• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bioactivated in vivo assembly(BIVA)peptide-tetraphenylethylene(TPE)probe with controllable assembled nanostructure for cell imaging

    2021-08-26 02:07:54ShizhoLuXioynGuoFnglingZhngXiodongLiMeishuiZouLiLiLi
    Chinese Chemical Letters 2021年6期

    Shizho Lu,Xioyn Guo,Fngling Zhng,Xiodong Li,Meishui Zou,Li-Li Li,*

    a School of Material Science and Engineering,Beijing Institute of Technology,Beijing 100081,China

    b CAS Center for Excellence in Nanoscience,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,National Center for Nanoscience and Technology(NCNST),University of Chinese Academy of Sciences,Beijing 100190,China

    ABSTRACT The emergence of fluorescent light-up molecular probe,which can specifically turn on their fluorescent in the presence of stimulation factors,has open up a new opportunity to advance biosensing and bioimaging.In this work,we designed and synthesized a peptide-AIE conjugate probe for cell imaging with controlled in situ assembled nanostructures.The modular designed probe is consisted of a selfassembled peptide-tetraphenylethene(TPE)motif,a fibroblast activation protein alpha(FAP-α)responsive motif,a hydrophilic motif and a targeting motif.The probe exhibits typically turn-on fluorescence property specifically triggered by FAP-α,which is a significant overexpressed membrane protein on pancreatic tumor cells.Interestingly,the peptide modified the TPE dramatically impacts the assembled nanostructure,which can be modulated by peptide sequences.As a result,the peptide FF(Phe-Phe)modification of TPE as the self-assembled motif provides a suitable balance of the probe with lightup property and nanofiber assembled structure in situ.Finally,our probe could effectively detect the FAPα on tumor cells with high specificity.Meantime,the nanofibers in situ assembled on the surface of CAFs enhanced the probe accumulation and prolonged the retention for cell imaging.We envision that this study may inspire new insights into the design of nanostructure controlled AIE light-up bio-probe.

    Keywords:Peptide Self-assembly Tetraphenylethene(TPE) AIE Cell imaging

    The emergence of molecular fluorescent light-up probes that can specifically turn on their fluorescent in the presence of targets has open up a new opportunity to advance biosensing and bioimaging.As compared to the conventional fluorescent molecular probes,the ones with fluorescence light-up characteristics are more intelligent and hold the advantages of less false positive signals and larger target-to-background ratios.

    Aggregation-induced emission(AIE)is a unique photophysical phenomenon,which effectively overcomes the aggregationcaused quenching(ACQ)problem of traditional fluorescent dyes[1,2].AIEgen have recently attracted great research interest in the areas of cell imaging,biosensing and diagnosis due to the excellent performance of strong photobleaching resistance,high signal-tonoise ratio and low cytotoxicity.Propeller-shaped fluorogens,such as tetraphenylethene(TPE)and silole derivatives[3],have almost no fluorescence emission in the molecularly dissolved state but induced to emit strong fluorescence in the aggregation state owing to the restriction of intramolecular rotation(RIR)and prohibition of energy dissipation through nonradiative channels.At present,the aggregation-driven florescence mechanism has been exploited to develop AIE-based bioresponsive FL probes[4,5].Many attempts have been made to tailor the emission properties of TPE via substitution or functionalization and to expand their applications in optical devices,sensors and biological imaging.

    Inspired by nature,peptides have been widely used as a regulator in fabrication of biomimetic functional materials[6,7],Peptide self-assembly is a promising approach for constructing and modulating supramolecular structures[7-9].The assembled peptides have shown potential in bioimaging[10]and diagnosis[11]due to its various fabricated nanostructures resulting in multifunction capability and good biocompatibility.Recently,our group has reported an assembly/aggregation-induced retention(AIR)effect[12-14]in the targeting region in vivo,which can amplify the sensitivity and specificity for bioimaging[15,16].In addition,the assembled nanostructures can be modulated based on multiple weak bond interactions in order to obtain various biofunctions[17,18].Peptide-induced assembly of AIE molecules will not only help insight into tunable emission of AIE species,but also direct design of a new type of nanoarchitectonics and materials with endowed biofunctions,which has presented potential for applications in biomedicine and optoelectronic devices[19-21].

