• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-step construction of MoO2 uniform nanoparticles on graphene with enhanced lithium storage

    2021-08-26 02:08:04YantingChuBaojuanXiShenglinXiong
    Chinese Chemical Letters 2021年6期

    Yanting Chu,Baojuan Xi,Shenglin Xiong*

    Key Laboratory of Colloid and Interface Chemistry,Ministry of Education,School of Chemistry and Chemical Engineering,State Key Laboratory of Crystal Materials,Shandong University,Ji’nan 250100,China

    ABSTRACT Transition-metal oxides are considered to be a promising anode material for lithium-ion batteries(LIBs)due to their high capacities,low cost,and ease of synthesis.Herein,a hybrid nanosheet composed of uniform MoO2 nanoparticles(NPs)homogeneously immobilized on the reduced graphene oxide nanosheets(MoO2 NP@rGO)is first synthesized by a self-templating and subsequent calcination treatment.The unique two-dimensional hybridnanosheets provides several merits.rGO can be used as a favorable support for the loading of electrochemically active MoO2 NPs.Meanwhile,MoO2 NPs can effectively prevent the stacking of the rGO.The effective combination of MoO2 NPs and rGO nanosheets furnish additional electrochemically interfacial active sites for extra lithium ion storage.Noticeably,the as-fabricated hybrid nanosheets deliver a reversible capacity of 641 mAh/g after 350 cycles at a current density of 1000 mA/g with a good rate capability.The greatly enhanced lithium storage properties of MoO2 NP@rGO indicate the importance of elaborate construction of novel hybrid hierarchical structures.

    Keywords:MoO2 Graphene Two-dimensional hybrid nanostructure Anode Lithium-ion batteries

    The development of high-performance energy storage systems for portable electronic devices,zero emission vehicles,and emerging smart grids based on renewable energy is one of the most pressing challenges facing the modern society.To date,lithium-ion batteries(LIBs)have become the most successful technology capable of meeting energy storage requirements because of their long life,pollution-free,and high energy density[1-5].However,commercial graphite used for anode materials stores lithium ions through an intercalation mechanism,and the theoretical specific capacity of only 375 mAh/g is far from satisfying the growing demand for high-performance LIBs in modern life demand[6].In this case,it is a long-term goal to explore electrode materials having higher specific capacities and longer lifetimes.Transition-metal oxides(TMOs)have been extensively studied as negative electrode materials for rechargeable LIBs due to their higher theoretical specific capacity and higher safety than conventional graphite[7-10].However,most of TMOs are accompanied by low electronic conductivity,severe aggregation,and significant volume changes during charging and discharging,which lead to rapid capacity degradation and greatly hamper their practical application.Therefore,it is urgent and desirable to design and prepare replaceable materials with high stability and good conductivity.

    Molybdenum dioxide(MoO2),due to its high conductivity,high reversible capacity(838 mAh/g),good chemical stability,and high electrochemical activity for lithium ions,is considered to be the most promising TMO anode materials for LIBs[11-13].However,MoO2still faces challenges in practical applications such as severe aggregation of active materials and slow diffusion kinetics during the repeated lithium insertion/extraction[14,15].Many researches have been done to overcome these shortcomings,such as reducing the size of MoO2to the nanometer level,which shortened the transport distance of electrons and lithium ions and further reduced the resistance of the electrons and ions[12,13,16].In addition,nanostructures provide higher surface activity and induce higher effective contact areas[17].However,the construction of nanostructured MoO2can only improve the electrochemical performance to a certain extent,and the inherent problem of effective lithium storage during charge and discharge process cannot be solved[18].To alleviate the above problems,the researchers have synthesized MoO2-based hybrid structures through various approaches,such as carbon-coated MoO2[19,20],nitride-coated MoO2[21],Mo2N nano-layer coated MoO2[16]and graphene-MoO2composites[22-26].Although these advances have been made,the reversible capacity and the cycle life of these materials still require to be optimized.As a result,it is still an important topic to search a more compendious and efficient approach to synthesize MoO2-based hybrids with novel structural and multicompositional features and superior properties.

    Herein,we present a self-template strategy for the fabrication of uniform MoO2nanoparticles(NPs)immobilized on the reduced graphene oxide two-dimensional(2D)hybrid nanosheets(denoted as MoO2NP@rGO)as a new LIB anode material via a facile polyolassisted reflux approach coupled with calcination treatment in an inert atmosphere.Our synthetic strategy greatly simplifies the usual fabrication of MoO2-based hybrids,because it does not need multi-step reactions and it does not need to use other strong reducing agents(e.g.,Ar/H2).The unique 2D multicompositional architectures endow the MoO2NP@rGO hybrid with superior electrochemical performance when evaluated as an anode material for LIBs.Specifically,the MoO2NP@rGO hybrid delivered a reversible capacity of 1516 mAh/g at a current density of 200 mA/g after 150 cycles.Even at 1000 mA/g,the reversible capacity remained at 641 mAh/g after 350 cycles.These results demonstrate the merits of the unique 2D porous hybrid nanoatrchitecture,which will be discussed deeply.

