• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning the release rate of volatile molecules by pore surface engineering in metal-organic frameworks

    2021-08-26 02:08:06HongwenChenHuqingChenBoZhngLimingJingYouqingShenEngngFuDnZhoZhuxinZhou
    Chinese Chemical Letters 2021年6期

    Hongwen Chen,Huqing Chen,Bo Zhng,Liming Jing,Youqing Shen,Engng Fu,Dn Zho,Zhuxin Zhou,*

    a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    b Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education,Department of Polymer Science and Engineering,Zhejiang University,Hangzhou 310027,China

    c State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing 100871,China

    d Department of Chemical & Biomolecular Engineering,National University of Singapore,Singapore 117585,Singapore

    ABSTRACT Encapsulation and controlled release of volatile molecules such as fragrances in a designed manner is important but challenging for the flavor and fragrance industry.Here,we report the tuning release of volatile molecules by postsynthetic modification of an amine-terminated metal-organic framework(MOF)MIL-101-NH2.By amidation,we obtained three MIL-101 MOFs,the trimethylacetamideterminated TC-MIL-101,the benzamide-terminated BC-MIL-101,and the oxalic acid monoamideterminated OC-MIL-101.All the MOFs can efficiently encapsulate volatile molecules.Moreover,we demonstrate that the release profile of volatiles can be widely tuned to sustain the release in several days to months and even over a year using different modified MIL-101 MOFs.We show that the release profiles are correlated with the binding energies between the guest volatiles and pores in MOFs.The pore diffusion and the synergistic transport are the rate-limiting step of the guest molecules from the modified MOFs.

    Keywords:Metal-organic frameworks(MOFs) Postsynthetic modification Encapsulation and sustained-release Fragrances Host-guest interaction

    Volatile molecules such as fragrances are widely used in cosmetics,household products,medicine,and other industries[1].They cannot only affect our emotions[2,3],but also have antiinflammatory,antibacterial,and antioxidant effects[1].Fragrances are usually volatile[4],which dramatically limits their industrial applications.The fragrance concentrations in the air should be maintained at a certain level for maximized effect,but the volatile nature makes it vary with temperature and season.Therefore,it is necessary to effectively encapsulate fragrant molecules and tune their release rate.

    Various materials have been developed for fragrance encapsulation,including polymeric nanoparticles[5,6],zeolite[7,8]and metal-organic framework(MOF)[9,10].Among these materials,MOFs,formed by coordination of metal ions and organic ligands,have several advantages such as stable structure,permanent porosity,large specific surface area and adjustable pore size.MOFs have been widely used in catalytic[11,12],adsorption and separation[13,14],sensors[15,16]and drug delivery[17-19].The porous structures of MOFs can be functionalized with various groups,and the pore sizes can be adjusted with ligands of different lengths[20,21].Rational design of pore chemistry(postsynthetic modification)endows MOF materials with high absorption capacity and selectivity to specific gas molecules through the controlling over the intermolecular host-guest interaction[20].Postsynthetic modification can also enhance the stability of MOF[22,23].Recently,we have applied MOFs for encapsulation and controlled release of volatile molecules,e.g.,fragrance.We found that the polarity of the MOF pore affects the release of encapsulated molecules.The incorporation of polar groups such as hydroxyl groups into the structures of MOFs can sustain the release of polar fragrances due to the formation of hydrogen bond interactions[9,10].

    One of the most effective approaches to regulate the loading capacity and release profile of guest molecules in a porous matrix is to change the pore surface chemistry,thereby affecting the hostguest interactions[9,17,24].In this work,we hypothesize that tailoring the pore chemistry of MOFs may enable the tunable release of volatile molecules from MOF materials(Scheme 1).The pore surface functionalization with different organic groups can vary the pore size,polarity and hydrophobicity,thus changing the host-guest interactions and controlling over the release of guest molecules.To demonstrate the concept,we chose aminefunctionalized and chromium(III)-based MIL-101(Cr)-NH2MOF,because of the easiness for synthesis and surface modification,the mesoporous pores large enough for loading volatile molecules,and the high chemical,moisture and thermal stability[18,21,25,26].Postsynthetic modification was used for the chemical modification of the pore surface of MIL-101(Cr)-NH2through amidation reaction[27].Fragrances as a typical type of volatile molecules was selected as representative guest molecules.

    Scheme 1.Illustration of tuning the release of volatile molecules by adjusting the binding energy between guest molecules and MOFs.

