhibits enhanced photocatalytic activity with faster mass transfer efficiency,larger carrier density,lower on-set potential and better photoconversion efficiency.This work is helpful to understand the PEC performance of NRAs from the viewpoint of mass transfer and deepen our understanding of PEC process.The preparation of Nibased cocatalyst with Ni3+is applicable to many metal oxide photoanode,suggesting that this method is widely-acceptable.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120058),the National Natural Science Foundation of China(No.51902357),the Natural Science Foundation of Guangdong Province,China(No.2019A1515012143),the Start-up Funds for High-Level Talents of Sun Yat-sen University(No.38000-18841209)and the Fundamental Research Funds for the Central Universities(No.19lgpy153).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.10.039.

    99热6这里只有精品| av免费观看日本| 啦啦啦在线观看免费高清www| 中文天堂在线官网| 亚洲色图 男人天堂 中文字幕 | 狂野欧美激情性bbbbbb| 天天影视国产精品| 一区二区日韩欧美中文字幕 | 久久精品久久久久久久性| 精品国产国语对白av| 午夜免费鲁丝| 免费久久久久久久精品成人欧美视频 | 国产精品熟女久久久久浪| 欧美另类一区| av片东京热男人的天堂| 国产精品人妻久久久影院| 日韩不卡一区二区三区视频在线| 成年美女黄网站色视频大全免费| 赤兔流量卡办理| 老女人水多毛片| 伦理电影免费视频| 伦精品一区二区三区| 免费少妇av软件| 国产69精品久久久久777片| 黄色视频在线播放观看不卡| 99久国产av精品国产电影| av在线播放精品| 久久午夜综合久久蜜桃| 我要看黄色一级片免费的| 丝瓜视频免费看黄片| 精品人妻熟女毛片av久久网站| 一级毛片黄色毛片免费观看视频| 亚洲中文av在线| 免费黄频网站在线观看国产| 纯流量卡能插随身wifi吗| 一级黄片播放器| 亚洲欧美日韩另类电影网站| 精品一区二区三区视频在线| 如何舔出高潮| 中文字幕免费在线视频6| 久久狼人影院| 国产精品.久久久| 国产av精品麻豆| 久久久欧美国产精品| 亚洲欧美色中文字幕在线| 91成人精品电影| 青春草国产在线视频| 国产精品一区www在线观看| av国产精品久久久久影院| 亚洲国产欧美在线一区| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 免费观看av网站的网址| 国产福利在线免费观看视频| 久久女婷五月综合色啪小说| 久久久久网色| 啦啦啦啦在线视频资源| 18禁裸乳无遮挡动漫免费视频| 久久狼人影院| 99热这里只有是精品在线观看| 亚洲精品第二区| 欧美精品亚洲一区二区| 日日爽夜夜爽网站| 中文字幕精品免费在线观看视频 | 久久影院123| 男女边吃奶边做爰视频| 中文字幕最新亚洲高清| av片东京热男人的天堂| 一级片'在线观看视频| 亚洲国产日韩一区二区| 男人操女人黄网站| 