    The novel 2D MoO2NP@rGO hybrid is formed via a selftemplate and subsequent calcination process(see Experimental for details of the synthesis).The specific preparation process of MoO2NP@rGO hybrid is shown in Fig.1.GO has rich oxygen-containing functional groups(hydroxyl and carboxyl groups,etc.),which is beneficial to its strong bonding with metal ions[27].In the subsequent reflux step,the Mo precursor,molybdenum alkoxide,was synthesized using molybdenum acetylacetonate(MoO2(acac)2)as the molybdenum source and ethylene glycol as the solvent.Due to the electrostatic interaction,the Mo precursor nucleated in situ and uniformly grown on the surface of GO to form a layer of Mo precursor,thereby forming Mo precursor/graphene(labeled Mo-alkoxide/G)[28,29].The metal ions on the surface of Mo-precusor reacted with the oxygen-containing functional groups on the surface of graphene.Eventually,after hightemperature calcination for 5 h,GO was completely reduced to rGO under argon atmosphere.The Mo-precusor completely decomposed and the MoO2NPs was obtained.Finally,the strongly coupled MoO2NP@rGO hybrid was successfully obtained.On the one hand,the 2D rGO can provide an elastic buffer space to suppress the volume expansion of the MoO2NPs during charge and discharge and prevent the aggregation of the MoO2NPs.On the other hand,the rGO nanosheets with good conductivity can be used as electron transport channels for MoO2NPs,accelerating efficient charge transport.Importantly,this unique 2D hybrids possess more electrochemically active sites to provide higher capacity.

    The morphology and microstructure of the materials were investigated by Field-emission scanning electron microscopy(FESEM)and transmission electron microscopy(TEM).Figs.S1a and b(Supporting information)is the FESEM and TEM images of GO,which clearly shows its smooth surface.The 2D Mo-alkoxide/G was obtained after refluxing at 185°C for 10 h.As shown in Figs.S1c and d(Supporting information),it can be found that the surface of the Mo-alkoxide/G is rough,which is attributed to the fact that the Mo precursor covers the surface of GO.Figs.2a-c are FESEM images of the MoO2NP@rGO obtained after calcination.It is apparent that the MoO2NPs are uniformly distributed on the rGO,indicating efficient self-assembly between MoO2NPs and rGO nanosheets during the reflux(Fig.2c),which inhibit the aggregation of MoO2NPs and the overlap of rGO nanosheets.TEM images further confirm that MoO2NPs are indeed fastened on graphene sheets and there is void space between these uniform NPs with about 5 nm in diameter,consistent with the FESEM observations(Figs.2d and e).High-resolution TEM(HRTEM;Fig.2f)indicates well crystallization of the MoO2NPs.The marked interplanar D-spacings of 0.243 nm correspond to the(111)lattice planes of monoclinic MoO2.Scanning TEM(STEM)and the corresponding energydispersive X-ray(EDX)spectrum elemental mappings of MoO2NP@rGO in Fig.2g clearly indicate the even distribution of elements in the graphene nanosheets,including Mo,O and C elements.The structure and composition characterization of MoO2NP@rGO were further examined by X-ray diffraction(XRD),Raman,Brunauer-Emmett-Teller(BET)surface area,thermogravimetric analysis(TGA)and X-ray photo-electron spectroscopy(XPS)spectra(Figs.S2-S5 in Supporting information).

    Fig.1.Schematic of the synthesis process of MoO2 NP@rGO hybrids.

    Fig.2.Morphology and structure of the MoO2 NP@rGO hybrids.(a-c)FESEM images.(d,e)TEM images.(f)HRTEM image.(g)STEM-EDX element mappings of Mo(red),O(purple)and C(green).Scale bars:(a-c,e)100 nm,(d)500 nm,(f)2 nm,(g)10 nm.

    For comparison,we used the same method to synthesize the bare MoO2NPs without adding GO.As shown in Fig.S6(Supporting information),it can be found that the bare MoO2NPs are obviously agglomerated.Using the same method,we synthesized pure rGO without adding acetylacetone molybdenum.Figs.S7a and b(Supporting information)showed its corresponding FESEM image and XRD pattern.According to FESEM,rGO is still a 2D structure with smooth surface.XRD pattern showed a characteristic peak of rGO at~26°,indicating the formation of rGO.The diffusion of lithium ions is strongly dependent on the transport path of the active material and the accessible active sites.Compared with bare MoO2NPs,ultra-small and uniform MoO2NPs in MoO2NP@rGO not only expose more active sites,facilitating lithium ion intercalation and extraction,but also shorten the diffusion path of lithium ions.