    Herein,we exploit a bioactivated in vivo assembly(BIVA)peptide-tetraphenylethylene(TPE)probe with controllable assembled nanostructures for enhanced imaging of pancreatic tumor cell.Remarkably,by regulating the assembly of TPE through selfassembly peptide sequence,the intramolecular movement of TPE can be strongly restricted,so that the probe has a higher fluorescence signal output.On the other hand,the peptide can induce TPE to form various nanostructures for enhancing retention and accumulation on the surface of cells with better imaging window.We envision that the peptide-induced AIEgen selfassembly offers a new strategy to develop highly sensitive and efficient fluorescent light-up probes with designed nanostructures.

    TPE,as a classic AIE fluorogen,emits strongly in aggregate state but shows very weak fluorescence in dilute solutions[22].This is due to the propeller-shaped structure of TPE,and the dynamic rotations of the phenyl rings nonradiatively deactivated their excited states in solution.In the aggregate state,the RIR due to the physical constraint in the aggregates opens the radiative decay channel[23].As shown in Fig.1,the peptide-TPE probe(T-FF-P):TPE-(FFGPAD6RGD)2with four moieties was developed.The modular design of the molecule including(i)a targeting motif:Arg-Gly-Asp(RGD)for active targeting to αvβ3integrin,(ii)a hydrophilic motif:D6for enhancing the solubility in aqueous solution,(iii)a tailoring motif:Gly-Pro-Ala(GPA)for specific recognize and cleavage by FAP-α,(iv)a self-assembly motif:TPEPhe-Phe(TPE-FF)for in vivo self-assembly with turn-on fluorescence.It is hypothesized that once the peptide-TPE probe active targeting onto the αvβ3of the pancreatic cancer cells(Miapaca-2 cell line),the membrane protein FAP-α will recognize and tailor the probe between Pro(P)and Ala(A)of the tailoring motif.Then,the self-assembly motif with different peptide sequence modified TPE will leading to in situ self-assembly into nanoarchitectures with dramatically enhanced fluorescence according to the RIR mechanism.

    Fig.1.Chemical structure and modular design of peptide-TPE conjugate(T-FF-P).

    The azide-modified peptide(N3-GGPG,N3-FFPG,N3-LVFFAPG,N3-FFGPAD6RGD and N3-GGGPAD6RGD)were synthesized by standard solid-phase peptide synthesis methods using Fomccoupling chemistry[24,25].It was further purified by HPLC.Azidemodified peptide and alkyne-modified TPE were coupled by Cu(I)-catalyzed“click”reaction[26-28]using CuSO4/sodium ascorbate as the catalyst in dimethyl sulfoxide(DMSO)/water(1:8,v/v)mixture solvent.Finally,all the self-assembly motifs with different assembled peptide sequence were obtained(Table 1),respectively named as T-OH(TPE-(COOH)2),T-GG(TPE-(GGPG)2),T-FF(TPE-(FFPG)2)and T-LVFF(TPE-(LVFFAPG)2).Additionally,the peptide-TPE probe T-FF-P(TPE-(FFGPAD6RGD)2)and the control probe TGG-P(TPE-(GGGPAD6RGD)2)were both synthesized accordingly.The synthesized procedure and chemical characterizations can be found in Supporting information(Figs.S1-S11).

    Table 1 Chemical structures of self-assembled peptide-TPE residues.