国产精品三级大全| 久久午夜综合久久蜜桃| 国产极品粉嫩免费观看在线| 日本av免费视频播放| 日韩伦理黄色片| 91国产中文字幕| 一区二区av电影网| 国产国语露脸激情在线看| 如日韩欧美国产精品一区二区三区| 99久久中文字幕三级久久日本| 色视频在线一区二区三区| 国语对白做爰xxxⅹ性视频网站| 免费在线观看黄色视频的| 搡女人真爽免费视频火全软件| 久久久久久久久久久久大奶| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产69精品久久久久777片| 看免费av毛片| 大片电影免费在线观看免费| 国产成人免费观看mmmm| 日本-黄色视频高清免费观看| 久久久国产精品麻豆| 寂寞人妻少妇视频99o| 黄色配什么色好看| 亚洲人成77777在线视频| 97超碰精品成人国产| 亚洲少妇的诱惑av| 永久免费av网站大全| 在线观看三级黄色| 美女内射精品一级片tv| 久久午夜福利片| 久久久国产一区二区| 男女国产视频网站| 观看美女的网站| 9色porny在线观看| 黄色怎么调成土黄色| 有码 亚洲区| 国产高清国产精品国产三级| 一二三四中文在线观看免费高清| 黄网站色视频无遮挡免费观看| 亚洲美女搞黄在线观看| 国产黄色视频一区二区在线观看| 91在线精品国自产拍蜜月| 91国产中文字幕| 搡女人真爽免费视频火全软件| 免费在线观看黄色视频的| 男女高潮啪啪啪动态图| 男男h啪啪无遮挡| 免费观看性生交大片5| 9191精品国产免费久久| 久久国产亚洲av麻豆专区| 亚洲综合精品二区| 中文乱码字字幕精品一区二区三区| 一本大道久久a久久精品| 又黄又粗又硬又大视频| 青春草国产在线视频| 纯流量卡能插随身wifi吗| 午夜免费男女啪啪视频观看| 午夜福利,免费看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人免费观看mmmm| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 中国国产av一级| 国产精品嫩草影院av在线观看| 国产淫语在线视频| 狠狠婷婷综合久久久久久88av| 亚洲色图 男人天堂 中文字幕 | 中文欧美无线码| 日韩制服骚丝袜av| 久久午夜综合久久蜜桃| 中文字幕av电影在线播放| 卡戴珊不雅视频在线播放| 亚洲欧美清纯卡通| 夜夜骑夜夜射夜夜干| 国产精品99久久99久久久不卡 | 亚洲精品久久成人aⅴ小说| a级片在线免费高清观看视频| 18禁动态无遮挡网站| 午夜福利视频在线观看免费| av视频免费观看在线观看| 另类亚洲欧美激情| 视频在线观看一区二区三区| 看免费av毛片| 国产乱来视频区| 国产免费又黄又爽又色| 免费看av在线观看网站| 美国免费a级毛片| 亚洲国产最新在线播放| 嫩草影院入口| 人妻少妇偷人精品九色| 日韩一区二区三区影片| 熟女人妻精品中文字幕| 97在线人人人人妻| 亚洲精品久久成人aⅴ小说| 久久久国产欧美日韩av| 天天影视国产精品| 欧美日本中文国产一区发布| 精品国产露脸久久av麻豆| 久久人妻熟女aⅴ| 日本色播在线视频| 国产精品免费大片| 久久精品久久精品一区二区三区| 亚洲国产最新在线播放| 亚洲欧美成人精品一区二区| 18禁裸乳无遮挡动漫免费视频| 一级黄片播放器| 国产在线免费精品| av免费观看日本| 天堂8中文在线网| 国产精品久久久久久av不卡| 精品久久久精品久久久| 久久精品久久久久久久性| 91成人精品电影| 香蕉丝袜av| 国产极品天堂在线| 色吧在线观看| 久久韩国三级中文字幕| 久久99热6这里只有精品| 97精品久久久久久久久久精品| 久久久久久人妻| av视频免费观看在线观看| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 18禁裸乳无遮挡动漫免费视频| 99久久精品国产国产毛片| 两个人免费观看高清视频| 高清黄色对白视频在线免费看| av又黄又爽大尺度在线免费看| 高清不卡的av网站| 啦啦啦中文免费视频观看日本| 国产综合精华液| 免费日韩欧美在线观看| 