    The novel structural features result in a superior excellent electrochemical performance of MoO2NP@rGO electrodes(Fig.3).Fig.3a shows the initial five cyclic voltammetry(CV)curves for MoO2NP@rGO tested at a scan rate of 0.1 mV/s.In the first discharge cycle,there is a week peak around 0.7 V,which is derived from the irreversible decomposition of the electrolyte and the formation of a solid electrolyte interface(SEI)layer.This peak disappeared in the following cycles.The discharge process of MoO2NP@rGO can be divided into two parts between 0.01 V and 3.0 V.Above 1.0 V,there are two pairs of reversible reduction peaks at 1.20/1.29 V and 1.46/1.66 V.In the subsequent cycles,the two pairs of peaks shifted slightly to 1.27/1.37 V and 1.56/1.75 V,respectively.This is mainly due to the reversible conversion from the monoclinic phase to the orthorhombic phase and the insertion of lithium ions into the lattice of MoO2to form LixMoO2[30].In the later cycles except the first cycle,when the discharge voltage is lower than 1.0 V,it can be found that there is an additional peak around 0.25 V,which is related to the three-electron reduction conversion reaction,a further reduced of LixMoO2to Mo elemental and Li2O[31].The two oxidation peaks at 1.42 and 1.72 V are attributed to the deintercalation and phase transition of lithium ions.The reaction equation for the insertion and removal of lithium from MoO2is as follows[32]:

    Fig.3.Electrochemical performance of the MoO2 NP@rGO hybrids.(a)The first five CVs at a scan rate of 0.1 mV/s.(b)Charge/discharge voltage profiles at 200 mA/g.(c)Rate capabilities at different current densities.(d)Cycling performance of MoO2 NP@rGO hybrids,bare MoO2 NPs and rGO at 200 mA/g.(e)Cycling performance at 500 mA/g and 1000 mA/g.

    There was almost no change in the position of all redox peaks in the subsequent CV curves,indicating a high reversibility of the MoO2NP@rGO electrodes.

    Fig.3b shows the typical galvanostatic charge-discharge curves of MoO2NP@rGO electrode with different cycles(1st,2nd,20th,50th,100th)at 200 mA/g between 0.01 V and 3.0 V.The discharge and charge capacities of the first cycles of MoO2NP@rGO were 1145.8 and 714.4 mAh/g,respectively,and the initial Coulomb efficiency(ICE)was 62%.The large irreversible capacity loss and low ICE of the first cycle are attributed to several irreversible processes,such as the formation of the SEI layer on the electrode surface and the decomposition of the electrolyte.In the subsequent cycle,the reversible capacities of MoO2NP@rGO gradually increased,and the CE was maintained above 90%.Fig.3c shows the rate capability of MoO2NP@rGO hybrids at various current densities.The MoO2NP@rGO nanocomposite exhibits the reversible discharge capacities of 760,753,725,721,673 mAh/g at current densities of 200,500,1000,1500 and 2000 mA/g,respectively.When the current density returns back to 200 mA/g again,the capacity was as high as 1129 mAh/g.Even after 100 cycles,the capacity is increased to 1312 mAh/g.

    Moreover,the MoO2NP@rGO hybrid nanosheet electrode also confirms superb cycling performance(Fig.3d).It can be found that the capacities of bare MoO2NP and MoO2NP@rGO nanocomposites have an increasing trend,which could be due to the fact that the partially reversible SEI layer and the lithium ion storage at the interface MoO2NPs and rGO.This phenomenon has also observed in other TMOs and rGO composites[33,34].In the first 25 cycles,the capacity of the bare MoO2NPs is higher than that of MoO2NP@rGO.However,in the subsequent cycles the capacity of the bare MoO2NPs decays rapidly,which is mainly due to its severe agglomeration and large volume changes.After 150 cycles,the capacity of MoO2NP@rGO is as high as 1516.4 mAh/g,which is about three times the capacities of the bare MoO2NPs(442.5 mAh/g)and rGO(526.6 mAh/g).The excellent electrochemical performance of MoO2NP@rGO hybrids is attributed to its unique structure.That is,the introduction of rGO not only inhibits the aggregation of MoO2NPs,but also reduces the volume change during the cycling,ensuring the structural stability of MoO2NP@rGO.In order to further demonstrate the structural advantages of MoO2NP@rGO at high current densities,we tested their cycling stability at the current densities of 500 and 1000 mA/g,as shown in Fig.3e.A high capacity of 959 mAh/g can be maintained in the 300thcycle when cycled at 500 mA/g.With further increase of current density to 1000 mA/g,the capacity can still retain as high as 641 mAh/g after 350 cycles.Additionally,the MoO2NP@rGO hybrids also outperform many MoO2/carbon-based anodes reported elsewhere(Table S1 in Supporting information).