    After synthesis of the molecules,the optical properties of four residues were investigated.The UV spectra of T-OH,T-GG,T-FF and T-LVFF in DMSO were almost identical,with absorption peak at 330 nm(Fig.2A),which mean that the peptide modification did not changed the absorption of TPE.Next,we evaluated the fluorescence properties of the four residues in DMSO/H2O(1:99,v/v)mixture solution compared to the spectra in pure DMSO(Fig.2B).As known,all these four residues can have a good solubility in DMSO,which usually acted as monomers.The spectra in DMSO(dotted lines)of these molecules had a low fluorescence intensity.Once placed in DMSO/H2O(1:99,v/v)mixture solution(full lines),the well assembled two molecules:T-FF and T-LVFF obviously exhibited an enhanced fluorescence,while,the T-OH and T-GG had no significant change compared with that of in DMSO.The hydrophobicity of the amino acids were the key factors and the aggregated state also impacted the RIR induced emission enhancement.For further demonstration,the time-resolved fluorescence spectra were carried out to verify our conjecture(Fig.2C).The fluorescent lifetimes of T-FF and T-LVFF are 3.39 ns and 3.53 ns,respectively,which far over the fluorescent lifetimes of T-OH(0.72 ns)and T-GG(0.83 ns).The results indicated that the forbidden nonradiative decay pathway in T-FF and T-LVFF prolonged the fluorescence lifetimes,which may due to the assembly in mixture solution.The critical micelle concentration(CMC)of T-GG(22.4 μmol/L)and T-FF(7.9 μmol/L)both confirmed the hypotheses above(Fig.S12 in Supporting information).The AIE behaviors of these four residues were further studied by recording the fluorescence turn-on ratios(I/I0)in Fig.2D and Figs.S13-S16(Supporting information).When the water fractions were below 50 %,T-FF remained nonfluorescent.However,with the water fraction increasing,T-FF became highly emissive,a characteristic performance of AIEgens.However,T-OH and T-GG did not show obvious AIE properties upon increased water fraction,due to the lack of hydrophobicity and π-π interaction of side chains of molecules.Meanwhile,the T-FF not only exhibited stronger intermolecular interactions,but also formed ordered fibril structures dependent on the β-sheet assembly,resulting in obvious AIE properties.While,T-LVFF shows strong fluorescence intensity at low water content due to the strong hydrophobic peptide sequence,which was not benefit for sensitive bioimaging in biological condition.

    Fig.2.Photophysical properties of self-assembled residues of T-OH,T-GG,T-FF and T-LVFF.(A)UV-vis absorption spectra in DMSO.(B)FL spectra of assemblies in mixture solution of DMSO/H2O(1:99,v/v)and monomers in DMSO.(C)Timeresolved fluorescence spectra.(D)Relative variations of the fluorescent intensity I/I0(where I0 is defined as the baseline fluorescent intensity in pure DMSO)in different mixture solutions of DMSO/H2O.λex:370 nm,λem:480 nm,concentration:10 μmol/L.

    The assembled morphology of the different peptide-TPE residues were validated accordingly(Fig.3A).The transmission electron microscopy(TEM)observations indicated that both the TOH and T-GG aggregates formed nanoparticles with a diameter around 56.7 nm and 93.4 nm,which was well matched the size distribution from dynamic light scattering(DLS)in Fig.3B.It has been reported that FF with an aromatic capping group and LVFFA usually self-assembled into nanomaterials based on multiple weak bond interactions induced β-sheets assembly[29].As shown in Fig.3A,the T-FF formed typical nanofibers and T-LVFF forms lamellar nanosheets due to hydrophobic interaction,π-π stacking and hydrogen bonding based on peptides.

    To further study the self-assembly behavior of the assemblies,the circular dichroism(CD)and Fourier transform infrared(FTIR)spectra were carried out.As shown in Fig.3C,the four residues revealed a strong cotton effect band approximate at 230 nm,which was due to the aromatic π-π effects of TPE and phenylalanine[30].In addition,CD spectra of T-FF and T-LVFF showed a cotton effect signals around 320 nm,indicating strong π-π stacking of TPE chromophores in water[31].All the results indicated that peptide modification strongly induced intermolecular interactions,which would sequently effect the optical property of TPE.As known,FTIR is a powerful tool for investigating intermolecular interactions.As shown in Fig.3D,the bands of T-LVFF and T-FF in the amide I region were significantly shifted to lower energy regions relative to T-GG and T-OH,suggesting that the assembles form of T-LVFF and T-FF existed obviously hydrogen bonding based on modified peptides.Meantime,the stronger intermolecular interactions of T-LVFF showed a peak around 1640 cm-1,which can be identified as antiparallel β-sheet assembly.

    Fig.3.Morphology and spectra of the nano-assemblies.(A)TEM images of assembled morphology of T-OH,T-GG,T-FF and T-LVFF.(B)Dynamic light scattering(DLS)of assembled T-OH and T-GG nanoparticles.(C)Circular dichroism(CD)spectra.(D)Fourier transform infrared(FTIR)spectra of four residues in aqueous solution.Concentration:50 μmol/L.