    By postsynthetic modification of activated MIL-101-NH2,we obtained four MIL-101 MOFs with different pore surfaces(Fig.1A),including amine,oxalic acid,benzyl group or tert-butyl group to evaluate their effects on the release of guest molecules.These groups are different in size,polarity and hydrophobicity,and thus may have different interactions with guest molecules.For instance,the previous studies showed that covalent attachment of oxalic acid enhances selectivity of CO2/N2[28],and the introduction of benzyl group increases the hydrogen uptake capacity[29].We first synthesized and characterized all the MIL-101 MOFs(MIL-101-NH2,TC-MIL-101,BC-MIL-101 and OC-MIL-101).The scanning electron microscope(SEM)images(Fig.1B)show that all the MIL-101 MOFs exhibit similar aggregated morphologies composed of spherical or octahedral particles with diameters of around tens of nanometers,similar to previous reports[30].The powder X-ray diffraction(PXRD)pattern of MIL-101-NH2is similar to the simulated-MIL-101 and the reported pattern[31,32](Fig.1C).The three modified MOFs possess the same crystalline reflections as initial MIL-101-NH2.These results suggest that the structural topology of the MOFs maintained after postsynthetic modification.The Brunauer Emmett Teller(BET)surface area of MIL-101-NH2,TC-MIL-101,BC-MIL-101 and OC-MIL-101 were calculated to be 1683,913,936 and 1562 m2/g,respectively,based on the 77 K N2sorption isotherms(Fig.1D).The pore-size distribution curves show that all the crystals have two types of micropores with diameters of 1.4 and 1.7 nm,respectively(Fig.1E).Compared to MIL-101-NH2,the BET surface areas and pore volumes of TC-MIL-101 and BC-MIL-101 significantly decrease while those of OC-MIL-101 only change slightly.It is reported that the porosity of MOF is reduced by the reaction with hydrochloric acid produced during the post synthesis[33].

    Fig.1.Synthesis and structure characterizations of post-modified MIL-101 MOFs:(A)Schematic illustration for the post-synthesis of TC-MIL-101,BC-MIL-101 and OCMIL-101 from MIL-101-NH2;(B)SEM images(scale bar=100 nm);(C)XRD patterns;(D)77 K N2 sorption isotherms;(E)Pore-size distribution by NLDFT method;(F)TGA curves.

    The thermal stability of the MOFs was examined by thermal gravimetric analysis(TGA,Fig.1F).The weight loss before 200°C of MIL-101-NH2is due to the evaporation of guest molecules in pores and the weight loss between 200-290°C is due to the leave of coordinated water and OH groups[31].The significant weight loss between 290°C and 320°C can be attributed to the collapse of the crystal structure.The crystal decomposition temperatures of MIL-101-NH2,TC-MIL-101,BC-MIL-101 and OC-MIL-101 are 278,324,342 and 310°C(Fig.S1 in Supporting information),respectively.

    Fig.2.The compositional characterization of post-synthesized MIL-101 MOFs:(A)FT-IR spectra;(B)1H NMR spectra of the digested products from various MIL-101 MOFs.

    The chemical structures of the MIL-101 MOFs were characterized by fourier transform infrared spectroscopic(FT-IR)(Fig.2A)and1H NMR(Fig.2B).In the FT-IR spectra,characteristic peaks of MIL-101-NH2are observed at 1580-1660 cm-1(N--H bending vibration),1496 cm-1,1433 cm-1(stretching vibrations of O-C-O units)and 1257 cm-1(stretching vibration of C--N)[28,34].Compared with MIL-101-NH2,the three modified MOFs show some peaks with frequency shift or intensity change in addition to the characteristic peaks of MIL-101-NH2.The intensity and frequency of peaks at 1580-1660 cm-1are significantly changed because of the appearance of C=O stretching vibration in the newly formed amide groups.Moreover,the C--N stretching vibration of aromatic amines(1340 cm-1and 1257 cm-1)become invisible or less prominent.Accordingly,a new characteristic N--H bending vibration was observed at 1303 cm-1because of the formation of aromatic amides.

    The degree of post-synthetic modification was determined by1H NMR after the digestion of MOFs in NaOH/D2O solution(Fig.2B).The digested solution contained unmodified 2-aminoterephthalic acid and the corresponding amidoterephthalic acid.The chemical shifts of aromatic protons moved to downfield after the formation of aromatic amides.Thus,we can obtain the conversion rates by calculating and comparing the peak integration of the aromatic protons and substituent group protons.The conversion rates were determined as 65.8%,63.1% and 53.5% for TC-MIL101,BC-MIL-101 and OC-MIL-101,respectively.