    To further understand the superior electrochemical performance of MoO2NP@rGO hybrids,we analyzed their kinetics by a sweep-rate-dependent CV method.Fig.4a shows the CV curves of the MoO2@rGO composite at different sweep rates.It can be clearly seen that the peak shape of the two pairs of redox peaks does not change,but the peak position shifts slightly with the increase of the sweep rate.The current(i)and sweep rate(v)have the following relationship:i=avb[35].The b value is obtained by the slope of the linear relationship between log i and log v.In general,it is believed that when b=0.5,it is mainly diffusion controlled process,and when b is 1.0,it is totally capacitance controlled process.As shown in Fig.4b,it is the linear curve of log i and log v.We calculated the b values of the four peaks,which are 0.85,0.74,0.75 and 0.72,respectively.Therefore,the charge storage process of MoO2@rGO composites is mainly capacitance controlled process.The current in the CV curves can be quantitatively divided into two parts,diffusion response and capacitance controlled process according to the following equation:i=k1v+k2v1/2[36,37].As shown in Fig.4c,84.1% of the charge storage is a capacitive contribution process at a sweep speed of 1.0 mV/s.The diffusion process generally occurs at the peak position.We further calculated the ratios of the capacitive contribution at different sweep rate,as shown in Fig.4d.As the sweep rate increases,the ratios of the capacitive contribution become larger.Based on the above analysis,we propose that the MoO2@rGO hybrids have more surface capacitive response,and therefore,it is beneficial to the rapid reaction kinetics and thus exhibits excellent rate performance.

    Fig.4.Kinetics analysis of the MoO2 NP@rGO electrode.(a)CV curves of the fresh cells at various scan rates.(b)b-value analysis using the relationship between the peak currents and scan rates.(c)Separation of the capacitive(purple region)and diffusion currents at a scan rate of 1.0 mV/s.(d)Contribution ratio of the capacitive and diffusion-controlled charges at different scan rates.(e)GITT voltage profiles.(f)Reaction resistance in discharge and charge process,respectively.

    To explore the electrochemical resistance of MoO2@rGO during the Li-ion storage,we further carried out galvanostatic intermittent titration technique(GITT)and EIS measurements.Fig.4e represented transient voltage responses of MoO2@rGO during the charge and discharge processes measured by GITT,where the dotted lines showed the quasi equilibrium open-circuit-voltages(OCVs).The internal resistance is obtained by dividing the voltages difference between the OCVs and the closed circuit voltages(CCVs)by the pulse current.Fig.4f displayed the internal resistance changes of MoO2@rGO during the lithiation and delithiation processes.It was found that the internal resistance gradually decreased during the lithiation process,which can be ascribed to that the formation of metals or intermetallics enhanced the electronic conductivity and the immersion of the electrolyte accelerated the migration ions[38].During the charging process,the internal resistance gradually increased with the release of lithium ions,which is contrary to the discussion above.The accelerated reaction kinetics of MoO2@rGO also can be evidenced by the EIS curves.The Nyquist plots of the MoO2@rGO electrode after the 1stand 50thcycles under full charge conditions are shown in Fig.S8(Supporting information).The charge-transfer resistance(Rct)of the MoO2@rGO electrode after the 50thcycle significantly decreased than that after the 2ndcycle,which suggests improved reaction kinetics upon cycles.

    In summary,we have confirmed a facile self-templating strategy for the fabrication of 2D MoO2NP@rGO hybrid nanosheets.The present synthetic method can readily regulate and control the composition and structure of the hybrid materials.The hybrid architectures with integrated merits of each component can promote the storage and transport of Li+ions/electrons to obtain improved lithium storage properties.This study could provide some stimulation for the engineering and construction of advanced negative electrode materials for lithium-ion batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(No.21971145),the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908),the Natural Science Foundation of Shandong Province(No.ZR2019MB024),the China Postdoctoral Science Foundation(No.2018M632666)and the Special Fund for Postdoctoral Innovation Program of Shandong Province(No.201901003).We also thank Anhui Kemi Machinery Technology Co.,Ltd.for providing Teflon-lined stainless steel hydrothermal autoclave.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.10.024.