    Fig.4.Enzyme specific tailoring induced assembly and fluorescent light-up.(A)FL turn-on response of T-FF-P and T-GG-P(20 μmol/L)with FAP-α(100 pmol/L).(B)TEM images of T-FF-P and T-GG-P after treatment with FAP-α.(C)The critical micelle concentration(CMC)of T-FF-P and T-GG-P,as well as their tailored residues T-FF and T-GG in buffer.(D)FAP-α specificity responsiveness.Plot of I/I0 vs.different proteins,I and I 0 are the FL intensities at the protein concentration of 100 and 0 pmol/L,respectively.Statistical significance is assessed by Student’s test,**P<0.01.

    Based on the assembled behavior and turn-on fluorescence property in aqueous solution,T-FF-P was chosen as the suitable candidate bioactivated in vivo assembly(BIVA)probe for cell imaging.Meantime,the T-GG-P was set as control probe modified with no obvious assembly inducing peptide.To verify the turn-on behavior of T-FF-P and T-GG-P,we performed enzymatic assays with recombinant human fibroblast activation protein(FAP-α)in vitro.Mixtures of BIVA probes(20 μmol/L)and FAP-α(100 pmol/L)were prepared and incubated in PBS buffer(pH 7.5)at 37°C for 3 h and then the fluorescence spectra were obtained in the range from 400 nm to 600 nm.As shown in Fig.4A,the water-soluble T-FF-P and T-GG-P do not emit fluorescence in PBS buffer,but switch to fluoresce once incubated with FAP-α(100 pmol/L).LC-MS spectra of the T-FF-P probes before and after triggered by FAP-α in buffer was carried out(Fig.S17 in Supporting information).As a result,after FAP-α tailoring,the original T-FF-P peak with a retention time of 25.1 min disappeared,sequently,two peaks at 11.1 min and 20.9 min were newly appeared which was identified by MOLDITOF,which were corresponding to peptide residues of ADDDDDDRGD and T-FF.Both the probes were in a random secondary structure from CD spectra(Fig.S18 in Supporting information).The different assembled residues of these two probes acted obviously different light-on property,which may due to the assembled architectures differed the intramolecular rotation restriction of TPE.The FF peptide exhibited more effective π-π stacking between the peptide and TPE than that of GG peptide,resulting in enhanced fluorescence.Next,the assembled morphology of nanostructures of T-FF-P and T-GG-P after FAP-α coincubation in buffer were observed by TEM images(Fig.4B).It was found that the T-FF-P residues(T-FF-P)were able to form filamentous nanostructures with a width around 16.3 nm.In sharp comparison,the T-GG-P residues(T-GG)formed nanoparticles with a diameter around 80.4 nm,which was matched with the size measured by DLS(87.9 nm)(Fig.S19 in Supporting information).The difference between T-FF-P and T-GG-P residues assemblies in morphology revealed their different intrinsic molecular arrangements.To quantify the concentration-dependent aggregation behavior of T-FF-P and T-GG-P,we measured their critical micelle concentration(CMC)values.As displayed in Fig.4C,the CMC of TFF-P was 32.2 μmol/L,which was much lower than that of T-GG-P(61.4 μmol/L).Their residues in buffer were relative lower than that of in water.The results suggested that FF as the self-assemblyaiding unit,not only modulated the intermolecular interactions but also increased the hydrophobicity resulting in CMC reduction.To further investigate the specific recognition ability of the probes to FAP-α,T-FF-P and T-GG-P were tested by different proteins,such as FAP-α,bovine serum albumin(BSA),lysozyme,trypsin and pepsin,under identical conditions.As shown in Fig.4D,FAP-α groups displayed around 14-16 and 4-6-fold higher in I/I0than the other groups.This substantiated that T-FF-P and T-GG-P certainly highly sensitive and specific to FAP-α in vitro.