国产日韩欧美亚洲二区| 免费看不卡的av| 黑丝袜美女国产一区| 街头女战士在线观看网站| 激情五月婷婷亚洲| 日韩欧美精品免费久久| 中国美白少妇内射xxxbb| 人人妻人人澡人人看| 中文乱码字字幕精品一区二区三区| 80岁老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 久久久久视频综合| av在线播放精品| 超色免费av| 一级片'在线观看视频| 日韩欧美精品免费久久| 自线自在国产av| 国产又色又爽无遮挡免| 男的添女的下面高潮视频| 五月玫瑰六月丁香| 午夜老司机福利剧场| 久久久久精品性色| 男女午夜视频在线观看 | 校园人妻丝袜中文字幕| 久久精品aⅴ一区二区三区四区 | 国产一区二区三区综合在线观看 | 久久人人爽人人爽人人片va| 国产成人av激情在线播放| 国产精品一二三区在线看| 国产av一区二区精品久久| 欧美日本中文国产一区发布| 中文天堂在线官网| 日韩中文字幕视频在线看片| av卡一久久| 美女视频免费永久观看网站| 伦理电影大哥的女人| 午夜激情久久久久久久| 久久精品夜色国产| 赤兔流量卡办理| 国产成人精品无人区| 日本av免费视频播放| 精品久久国产蜜桃| 国产精品久久久久久精品电影小说| 在线观看一区二区三区激情| videosex国产| 欧美bdsm另类| 春色校园在线视频观看| 高清在线视频一区二区三区| 免费看光身美女| 制服诱惑二区| 又大又黄又爽视频免费| 成人影院久久| 国产成人aa在线观看| 久久久国产欧美日韩av| 99国产精品免费福利视频| 久久99蜜桃精品久久| 日日爽夜夜爽网站| 青春草国产在线视频| 日韩在线高清观看一区二区三区| 精品一区二区三区四区五区乱码 | 亚洲少妇的诱惑av| 中文字幕人妻丝袜制服| 国产成人免费观看mmmm| 中文字幕最新亚洲高清| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 一级片免费观看大全| 国产一区亚洲一区在线观看| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 日本黄色日本黄色录像| 日产精品乱码卡一卡2卡三| 久久久精品94久久精品| 亚洲欧美中文字幕日韩二区| 丁香六月天网| 80岁老熟妇乱子伦牲交| 制服丝袜香蕉在线| 亚洲欧洲国产日韩| 午夜福利视频精品| a级毛片黄视频| 丝瓜视频免费看黄片| 精品酒店卫生间| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 狠狠精品人妻久久久久久综合| 十八禁网站网址无遮挡| 午夜av观看不卡| 国产亚洲午夜精品一区二区久久| 大香蕉97超碰在线| 久久久a久久爽久久v久久| 亚洲av电影在线进入| 免费播放大片免费观看视频在线观看| 久久97久久精品| 97在线人人人人妻| 99国产综合亚洲精品| 一区二区av电影网| 午夜91福利影院| 少妇精品久久久久久久| 纵有疾风起免费观看全集完整版| 女人精品久久久久毛片| 久久热在线av| 国产黄色视频一区二区在线观看| 赤兔流量卡办理| 在线观看免费日韩欧美大片| 欧美日韩视频高清一区二区三区二| 99热全是精品| 精品酒店卫生间| 两个人看的免费小视频| 色5月婷婷丁香| 国产精品人妻久久久影院| 久久精品夜色国产| 看免费成人av毛片| 男人操女人黄网站| 国产精品久久久久久av不卡| 妹子高潮喷水视频| 国产伦理片在线播放av一区| 亚洲精品视频女| 国产男人的电影天堂91| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 91午夜精品亚洲一区二区三区| av天堂久久9| 99热6这里只有精品| 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 婷婷成人精品国产| 亚洲色图 男人天堂 中文字幕 | 国产精品久久久久久久久免| 亚洲人成77777在线视频| 中文精品一卡2卡3卡4更新| 一二三四中文在线观看免费高清| av线在线观看网站| 