    亚洲av熟女| 非洲黑人性xxxx精品又粗又长| 麻豆成人午夜福利视频| 一个人免费在线观看电影| 亚洲婷婷狠狠爱综合网| 国产亚洲精品久久久com| 人妻系列 视频| 久久精品国产亚洲av天美| 日韩大尺度精品在线看网址| 18+在线观看网站| 久久精品国产鲁丝片午夜精品| 亚洲最大成人手机在线| 久久综合国产亚洲精品| 日本黄色视频三级网站网址| 久久亚洲国产成人精品v| 国产乱人偷精品视频| 最近最新中文字幕大全电影3| 两个人的视频大全免费| 人妻制服诱惑在线中文字幕| 国产色爽女视频免费观看| 国产av在哪里看| 波野结衣二区三区在线| av在线亚洲专区| 久久精品国产亚洲网站| 国产精品一区二区在线观看99 | 一级毛片aaaaaa免费看小| 高清毛片免费看| 久久久国产成人精品二区| 可以在线观看的亚洲视频| 男人和女人高潮做爰伦理| 插阴视频在线观看视频| а√天堂www在线а√下载| 欧美日韩乱码在线| 精品免费久久久久久久清纯| 岛国在线免费视频观看| 亚洲一区高清亚洲精品| 国产精品久久久久久久久免| 看免费成人av毛片| 亚洲av男天堂| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| .国产精品久久| 蜜臀久久99精品久久宅男| 亚洲无线在线观看| 精品一区二区三区视频在线| 国产在视频线在精品| 波多野结衣巨乳人妻| ponron亚洲| 久久久久久伊人网av| av在线天堂中文字幕| 高清毛片免费观看视频网站| 久久久精品大字幕| 欧美最新免费一区二区三区| 深夜a级毛片| 黑人高潮一二区| 美女cb高潮喷水在线观看| 日本黄色片子视频| 国产日韩欧美在线精品| 国产一级毛片在线| 国产精品久久久久久亚洲av鲁大| 国语自产精品视频在线第100页| 国产成人一区二区在线| 国产视频内射| 亚洲五月天丁香| 免费看美女性在线毛片视频| 亚洲av.av天堂| 此物有八面人人有两片| 国产熟女欧美一区二区| 中文亚洲av片在线观看爽| 在线观看66精品国产| 老熟妇乱子伦视频在线观看| 亚洲国产精品合色在线| 久久精品国产亚洲av涩爱 | 久久人人精品亚洲av| 3wmmmm亚洲av在线观看| 久久久久久久亚洲中文字幕| 看黄色毛片网站| 中文亚洲av片在线观看爽| 亚洲成人中文字幕在线播放| 久久综合国产亚洲精品| 亚洲精品国产av成人精品| 国产精品久久久久久精品电影小说 | 国产精品久久久久久亚洲av鲁大| av在线蜜桃| 人人妻人人澡人人爽人人夜夜 | 欧美不卡视频在线免费观看| 成人高潮视频无遮挡免费网站| 国产伦一二天堂av在线观看| 内射极品少妇av片p| 国产精品99久久久久久久久| www.av在线官网国产| 欧美最新免费一区二区三区| 国产精品久久久久久久电影| 日韩欧美 国产精品| 欧美区成人在线视频| 亚洲性久久影院| av黄色大香蕉| 国产精品久久电影中文字幕| 国产大屁股一区二区在线视频| 国产精品伦人一区二区| 秋霞在线观看毛片| 少妇人妻精品综合一区二区 | 亚洲av不卡在线观看| 国产亚洲欧美98| 国产精品一二三区在线看| 嘟嘟电影网在线观看| 国产乱人偷精品视频| av专区在线播放| 成人特级黄色片久久久久久久| 精品国产三级普通话版| 国产成人a∨麻豆精品| 免费看日本二区| 国产精品不卡视频一区二区| 男女啪啪激烈高潮av片| 日韩强制内射视频| 成年免费大片在线观看| 日韩国内少妇激情av| 只有这里有精品99| 国产精品爽爽va在线观看网站| 简卡轻食公司| 精品久久久噜噜| 日本成人三级电影网站| 99热只有精品国产| 能在线免费看毛片的网站| 亚洲在线自拍视频| 国产精品久久久久久久电影| 深夜精品福利| 老司机影院成人| 亚洲人成网站在线观看播放| 日韩精品青青久久久久久| 国产男人的电影天堂91| 亚洲av免费高清在线观看| a级一级毛片免费在线观看| 国产女主播在线喷水免费视频网站 | 欧美3d第一页| 国产探花极品一区二区| 久久国产乱子免费精品| 久久韩国三级中文字幕| 国产乱人偷精品视频| 三级经典国产精品| 看非洲黑人一级黄片| 少妇裸体淫交视频免费看高清| 午夜激情欧美在线| 国产伦一二天堂av在线观看| 国产精品福利在线免费观看| 日日干狠狠操夜夜爽| 1024手机看黄色片| 国产探花在线观看一区二区| 日本免费一区二区三区高清不卡| 男人舔女人下体高潮全视频| av天堂在线播放| 久久亚洲精品不卡| 亚洲欧洲日产国产| 18禁在线播放成人免费| 99热网站在线观看| 波野结衣二区三区在线| 丝袜喷水一区| 