    To examine the encapsulation capacities of modified MOFs,we selected several commonly used fragrances as model molecules,including myrcene(Myr),n-butyl acetate(BA)and isoamyl nbutyrate(IB).There is no apparent change in the structure and morphology of MOFs after loading fragrant molecules(Figs.S2 and S3 in Supporting information).The fragrance loading capacities were determined by comparing the TGA weight loss of the pristine MOFs and the corresponding fragrance-loaded MOFs(Fig.3A and Table S1 in Supporting information).All the MOFs show high capability in encapsulation of fragrant molecules with a loading content of 0.10 g to 0.28 g fragrance per gram of MOFs(g/g,Table S1).Among them,the oxalic acid-functionalized OC-MIL-101 shows a 2-3-fold higher loading capacity of the two polar esters,IB and BA,than those of TC-MIL-101 and BC-MIL-101.This result is probably due to the relatively large surface area and the formation of strong interactions between polar molecules and polar pores of OC-MIL-101,which is consistent with our previous findings[9,10].The adsorption capacity of the terpenoid-type Myr on BC-MIL-101 is about 2-fold of those on other MOFs,which is probably affected by the π-π stacking interaction between the phenyl ring and unsaturated bonds.

    To study the molecular interactions between MOFs and fragrances,the FT-IR spectra of MOFs/fragrances and free fragrances were recorded(Fig.3B,Figs.S4 and S5 in Supporting information).The FT-IR spectra of IB and IB-loaded MOF are shown in Fig.3B as representatives.Compared to pristine MOF(Fig.2A),all the IB-loaded MOFs(MOF/IB)show a new peak at around 1738 cm-1,which can be attributed to the ester carbonyl C=O stretching of IB molecule.Compared to free IB,the C=O stretching peak in MOF/IB shows a redshift by 17 cm-1,suggesting the formation of hydrogen bonds in the C =O-H+moiety between amide/amine and ester group[9,10].OC-MIL-101 shows another C=O stretching peak at about 1732 cm-1,which is probably due to the formation of strong hydrogen bonds between carboxyl and ester group.These phenomena were also observed in BA-loaded MOF,further confirming the existence of hydrogen bond interaction between polar fragrance and MOFs(Fig.S4).The loading of the terpenoid-type Myr in MOFs shows redshift of the C=C stretching frequency at 1595 cm-1,probably due to π-π stacking interaction[35].As a result,the intensity of peaks at 1615 cm-1of MOFs/Myr are obviously strengthen compared to those of MOFs(Fig.S5).

    The host-guest interactions of fragrance IB with the cage-like moieties of TC-MIL-101,BC-MIL-101 and OC-MIL-101 were further studied by molecular dynamics calculation using Large-scale Atomic/Molecular Massively Parallel Simulator(LAMMPS)[36].Isolated MIL-101 cages was built by Materials Studio 2019.As Fig.3C shows,IB binds to a simulated isolated cage of MIL-101 and locates in its geometry center.The binding energies of IB and the cage were mapped by rotating in two orthogonal directions both from 0 to 360 degrees and replicated to 720 degrees for visual consideration.IB exhibits different direction dependence of binding energies with TC-MIL-101,BC-MIL-101 and OC-MIL-101.The IB molecule is perpendicular to the normal of the pentagon window when the binding energies reach the minimum for all the three cage-like MIL-101 molecules.In this way,the stable locking of IB can be achieved geometrically.The average binding energy(Eb)of IB to different MOFs was determined as-25.068 kcal/mol for OC-MIL-101/IB, -8.405 kcal/mol for TC-MIL-101/IB, and-11.428 kcal/mol for BC-MIL-101/IB(Fig.3D).The results show that OC-MIL-101 has the most potent host-guest interactions with IB.It is in agreement with the observation of FT-IR that the formation of hydrogen bonds reduces the binding energy[9,37].Interestingly,the IB encapsulation capacities in different MOFs are also correlated with their average binding energies(Fig.3A and Table S1).All these results suggest that the encapsulation capability of guest molecules in porous MOF is affected by the host-guest interactions,and the strong interaction may enhance the loading capacity.

    Fig.3.Encapsulation of volatile molecules in post-synthesized MIL-101 MOFs and the host-guest interaction analysis:(A)The chemical structures of representative guest molecules,isoamyl n-butyrate(IB),n-butyl acetate(BA)and myrcene(Myr),and their encapsulation capacity in different MOFs;(B)The FT-IR of IB and IB-loaded MOFs;(C)The schematic of an isolated MIL-101 cage capturing an IB molecule in its center and the direction dependence of binding energies of TC-MIL-101 with the IB molecule;(D)The binding energies of IB to different MOFs.

    Fig.4.Sustained release of volatile molecules from post-synthesized MIL-101-type MOFs:(A)Release profiles and kinetics of IB and IB-loaded MOFs fitted by Korsmeyer-Peppas mathematical model at 25°C;(B)Release percentage of different volatile molecules from MOFs over two weeks at 25°C.