黄色配什么色好看| 午夜激情久久久久久久| 午夜福利影视在线免费观看| 免费黄频网站在线观看国产| 一级片免费观看大全| 国产日韩一区二区三区精品不卡| 一二三四在线观看免费中文在 | 免费看不卡的av| 成人国产麻豆网| 狂野欧美激情性bbbbbb| 国产欧美亚洲国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久成人av| 久久精品国产鲁丝片午夜精品| 永久网站在线| 日本猛色少妇xxxxx猛交久久| 麻豆乱淫一区二区| 免费大片黄手机在线观看| av免费观看日本| 国语对白做爰xxxⅹ性视频网站| 男人添女人高潮全过程视频| 天天躁夜夜躁狠狠久久av| 黄色毛片三级朝国网站| 秋霞伦理黄片| 日韩精品有码人妻一区| 91精品伊人久久大香线蕉| 久久精品熟女亚洲av麻豆精品| 99国产综合亚洲精品| 一级毛片 在线播放| 最近的中文字幕免费完整| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一边摸一边做爽爽视频免费| 97超碰精品成人国产| 亚洲精品乱码久久久久久按摩| 99久久综合免费| 在线观看免费视频网站a站| 国产精品成人在线| 毛片一级片免费看久久久久| 免费黄频网站在线观看国产| 男的添女的下面高潮视频| 中文字幕最新亚洲高清| 黄网站色视频无遮挡免费观看| 免费av不卡在线播放| 99香蕉大伊视频| 婷婷色综合www| 18+在线观看网站| 女人精品久久久久毛片| 亚洲精品国产av成人精品| 美女中出高潮动态图| 亚洲精品视频女| 国产免费视频播放在线视频| 日韩视频在线欧美| 久久久久久久久久久免费av| www.色视频.com| 高清欧美精品videossex| 欧美老熟妇乱子伦牲交| 国产一区二区三区av在线| 国产成人免费无遮挡视频| 国产xxxxx性猛交| 中文欧美无线码| 久久影院123| 18禁动态无遮挡网站| 国产欧美亚洲国产| 久久久精品94久久精品| 十八禁高潮呻吟视频| 男女下面插进去视频免费观看 | 中文字幕制服av| 中文字幕另类日韩欧美亚洲嫩草| 精品第一国产精品| 国产亚洲av片在线观看秒播厂| 日本av免费视频播放| 毛片一级片免费看久久久久| 精品国产一区二区三区四区第35| 一区二区三区精品91| 国产在视频线精品| 捣出白浆h1v1| 欧美另类一区| 熟妇人妻不卡中文字幕| 亚洲国产精品一区二区三区在线| 久久99热这里只频精品6学生| 成年av动漫网址| 亚洲精品aⅴ在线观看| 精品少妇内射三级| 精品一区二区三卡| 男的添女的下面高潮视频| 啦啦啦中文免费视频观看日本| 日日啪夜夜爽| 国产精品无大码| 美女国产高潮福利片在线看| 国产男女超爽视频在线观看| 中国国产av一级| 青春草视频在线免费观看| 91国产中文字幕| 一本大道久久a久久精品| 精品酒店卫生间| 在线观看三级黄色| 在线观看www视频免费| 伊人亚洲综合成人网| 成人无遮挡网站| 亚洲精品美女久久久久99蜜臀 | 免费人妻精品一区二区三区视频| 亚洲精品av麻豆狂野| 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到 | 亚洲av成人精品一二三区| 涩涩av久久男人的天堂| 国国产精品蜜臀av免费| 精品少妇黑人巨大在线播放| 丰满少妇做爰视频| 一级片免费观看大全| 在线观看www视频免费| 看非洲黑人一级黄片| 免费黄网站久久成人精品| 一区在线观看完整版| 国产69精品久久久久777片| 亚洲欧美精品自产自拍| 黄色毛片三级朝国网站| 亚洲精品一二三| 视频区图区小说| 伊人亚洲综合成人网| xxxhd国产人妻xxx| 全区人妻精品视频| 久久久久国产精品人妻一区二区| 国产 一区精品| 纯流量卡能插随身wifi吗| 观看av在线不卡| 另类精品久久| 美女大奶头黄色视频| 欧美国产精品va在线观看不卡| 18+在线观看网站| 日韩大片免费观看网站| 久久久久久久国产电影| 只有这里有精品99| 啦啦啦视频在线资源免费观看| 精品人妻熟女毛片av久久网站| av免费在线看不卡| 