    FAP-α is identified as a diagnostic biomarker to distinguish the tumor activated fibroblasts from the normal fibroblasts,which is highly expressed in pancreatic tumor cells(e.g.,Miapaca-2 cells).After demonstrating the BIVA probes’excellent sensitivity and specificity to FAP-α in buffer,we selected Miapaca-2(FAP-α positive expressed tumor cell)and L929(FAP-α negative expressed normal cell)to evaluate the bioimaging property.First of all,we evaluated the cytotoxicity of T-FF-P and T-GG-P to L929 and Miapaca-2 cells using CCK-8 assay.After 24 h incubation,there had no significant cytotoxicity to cells when the concentration up to 20 μmol/L(Fig.S20 in Supporting information).Then,the BIVA probes were respectively co-incubated with Miapaca-2 cells and L929 cells under a concentration of 10 μmol/L at 37°C for 30 min(Fig.5A).Miapaca-2 and L929 cells treated with PBS as contral(Fig.S21 in Supporting information).As expected,negligible fluorescence signal was observed in both the T-FF-P-treated and TGG-P-treated L929 cells.On the contrary,T-FF-P and T-GG-P coincubated with Miapaca-2 cells had a significant signal difference,which increased the fluorescence signal on the membrane of cell after treatment of T-FF-P.Moreover,the fluorescence signal of TGG-P was much less than that of T-FF-P.These results indicated that T-FF-P can specifically respond to FAP-α overexpressed Miapaca-2 cells and T-FF-P was much more sensitive than T-GGP for cell imaging.To further validating if the assembled structures were different leading to the bioimaging sensitivity,we further performed scanning electron microscope(SEM)imaging(Fig.5B).Comparing with the control cell surface morphology,the T-FF-P treated cell appeared nanofiber structures(red arrows)and the TGG-P ones appeared nanoparticles(green arrows),which was cocoordinated with the results in solution.Thus,the different nanostructure assembled on cells and sequently differed the enhanced fluorescence both contributed to the cell imaging sensitivity.Moreover,real-time fluorescence imaging profiles of Miapaca-2 cells with these two BIVA probes were carried out.As time goes on,rarely fluorescence signal of T-GG-P was observed at first 15 min,highest fluorescence signal was captured at 1 h and almost disappeared after 4 h.Conversely,long-term cell surface fluorescence of T-FF-P was observed begin in 15 min,reached to the lightest signal up to 2 h and lasted up to 4 h(Fig.5C).The signal at 2 h of T-FF-P was 3.8-fold higher than that of T-GG-P(Fig.5D).It was indicated the nanofibrous structure strongly enhanced the fluorescence signal and lasted the signal retention providing a better imaging window.

    Fig.5.Bioactivated in vivo assembly(BIVA)peptide-TPE probe for pancreatic tumor cell imaging.(A)Confocal images of Miapaca-2 and L929 cells treated with probes.(B)SEM images of cell surfaces of Miapaca-2 treated with T-FF-P and T-GG-P and untreated Miapaca-2 as a control.(C)Confocal images of time-dependent monitoring of Miapaca-2 cells treated with the probes(20 μmol/L)for 15 min followed by washing with PBS and replacing the medium and a further incubation up to 4 h.(D)Quantitative analysis of mean fluorescence intensity on the Miapaca-2 cells from confocal images with a timescale range of 15 min-4 h.Statistical significance is assessed by Student’s test,*P<0.05,**P<0.01,n.s.P>0.05.Scale bar of all confocal images:50 μm.

    In conclusion,we have reported a FAP-α specific BIVA peptide-TPE probe for enhanced pancreatic tumor cell imaging.The peptide sequence coordinated the assembled behavior of TPE through the assembled residues,inducing a defined nano-structure with modulated intermolecular interactions.In addition,the coupling of the tailoring motif,hydrophilic motif and targeting motif on the assembled residue endowed the obtained BIVA probe with active targeting and tailoring induced retention effect,light-up property of AIE signal in aqueous solution,and nanostructure modulated biofunctions[32-34].After optimization,the FF peptide exhibited a best balance of solubility of the probe and the nanofibrous assembled structure,yielding close and tight intermolecular steric interactions to restrict the intramolecular motions of TPE for excellent signal output[35,36].Finally,the designed BIVA probe obtained a highly sensitive and specific property for bioimaging to pancreatic tumor cells.We believed that the peptides enable to modulating the AIE assembly,sequently endowed the probe better photophysical property and biomedical effect base on certain nanostructures.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Key R&D Program of China(No.2018YFE0205400),National Natural Science Foundation of China(Nos.31671028 and 51873045),Youth Innovation Promotion CAS(No.2017053).Thanks Prof.Ben Zhong Tang for supplying the alkynylated tetraphenylethylene(TPE)molecules.