    We propose that the host-guest interactions between the guest molecules and MOF may also regulate the release profiles.To test this assumption,we studied the release profiles of Myr,BA or IB loaded MOFs to compare with free fragrances.We found that free fragrances were completed released in a couple of days,while all the fragrances loaded in MOFs showed sustained release profiles(Fig.4A,Figs.S6 and S7 in Supporting information).The releasing amount of TC-MIL-101/IB over two weeks is around 3.06 and 27.4 times that of BC-MIL-101 and OC-MIL-101,respectively.The stronger host-guest interactions lead to a more sustained release of guest molecules.This tendency on release profiles is also observed on BA-loaded MOFs(Fig.S6).There is no apparent difference in the release profiles of terpene-type Myr among all the MOFs which may due to the small interaction differences between the nonpolar molecule and MOFs(Fig.S7).

    We next studied the release kinetics of MOFs/fragrances using four mathematic models,including zero-order (yt/y∞=kt+c),first-order(yt/y∞=1-exp[-kt]),Higuchi(yt/y∞=kt0.5),and Korsmeyer-Peppas(yt/y∞=ktn+c)models.The release curves of MOFs/IB can be well fitted by the Korsmeyer-Peppas model(Fig.4B and Fig.S8 in Supporting information)[38].The release rate constant k was determined as 48.4 for free IB,45.0 for TC-MIL-101/IB,12.0 for BC-MIL-101/IB,and 0.5 for OC-MIL-101/IB.Accordingly,the half release time(t50)was calculated as 1.1 days for free IB,2.1 days for TC-MIL-101/IB,55.5 days for BC-MIL-101/IB,and 674.8 days for OC-MIL-101/IB(Table S2 in Supporting information).This result suggests that the release of volatile molecules can be adjusted from days to months and even over a year by controlling over the host-guest interactions.The parameter n of the Korsmeyer-Peppas equation can be used to determine the diffusion types.For n<0.45,it is a diffusion-controlled release;for 0.45<n<0.89,it represents synergistic transport;and for n>0.89,it follows swelling controlled release.The index n for TC-MIL-101/IB and BC-MIL-101/IB are 0.26 and 0.36,respectively,indicating that the release mechanisms of TC-MIL-101/IB and BC-MIL-101/IB are diffusion-controlled release.The index n for OC-MIL-101 is 0.71,showing a synergistic transport release mechanism.The release curves of BA and Myr were also fitted by the Korsmeyer-Peppas model(Figs.S9 and S10 in Supporting informatoin).All the release mechanisms of MOFs/BA are synergistic transport,while the release mechanisms of Myr from MOFs/Myr are diffusion release.These results suggested that the diffusion mechanism of volatile molecules from MOF is affected by both the guest molecules and the host carrier.

    In conclusion,we synthesized three pore-functionalized MIL-101-type MOFs by postsynthetic modification.The functionalized MOFs have different guest-host interactions with volatile guest molecules and exhibit various encapsulation capacities and sustained release profiles.The release profiles are correlated with the binding energies between the guest volatiles and pores in MOFs.Chemical engineering the pore surface of MOF is capable of tuning the release of encapsulated molecules from days to several months and even over a year.Thus,we believe that the postmodification of MOF holds excellent potential for application in encapsulation and sustained release of volatile molecules.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work is supported by the National Key Research and Development Program of China(No.2016YFA0200301),the National Natural Science Foundation of China(Nos.21875211 and 51603181).The authors thank the High-performance Computing Platform of Peking University for the support of simulation.The authors also thank Mrs.Na Zheng in the State Key Laboratory of Chemical Engineering at Zhejiang University for help on SEM experiments.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.10.035.