天天一区二区日本电影三级| 男人舔奶头视频| 我的女老师完整版在线观看| 狂野欧美激情性xxxx在线观看| 麻豆国产av国片精品| 国产精品伦人一区二区| 免费人成在线观看视频色| 亚洲中文字幕一区二区三区有码在线看| 少妇丰满av| 欧美日韩乱码在线| 国产中年淑女户外野战色| 中出人妻视频一区二区| 一卡2卡三卡四卡精品乱码亚洲| 又爽又黄无遮挡网站| 毛片女人毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级黄片播放器| 精品人妻熟女av久视频| 国产老妇伦熟女老妇高清| 晚上一个人看的免费电影| 久久久久性生活片| 亚洲自拍偷在线| 国产伦理片在线播放av一区 | 99久久成人亚洲精品观看| 国产人妻一区二区三区在| 寂寞人妻少妇视频99o| 亚洲精品自拍成人| 九九久久精品国产亚洲av麻豆| 丰满的人妻完整版| 久久精品综合一区二区三区| 亚洲国产精品成人综合色| 国产老妇伦熟女老妇高清| 嘟嘟电影网在线观看| 国产精品美女特级片免费视频播放器| 亚洲一区高清亚洲精品| 黄色欧美视频在线观看| 欧美日韩国产亚洲二区| 美女脱内裤让男人舔精品视频 | 亚洲色图av天堂| 亚洲国产高清在线一区二区三| 亚洲一区二区三区色噜噜| 搡女人真爽免费视频火全软件| 在线免费观看的www视频| 欧美性感艳星| 国产亚洲欧美98| 91狼人影院| 91aial.com中文字幕在线观看| 黄色视频,在线免费观看| 亚洲四区av| 亚洲美女搞黄在线观看| 黄色欧美视频在线观看| 久久久久免费精品人妻一区二区| 九九在线视频观看精品| 91av网一区二区| 日本免费a在线| 欧美极品一区二区三区四区| 免费av观看视频| 国产精品乱码一区二三区的特点| 99国产极品粉嫩在线观看| 变态另类成人亚洲欧美熟女| 我的女老师完整版在线观看| 乱系列少妇在线播放| 天堂av国产一区二区熟女人妻| 亚洲国产高清在线一区二区三| 亚洲内射少妇av| 成人性生交大片免费视频hd| 特级一级黄色大片| 久久亚洲精品不卡| 老司机影院成人| 国产日韩欧美在线精品| 三级国产精品欧美在线观看| 狂野欧美激情性xxxx在线观看| 干丝袜人妻中文字幕| 岛国毛片在线播放| 亚州av有码| 最近2019中文字幕mv第一页| 国产欧美日韩精品一区二区| 国产精品久久久久久亚洲av鲁大| 丝袜美腿在线中文| 国产高清三级在线| 久久久久久久久久成人| 三级男女做爰猛烈吃奶摸视频| 欧美xxxx黑人xx丫x性爽| 69av精品久久久久久| 一级黄片播放器| 亚洲欧美精品综合久久99| 日韩视频在线欧美| 黄色配什么色好看| 日韩在线高清观看一区二区三区| 亚洲中文字幕日韩| 男人舔奶头视频| 国产精品国产三级国产av玫瑰| 亚洲七黄色美女视频| av女优亚洲男人天堂| 内地一区二区视频在线| 午夜视频国产福利| 欧美三级亚洲精品| av免费观看日本| 亚洲自偷自拍三级| 男人的好看免费观看在线视频| 中文字幕免费在线视频6| 免费观看在线日韩| 亚州av有码| 三级毛片av免费| 久久久久免费精品人妻一区二区| 热99在线观看视频| 青春草亚洲视频在线观看| 国产精品一区www在线观看| 伦精品一区二区三区| 亚洲欧美成人综合另类久久久 | 22中文网久久字幕| 免费大片18禁| 欧美极品一区二区三区四区| 国产精品一区二区性色av| 18禁在线播放成人免费| 国产久久久一区二区三区| 国产精品一区二区性色av| 亚洲最大成人av| 非洲黑人性xxxx精品又粗又长| 国产毛片a区久久久久| 久久中文看片网| 国产中年淑女户外野战色| 国产白丝娇喘喷水9色精品| 日韩精品有码人妻一区| 好男人在线观看高清免费视频| 亚洲无线观看免费| 99久久精品热视频| 三级毛片av免费| 婷婷亚洲欧美| 国产av不卡久久| 欧美3d第一页| 九九在线视频观看精品| 久久久久久国产a免费观看| 晚上一个人看的免费电影| 成年女人看的毛片在线观看| 超碰av人人做人人爽久久| 直男gayav资源| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| 12—13女人毛片做爰片一| 变态另类丝袜制服| 国产亚洲精品久久久com| 国产精品久久电影中文字幕| 精品少妇黑人巨大在线播放 | 久久久久久久久中文| 日韩精品有码人妻一区| 精品少妇黑人巨大在线播放 | 日日摸夜夜添夜夜添av毛片| 日韩欧美精品v在线| 国产高清有码在线观看视频| av黄色大香蕉| 午夜福利高清视频| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 