在线亚洲精品国产二区图片欧美| 亚洲av国产av综合av卡| 99九九在线精品视频| 捣出白浆h1v1| 一级毛片电影观看| 亚洲三级黄色毛片| 成人国语在线视频| 亚洲国产精品国产精品| 久久久久精品久久久久真实原创| 国产成人欧美| 日产精品乱码卡一卡2卡三| 国产精品99久久99久久久不卡 | 欧美日韩一区二区视频在线观看视频在线| 狂野欧美激情性xxxx在线观看| 男人添女人高潮全过程视频| 日本午夜av视频| 亚洲欧美一区二区三区国产| 中文字幕另类日韩欧美亚洲嫩草| 国产免费视频播放在线视频| 少妇高潮的动态图| 搡老乐熟女国产| 精品人妻在线不人妻| 国产精品免费大片| 午夜免费观看性视频| 最近中文字幕高清免费大全6| 中文字幕另类日韩欧美亚洲嫩草| 人妻系列 视频| 搡女人真爽免费视频火全软件| 国产淫语在线视频| 成人影院久久| 亚洲性久久影院| 青青草视频在线视频观看| 精品一区二区三卡| 在线观看三级黄色| 精品99又大又爽又粗少妇毛片| 亚洲精品日韩在线中文字幕| 国产精品久久久久成人av| 欧美激情极品国产一区二区三区 | 91成人精品电影| 国产国语露脸激情在线看| 久热久热在线精品观看| 亚洲精品,欧美精品| 国产69精品久久久久777片| freevideosex欧美| 侵犯人妻中文字幕一二三四区| 亚洲激情五月婷婷啪啪| 亚洲人与动物交配视频| 欧美人与性动交α欧美精品济南到 | 久久国产亚洲av麻豆专区| 90打野战视频偷拍视频| 高清不卡的av网站| 女人久久www免费人成看片| 天堂8中文在线网| a级片在线免费高清观看视频| 国国产精品蜜臀av免费| 日本91视频免费播放| 少妇被粗大猛烈的视频| 久热久热在线精品观看| 午夜日本视频在线| 51国产日韩欧美| 伊人亚洲综合成人网| 国产精品99久久99久久久不卡 | 91精品国产国语对白视频| 免费av不卡在线播放| 欧美日韩国产mv在线观看视频| 免费高清在线观看日韩| 黄色毛片三级朝国网站| 夜夜爽夜夜爽视频| 大香蕉久久成人网| 9热在线视频观看99| 久久鲁丝午夜福利片| 午夜激情久久久久久久| 亚洲少妇的诱惑av| 亚洲精品色激情综合| av在线老鸭窝| 国产男人的电影天堂91| 国产淫语在线视频| 亚洲精品国产色婷婷电影| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品福利永久在线观看| 热99国产精品久久久久久7| 人人妻人人澡人人爽人人夜夜| 美女内射精品一级片tv| 人人妻人人澡人人爽人人夜夜| 久久97久久精品| 岛国毛片在线播放| 毛片一级片免费看久久久久| 全区人妻精品视频| 老司机亚洲免费影院| 伊人亚洲综合成人网| 久久国内精品自在自线图片| 最近最新中文字幕大全免费视频 | 老熟女久久久| 爱豆传媒免费全集在线观看| 精品一品国产午夜福利视频| 男女高潮啪啪啪动态图| 97超碰精品成人国产| 黄色怎么调成土黄色| 尾随美女入室| 久久人人爽av亚洲精品天堂| 久久久欧美国产精品| 97在线视频观看| 久久狼人影院| av天堂久久9| 不卡视频在线观看欧美| 成人漫画全彩无遮挡| 97超碰精品成人国产| 成人漫画全彩无遮挡| 久久久久精品人妻al黑| 91精品伊人久久大香线蕉| 亚洲人成77777在线视频| 日韩欧美精品免费久久| 国产福利在线免费观看视频| 秋霞在线观看毛片| 国产极品粉嫩免费观看在线| 国产精品国产av在线观看| 美国免费a级毛片| av免费观看日本| 国产av一区二区精品久久| 久久久久久久精品精品| 国产精品一区二区在线观看99| 热99国产精品久久久久久7| 男女免费视频国产| 51国产日韩欧美| 五月伊人婷婷丁香| 成年av动漫网址| 成人国语在线视频| 久久狼人影院| 成人漫画全彩无遮挡| 91精品三级在线观看| 看免费av毛片| 国产有黄有色有爽视频| 在现免费观看毛片| a级毛片在线看网站| 少妇熟女欧美另类| 两性夫妻黄色片 | kizo精华| 久久97久久精品| 熟女电影av网| 九色亚洲精品在线播放| 汤姆久久久久久久影院中文字幕| 亚洲国产精品国产精品| 亚洲精品久久午夜乱码|