    综合色丁香网| 在线观看免费视频日本深夜| eeuss影院久久| 91久久精品国产一区二区三区| 插阴视频在线观看视频| 国产综合懂色| 黄色日韩在线| 国产私拍福利视频在线观看| 欧美zozozo另类| 久久精品夜色国产| 亚洲精华国产精华液的使用体验 | av国产免费在线观看| 露出奶头的视频| 国产亚洲av嫩草精品影院| 亚洲国产精品久久男人天堂| 在线a可以看的网站| 色噜噜av男人的天堂激情| 国产精品精品国产色婷婷| 精品人妻熟女av久视频| 看黄色毛片网站| 寂寞人妻少妇视频99o| 99久久中文字幕三级久久日本| 免费搜索国产男女视频| 午夜福利成人在线免费观看| 亚洲专区国产一区二区| 国产精品一及| 在现免费观看毛片| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看| 丰满的人妻完整版| 色吧在线观看| а√天堂www在线а√下载| 性欧美人与动物交配| 久久久欧美国产精品| 免费在线观看影片大全网站| 久久久久久久午夜电影| 在线免费观看不下载黄p国产| 欧美潮喷喷水| av天堂在线播放| 综合色av麻豆| 99久国产av精品| 91在线观看av| 日韩中字成人| 最后的刺客免费高清国语| 久久精品国产亚洲av天美| 国产精品国产高清国产av| 无遮挡黄片免费观看| 俄罗斯特黄特色一大片| 午夜福利成人在线免费观看| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 久久久色成人| 看黄色毛片网站| 国产三级中文精品| 综合色丁香网| 国产av一区在线观看免费| av天堂中文字幕网| 亚洲自偷自拍三级| 国产麻豆成人av免费视频| 国产av麻豆久久久久久久| 国产高清视频在线播放一区| 国产精品精品国产色婷婷| 夜夜夜夜夜久久久久| av在线亚洲专区| 久久人人精品亚洲av| 日本免费a在线| 色视频www国产| 欧美日本视频| 午夜a级毛片| 男女视频在线观看网站免费| 精品久久久久久久久久免费视频| 中文亚洲av片在线观看爽| 香蕉av资源在线| 日韩高清综合在线| 最近最新中文字幕大全电影3| 国产亚洲精品久久久久久毛片| 日日撸夜夜添| 最近在线观看免费完整版| 欧美最黄视频在线播放免费| 日日啪夜夜撸| 免费搜索国产男女视频| 午夜精品一区二区三区免费看| 国产极品精品免费视频能看的| 18禁黄网站禁片免费观看直播| 久久人人爽人人爽人人片va| 国产美女午夜福利| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av| 国产亚洲av嫩草精品影院| 国内精品久久久久精免费| 悠悠久久av| 九九热线精品视视频播放| a级毛色黄片| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影| 一级毛片我不卡| 精品久久久噜噜| 国产精品综合久久久久久久免费| a级毛片a级免费在线| 久久精品国产亚洲网站| 亚洲色图av天堂| 国产成人91sexporn| 久久国内精品自在自线图片| 亚洲精华国产精华液的使用体验 | 欧美日韩乱码在线| 99久久成人亚洲精品观看| 成人特级黄色片久久久久久久| 波多野结衣高清作品| 亚洲欧美中文字幕日韩二区| 特级一级黄色大片| 日本 av在线| 日韩欧美精品免费久久| 十八禁国产超污无遮挡网站| 男人舔奶头视频| 18禁在线播放成人免费| 精品99又大又爽又粗少妇毛片| 国产精品1区2区在线观看.| 日韩欧美三级三区| 欧美色欧美亚洲另类二区| 久久久久久久久久成人| 色吧在线观看| 最近2019中文字幕mv第一页| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 乱系列少妇在线播放| 久久亚洲国产成人精品v| 国产 一区精品| 少妇猛男粗大的猛烈进出视频 | 夜夜看夜夜爽夜夜摸| 久久人人爽人人爽人人片va| 99久国产av精品| 亚洲专区国产一区二区| 日韩强制内射视频| 亚洲不卡免费看| 亚洲国产高清在线一区二区三| 国产一区二区亚洲精品在线观看| 成人鲁丝片一二三区免费| 99久久九九国产精品国产免费| 丰满人妻一区二区三区视频av| 精品人妻熟女av久视频| 久久久久国产精品人妻aⅴ院| 日韩欧美一区二区三区在线观看| 熟女人妻精品中文字幕| 欧美不卡视频在线免费观看| 亚洲av免费在线观看| 日韩 亚洲 欧美在线| 国产伦一二天堂av在线观看| 亚洲国产欧洲综合997久久,| 成人二区视频| 精品一区二区三区人妻视频| 少妇裸体淫交视频免费看高清| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 日本a在线网址| 国产在视频线在精品| 我的老师免费观看完整版| 欧美性猛交黑人性爽| 