日本免费a在线| 99热精品在线国产| 一边亲一边摸免费视频| 天堂网av新在线| 日韩欧美一区二区三区在线观看| 九九爱精品视频在线观看| 国产真实伦视频高清在线观看| 精品无人区乱码1区二区| 国产女主播在线喷水免费视频网站 | 一进一出抽搐gif免费好疼| 男插女下体视频免费在线播放| 亚洲av二区三区四区| 久久6这里有精品| 内射极品少妇av片p| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站| 麻豆国产97在线/欧美| 国产成人精品一,二区 | 欧美日韩国产亚洲二区| 欧美日韩乱码在线| 伊人久久精品亚洲午夜| 欧美激情在线99| 不卡视频在线观看欧美| 一夜夜www| 熟妇人妻久久中文字幕3abv| 狠狠狠狠99中文字幕| 内射极品少妇av片p| 欧美性感艳星| 国产探花极品一区二区| 欧美激情在线99| 天天一区二区日本电影三级| 校园人妻丝袜中文字幕| 黄色配什么色好看| 性插视频无遮挡在线免费观看| 色综合色国产| 99久久无色码亚洲精品果冻| 在线a可以看的网站| 亚洲婷婷狠狠爱综合网| 99视频精品全部免费 在线| 国产成人a∨麻豆精品| 色综合色国产| 欧美成人一区二区免费高清观看| 欧美不卡视频在线免费观看| 18禁在线无遮挡免费观看视频| 亚洲色图av天堂| 免费人成视频x8x8入口观看| 三级经典国产精品| 18禁在线无遮挡免费观看视频| 国产黄片美女视频| 日韩高清综合在线| 国产成人精品久久久久久| 国产亚洲av嫩草精品影院| 人体艺术视频欧美日本| 久久久色成人| 不卡一级毛片| 国产精品美女特级片免费视频播放器| 久久久午夜欧美精品| 午夜激情欧美在线| 99国产极品粉嫩在线观看| a级毛色黄片| 国产精品福利在线免费观看| 如何舔出高潮| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 国产一区二区在线av高清观看| 99久久精品一区二区三区| 97在线视频观看| 国产成人精品一,二区 | 国产乱人偷精品视频| 成人二区视频| av福利片在线观看| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 国产爱豆传媒在线观看| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 婷婷色综合大香蕉| 精品一区二区三区视频在线| 欧美激情国产日韩精品一区| 国产成人精品婷婷| 国产91av在线免费观看| 此物有八面人人有两片| 好男人视频免费观看在线| 亚洲欧美成人精品一区二区| 99久久中文字幕三级久久日本| 国产精品一二三区在线看| 亚洲欧美精品自产自拍| 一区二区三区四区激情视频 | 一区福利在线观看| 少妇人妻精品综合一区二区 | 波多野结衣高清作品| 校园春色视频在线观看| 此物有八面人人有两片| 99在线视频只有这里精品首页| 成年版毛片免费区| 偷拍熟女少妇极品色| 久久久精品大字幕| 国产私拍福利视频在线观看| 卡戴珊不雅视频在线播放| 能在线免费看毛片的网站| 久久亚洲国产成人精品v| 国产私拍福利视频在线观看| 国产精品蜜桃在线观看 | 精品久久久久久久久久免费视频| 人人妻人人澡欧美一区二区| 男人和女人高潮做爰伦理| 人妻制服诱惑在线中文字幕| 欧美性猛交黑人性爽| 国产在视频线在精品| 国产 一区精品| 51国产日韩欧美| 插逼视频在线观看| 日日摸夜夜添夜夜爱| 国产亚洲精品av在线| 99在线人妻在线中文字幕| 亚洲国产精品久久男人天堂| 国产精品久久久久久亚洲av鲁大| 亚洲精品影视一区二区三区av| 尾随美女入室| 有码 亚洲区| 国产大屁股一区二区在线视频| 婷婷色综合大香蕉| 韩国av在线不卡| 欧美精品一区二区大全| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av| 国产黄a三级三级三级人| 国产精品综合久久久久久久免费| 成人性生交大片免费视频hd| 黄片无遮挡物在线观看| 国产91av在线免费观看| 国产一区亚洲一区在线观看| 欧美高清成人免费视频www| 校园人妻丝袜中文字幕| 美女被艹到高潮喷水动态| 亚洲内射少妇av| 日韩成人伦理影院| 91久久精品国产一区二区成人| 人体艺术视频欧美日本| 亚洲人与动物交配视频| 五月伊人婷婷丁香| av在线老鸭窝| 欧美性猛交黑人性爽| 一个人看视频在线观看www免费| 性插视频无遮挡在线免费观看| 