99久国产av精品| 日本黄色视频三级网站网址| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| www日本黄色视频网| 性色avwww在线观看| 国产av麻豆久久久久久久| 国产真实伦视频高清在线观看| 嫩草影院入口| 日韩大尺度精品在线看网址| 一a级毛片在线观看| 一本一本综合久久| 亚洲av五月六月丁香网| 变态另类丝袜制服| 欧美高清性xxxxhd video| 久久这里只有精品中国| 99在线视频只有这里精品首页| av在线亚洲专区| 丰满的人妻完整版| 干丝袜人妻中文字幕| 婷婷精品国产亚洲av| 亚洲熟妇熟女久久| 亚洲精品456在线播放app| 高清午夜精品一区二区三区 | 午夜激情福利司机影院| 国产熟女欧美一区二区| av在线天堂中文字幕| 久久精品国产亚洲av天美| 老熟妇仑乱视频hdxx| 亚洲七黄色美女视频| 亚洲av成人精品一区久久| 成人av一区二区三区在线看| 丝袜美腿在线中文| 亚洲中文日韩欧美视频| 色吧在线观看| 亚洲av电影不卡..在线观看| 久久欧美精品欧美久久欧美| videossex国产| 看片在线看免费视频| 国产一区二区在线观看日韩| 少妇人妻精品综合一区二区 | 人妻夜夜爽99麻豆av| 欧美一区二区亚洲| 99久久成人亚洲精品观看| 亚洲精品日韩在线中文字幕 | 亚洲第一电影网av| 无遮挡黄片免费观看| 免费观看的影片在线观看| 欧美日本视频| 九色成人免费人妻av| 蜜桃亚洲精品一区二区三区| 国产精品一区二区性色av| 日本爱情动作片www.在线观看 | 99九九线精品视频在线观看视频| 观看免费一级毛片| 日韩欧美精品v在线| 亚洲最大成人手机在线| 欧美绝顶高潮抽搐喷水| 国产成年人精品一区二区| 99热这里只有是精品在线观看| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 老司机午夜福利在线观看视频| 色哟哟哟哟哟哟| 两个人视频免费观看高清| 免费人成在线观看视频色| eeuss影院久久| 能在线免费观看的黄片| 国产毛片a区久久久久| 高清日韩中文字幕在线| 最近手机中文字幕大全| av专区在线播放| 热99在线观看视频| 欧美丝袜亚洲另类| 悠悠久久av| 卡戴珊不雅视频在线播放| 可以在线观看毛片的网站| 色噜噜av男人的天堂激情| 国产精品一区www在线观看| 久久鲁丝午夜福利片| 欧美精品国产亚洲| 尤物成人国产欧美一区二区三区| 亚洲精品成人久久久久久| 最近在线观看免费完整版| 伦理电影大哥的女人| 国产一区二区亚洲精品在线观看| 成人美女网站在线观看视频| 一进一出好大好爽视频| 国产91av在线免费观看| 成人三级黄色视频| 美女 人体艺术 gogo| 小说图片视频综合网站| av视频在线观看入口| 国产在线男女| 长腿黑丝高跟| 亚洲人成网站高清观看| 国产蜜桃级精品一区二区三区| 在线看三级毛片| 亚洲国产高清在线一区二区三| 日本a在线网址| 亚洲av中文字字幕乱码综合| 亚洲av.av天堂| 免费看av在线观看网站| 久久久午夜欧美精品| 国产亚洲精品久久久com| 国产探花极品一区二区| 久久久精品欧美日韩精品| 国产综合懂色| 成人国产麻豆网| 久久人人爽人人片av| 亚洲中文字幕一区二区三区有码在线看| 69av精品久久久久久| 小蜜桃在线观看免费完整版高清| 亚洲内射少妇av| 欧美国产日韩亚洲一区| 色噜噜av男人的天堂激情| 少妇熟女欧美另类| 国产成人精品久久久久久| 99国产精品一区二区蜜桃av| 亚洲欧美成人精品一区二区| 久久久久久国产a免费观看| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩无卡精品| 色视频www国产| 精品人妻偷拍中文字幕| 国产成人影院久久av| 久久鲁丝午夜福利片| 中文字幕熟女人妻在线| 亚洲av中文字字幕乱码综合| 精品午夜福利在线看| 国产av一区在线观看免费| 一级a爱片免费观看的视频| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 一个人观看的视频www高清免费观看| 91在线观看av| 嫩草影院精品99| 成人一区二区视频在线观看| 免费在线观看影片大全网站| 中国美女看黄片| 国产探花极品一区二区| 日韩成人av中文字幕在线观看 | 国产高清有码在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 色哟哟·www| 国产色爽女视频免费观看| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 人妻少妇偷人精品九色| 国产高清视频在线播放一区| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 在线a可以看的网站| 日日摸夜夜添夜夜爱| 国产伦一二天堂av在线观看| 久久综合国产亚洲精品| 成人永久免费在线观看视频| 免费观看人在逋| 国产精品人妻久久久久久| 长腿黑丝高跟| 欧美潮喷喷水| 成年女人永久免费观看视频| 成人一区二区视频在线观看| 国产成人福利小说| 联通29元200g的流量卡| 国产成人福利小说| 国产激情偷乱视频一区二区| 有码 亚洲区| 亚洲av成人精品一区久久| 免费av毛片视频| 成熟少妇高潮喷水视频| 最新中文字幕久久久久| 欧美极品一区二区三区四区| 亚洲乱码一区二区免费版| 国产精品美女特级片免费视频播放器| 久久久久久九九精品二区国产| 毛片女人毛片| 人妻夜夜爽99麻豆av| 国产精华一区二区三区| 你懂的网址亚洲精品在线观看 | 亚洲欧美日韩高清专用| 亚洲第一区二区三区不卡| videossex国产| 网址你懂的国产日韩在线| 一级毛片久久久久久久久女| 内射极品少妇av片p| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 亚洲最大成人av| 国产伦精品一区二区三区四那| 亚洲熟妇熟女久久| 国产激情偷乱视频一区二区| a级毛片a级免费在线| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久av| 日日摸夜夜添夜夜添小说| 哪里可以看免费的av片| 精品久久久久久久久久免费视频| 国产欧美日韩精品亚洲av| 黄色欧美视频在线观看| 麻豆国产97在线/欧美| 啦啦啦韩国在线观看视频| 五月玫瑰六月丁香| 联通29元200g的流量卡| 一级毛片电影观看 | 一级黄片播放器| 日韩一本色道免费dvd| 在线免费十八禁| 成人av一区二区三区在线看| 三级毛片av免费| 国内少妇人妻偷人精品xxx网站| 禁无遮挡网站| 精品一区二区三区人妻视频| 精品人妻熟女av久视频| 蜜臀久久99精品久久宅男| 久99久视频精品免费| 欧美一区二区精品小视频在线| 人妻少妇偷人精品九色| 99国产极品粉嫩在线观看| 国产人妻一区二区三区在| 亚洲成人久久性| 午夜爱爱视频在线播放| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲网站| 亚洲国产精品sss在线观看| 色视频www国产| 日韩欧美精品v在线| 免费看日本二区| 亚洲美女黄片视频| 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件 | 国产精品无大码| 又爽又黄无遮挡网站| 搡老岳熟女国产| 成人亚洲精品av一区二区| 欧美bdsm另类| 亚洲天堂国产精品一区在线| 亚洲国产欧洲综合997久久,| 小蜜桃在线观看免费完整版高清| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱 | 亚洲人成网站高清观看| 久久人人爽人人爽人人片va| 在线国产一区二区在线| 校园人妻丝袜中文字幕| 色综合色国产| 午夜老司机福利剧场| 欧美人与善性xxx| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 综合色丁香网| h日本视频在线播放| 欧美xxxx黑人xx丫x性爽| 亚洲专区国产一区二区| 日韩亚洲欧美综合| 久久精品影院6| 99久久精品一区二区三区| 久久精品综合一区二区三区| 亚洲,欧美,日韩| 亚洲av熟女| av天堂中文字幕网| 精品欧美国产一区二区三| 99久久久亚洲精品蜜臀av| 狂野欧美白嫩少妇大欣赏| 亚洲精品在线观看二区| 老司机福利观看| 国产蜜桃级精品一区二区三区| 久久人妻av系列| 波多野结衣高清作品| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 日韩国内少妇激情av| 毛片一级片免费看久久久久| 永久网站在线| 麻豆乱淫一区二区| 国产不卡一卡二| 久久久久精品国产欧美久久久| 亚洲av.av天堂| 啦啦啦观看免费观看视频高清| 久久久久久国产a免费观看| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩卡通动漫| 成人特级黄色片久久久久久久| av女优亚洲男人天堂| 91午夜精品亚洲一区二区三区| 桃色一区二区三区在线观看| 国产高清激情床上av| 午夜久久久久精精品| 哪里可以看免费的av片| 成人永久免费在线观看视频| 久久天躁狠狠躁夜夜2o2o| 久久天躁狠狠躁夜夜2o2o| 国产视频一区二区在线看| 久久久色成人| 人人妻,人人澡人人爽秒播| 国产69精品久久久久777片| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕人妻熟人妻熟丝袜美| 