日本-黄色视频高清免费观看| 国产人妻一区二区三区在| 久久99蜜桃精品久久| 国产精品久久电影中文字幕| 五月玫瑰六月丁香| 亚洲成av人片在线播放无| 成人午夜高清在线视频| 天堂中文最新版在线下载 | 欧美三级亚洲精品| 免费在线观看成人毛片| 热99在线观看视频| 99精品在免费线老司机午夜| 国产黄色小视频在线观看| 一级黄色大片毛片| 简卡轻食公司| 精华霜和精华液先用哪个| 乱码一卡2卡4卡精品| 国国产精品蜜臀av免费| 久久久久国产网址| 美女cb高潮喷水在线观看| 欧美+亚洲+日韩+国产| 亚洲精品456在线播放app| 久久久久久久久大av| 免费观看精品视频网站| 日本av手机在线免费观看| 亚洲人成网站在线播放欧美日韩| 午夜激情福利司机影院| 精品国产三级普通话版| 成人一区二区视频在线观看| 观看美女的网站| 国产高清不卡午夜福利| 三级毛片av免费| 深夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 国产av不卡久久| 久久久久久久久久成人| 69av精品久久久久久| www.av在线官网国产| 亚洲国产精品成人综合色| 国内精品美女久久久久久| 日韩 亚洲 欧美在线| 22中文网久久字幕| 99热6这里只有精品| 国内揄拍国产精品人妻在线| 成人一区二区视频在线观看| 成人午夜高清在线视频| 1000部很黄的大片| 特大巨黑吊av在线直播| 长腿黑丝高跟| 久久鲁丝午夜福利片| 99久国产av精品国产电影| 久久99精品国语久久久| 内地一区二区视频在线| 国产一区二区在线av高清观看| 久久鲁丝午夜福利片| 在现免费观看毛片| 18禁黄网站禁片免费观看直播| 丝袜喷水一区| 亚洲av一区综合| 在线观看免费视频日本深夜| 日韩一区二区三区影片| 99久久精品热视频| 国产成人午夜福利电影在线观看| 18禁在线无遮挡免费观看视频| 日韩一本色道免费dvd| 女的被弄到高潮叫床怎么办| 亚洲自偷自拍三级| 国产探花极品一区二区| 好男人在线观看高清免费视频| 亚洲精品日韩av片在线观看| 日韩视频在线欧美| 久久6这里有精品| 12—13女人毛片做爰片一| 老司机福利观看| 少妇的逼好多水| 岛国毛片在线播放| 成人性生交大片免费视频hd| 成人国产麻豆网| 天堂av国产一区二区熟女人妻| 免费搜索国产男女视频| 91午夜精品亚洲一区二区三区| 亚洲不卡免费看| 丰满乱子伦码专区| 三级男女做爰猛烈吃奶摸视频| 精品无人区乱码1区二区| 国产精品久久久久久精品电影| 亚洲成av人片在线播放无| 一级毛片我不卡| 国产极品天堂在线| 观看免费一级毛片| 午夜亚洲福利在线播放| 天堂中文最新版在线下载 | 国产亚洲5aaaaa淫片| 中文在线观看免费www的网站| 听说在线观看完整版免费高清| 国产熟女欧美一区二区| 久久久国产成人精品二区| 亚洲国产欧洲综合997久久,| 久久久久国产网址| 国产精品美女特级片免费视频播放器| 99久久精品热视频| 97超碰精品成人国产| 在线观看午夜福利视频| 黄片无遮挡物在线观看| 啦啦啦观看免费观看视频高清| 久久6这里有精品| 国产爱豆传媒在线观看| 国内久久婷婷六月综合欲色啪| 淫秽高清视频在线观看| 高清午夜精品一区二区三区 | 精品一区二区免费观看| 尾随美女入室| 给我免费播放毛片高清在线观看| 日本色播在线视频| 99久久精品一区二区三区| 一区二区三区免费毛片| 只有这里有精品99| 午夜精品一区二区三区免费看| 69av精品久久久久久| 国产三级中文精品| 久久人妻av系列| а√天堂www在线а√下载| ponron亚洲| 久久精品国产亚洲av天美| 亚洲精品国产成人久久av| 亚洲中文字幕日韩| 国产精品蜜桃在线观看 | 久久九九热精品免费| 精品久久久久久久久久免费视频| av在线蜜桃| 最近2019中文字幕mv第一页| 中文欧美无线码| 成熟少妇高潮喷水视频| 热99在线观看视频| 又黄又爽又刺激的免费视频.| 亚洲精品粉嫩美女一区| kizo精华| 一夜夜www| 熟女电影av网| 在线免费十八禁| 男人舔奶头视频| 91精品国产九色| 免费电影在线观看免费观看| 精品久久久久久久久久久久久| 国产成人精品婷婷| 中文资源天堂在线| 亚洲aⅴ乱码一区二区在线播放| 全区人妻精品视频| 国产麻豆成人av免费视频| 美女大奶头视频| 精品久久久久久久久久久久久| 国产精品三级大全| 亚洲在久久综合| 久久午夜福利片| 久久久久久九九精品二区国产| 99热这里只有是精品在线观看| 草草在线视频免费看| 国内精品久久久久精免费|