国产成年人精品一区二区| 波多野结衣巨乳人妻| 搡老妇女老女人老熟妇| 女同久久另类99精品国产91| 国产精品一区www在线观看| 国产精品福利在线免费观看| 国产精品永久免费网站| 亚洲精品粉嫩美女一区| 国产伦一二天堂av在线观看| 97热精品久久久久久| 国内精品美女久久久久久| 久久精品夜色国产| 男人舔女人下体高潮全视频| 午夜精品一区二区三区免费看| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 午夜福利视频1000在线观看| 欧美+亚洲+日韩+国产| 一级av片app| 免费av毛片视频| 日韩一区二区视频免费看| 亚洲av一区综合| 三级经典国产精品| 亚洲欧美中文字幕日韩二区| 美女大奶头视频| 久久精品国产鲁丝片午夜精品| АⅤ资源中文在线天堂| 久久精品国产亚洲av涩爱 | 国产又黄又爽又无遮挡在线| 国产一区二区激情短视频| 欧美+日韩+精品| 六月丁香七月| 悠悠久久av| 欧美中文日本在线观看视频| 精品乱码久久久久久99久播| 亚洲精华国产精华液的使用体验 | 国产av一区在线观看免费| 床上黄色一级片| 国产伦一二天堂av在线观看| 久久久久九九精品影院| 欧美又色又爽又黄视频| 久久精品国产亚洲av天美| 国产成人福利小说| 国内精品一区二区在线观看| 久久国内精品自在自线图片| 亚洲乱码一区二区免费版| 尤物成人国产欧美一区二区三区| 九九热线精品视视频播放| 色综合色国产| 亚洲欧美中文字幕日韩二区| 3wmmmm亚洲av在线观看| 中文字幕久久专区| а√天堂www在线а√下载| 日本黄色视频三级网站网址| 最新在线观看一区二区三区| 国产精品,欧美在线| 97超碰精品成人国产| 99久久无色码亚洲精品果冻| 久久久久久九九精品二区国产| 精品午夜福利视频在线观看一区| 国产成年人精品一区二区| 色5月婷婷丁香| 午夜视频国产福利| 搡老妇女老女人老熟妇| 精品一区二区三区视频在线观看免费| 麻豆精品久久久久久蜜桃| 热99在线观看视频| 成人精品一区二区免费| 亚洲高清免费不卡视频| 日韩人妻高清精品专区| 老司机福利观看| АⅤ资源中文在线天堂| 人妻制服诱惑在线中文字幕| 国产片特级美女逼逼视频| 成人三级黄色视频| 久久久久久久久中文| 国产精品久久久久久av不卡| 嫩草影视91久久| 色尼玛亚洲综合影院| 国产一区二区激情短视频| 亚洲av五月六月丁香网| 日韩 亚洲 欧美在线| 国产精品无大码| 国产在线精品亚洲第一网站| 免费大片18禁| 亚洲国产高清在线一区二区三| 最新在线观看一区二区三区| 亚州av有码| 国产精品99久久久久久久久| 亚洲精品国产av成人精品 | 国内久久婷婷六月综合欲色啪| 亚洲无线在线观看| 欧美日韩综合久久久久久| 在线看三级毛片| 99久久中文字幕三级久久日本| 中国美白少妇内射xxxbb| 亚洲精品国产av成人精品 | 久久久a久久爽久久v久久| 一级毛片久久久久久久久女| 亚洲中文字幕一区二区三区有码在线看| 男人狂女人下面高潮的视频| 亚洲av成人av| 免费无遮挡裸体视频| 国产黄色视频一区二区在线观看 | 精华霜和精华液先用哪个| 国产色婷婷99| 色播亚洲综合网| 久久热精品热| 日本三级黄在线观看| 久久久精品94久久精品| 在线观看免费视频日本深夜| 欧美3d第一页| 国产亚洲91精品色在线| 成年版毛片免费区| 99热全是精品| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av涩爱 | 天堂av国产一区二区熟女人妻| 亚洲婷婷狠狠爱综合网| 久久久午夜欧美精品| 丝袜喷水一区| 岛国在线免费视频观看| 男女啪啪激烈高潮av片| 精品人妻一区二区三区麻豆 | 国产精品野战在线观看| 欧美xxxx黑人xx丫x性爽| 午夜影院日韩av| 啦啦啦观看免费观看视频高清| 色播亚洲综合网| 日日啪夜夜撸| 亚洲在线自拍视频| 亚洲国产精品成人综合色| 日韩一本色道免费dvd| 一本精品99久久精品77| 成人漫画全彩无遮挡| 国产精品一区二区性色av| 欧洲精品卡2卡3卡4卡5卡区| 欧美性猛交╳xxx乱大交人| 国内精品美女久久久久久| 蜜桃久久精品国产亚洲av| 最近视频中文字幕2019在线8| 亚洲欧美精品自产自拍| 国产精品久久电影中文字幕| 我要看日韩黄色一级片| 国内精品美女久久久久久| 久久精品国产亚洲av天美| 免费大片18禁| 午夜福利高清视频| 中文在线观看免费www的网站| 在线观看美女被高潮喷水网站| 我的老师免费观看完整版| 久久久久久久久久久丰满| 少妇裸体淫交视频免费看高清| 国产高清视频在线播放一区| 级片在线观看| 两个人视频免费观看高清| 日日啪夜夜撸| 国内精品久久久久精免费|