    Appendix A.Supplementary data

    Supplementary material related to this articlecanbe found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.01.007.

    成人高潮视频无遮挡免费网站| 免费观看的影片在线观看| 免费看光身美女| 在线免费十八禁| 午夜福利在线观看免费完整高清在| 国产精品久久久久成人av| 在线观看一区二区三区| 美女脱内裤让男人舔精品视频| 80岁老熟妇乱子伦牲交| 女的被弄到高潮叫床怎么办| 国产精品久久久久成人av| 18禁裸乳无遮挡动漫免费视频| 欧美+日韩+精品| 亚洲美女搞黄在线观看| 中文精品一卡2卡3卡4更新| 黄色日韩在线| 久久99热6这里只有精品| 精品久久久精品久久久| 久久久精品94久久精品| 一级毛片 在线播放| 国产色婷婷99| 丰满迷人的少妇在线观看| 国产精品无大码| 人体艺术视频欧美日本| 在线观看免费视频网站a站| 亚洲精品第二区| 91久久精品国产一区二区成人| 欧美日韩视频高清一区二区三区二| 精品久久国产蜜桃| av国产免费在线观看| 免费高清在线观看视频在线观看| 岛国毛片在线播放| 国产在线男女| 亚洲精品国产成人久久av| 国产成人freesex在线| 高清不卡的av网站| 午夜福利在线观看免费完整高清在| 国产精品99久久99久久久不卡 | 美女主播在线视频| 中文资源天堂在线| 干丝袜人妻中文字幕| 舔av片在线| av.在线天堂| 99热6这里只有精品| 99久久中文字幕三级久久日本| 国产精品一区www在线观看| 久久热精品热| 黄色视频在线播放观看不卡| 久久99蜜桃精品久久| 久久国产精品男人的天堂亚洲 | 国产av精品麻豆| av线在线观看网站| 色婷婷av一区二区三区视频| 99re6热这里在线精品视频| 国产美女午夜福利| 偷拍熟女少妇极品色| 网址你懂的国产日韩在线| 91精品国产国语对白视频| 你懂的网址亚洲精品在线观看| 人妻系列 视频| 国产精品爽爽va在线观看网站| 日本黄大片高清| 国产精品伦人一区二区| 日韩大片免费观看网站| 在线精品无人区一区二区三 | 大香蕉久久网| 精品少妇黑人巨大在线播放| 久久人人爽人人片av| 成人影院久久| 国产探花极品一区二区| 国产欧美日韩一区二区三区在线 | 99re6热这里在线精品视频| 女性被躁到高潮视频| 亚洲精品乱码久久久久久按摩| 直男gayav资源| 在线 av 中文字幕| 亚洲成人中文字幕在线播放| 精品亚洲成a人片在线观看 | av在线播放精品| 最黄视频免费看| 亚洲中文av在线| 国产色爽女视频免费观看| 熟女人妻精品中文字幕| 欧美性感艳星| 国产黄频视频在线观看| 免费观看在线日韩| 亚洲成人一二三区av| 久久久久久久久大av| 高清午夜精品一区二区三区| 99热全是精品| 黑人高潮一二区| 免费观看av网站的网址| 老女人水多毛片| 男人爽女人下面视频在线观看| xxx大片免费视频| 精品久久久噜噜| 精品久久久精品久久久| 国产伦精品一区二区三区视频9| av黄色大香蕉| 深爱激情五月婷婷| 久久热精品热| 亚洲欧美日韩东京热| 在线免费观看不下载黄p国产| 自拍欧美九色日韩亚洲蝌蚪91 | 国产女主播在线喷水免费视频网站| 特大巨黑吊av在线直播| 国产精品免费大片| 国产永久视频网站| 日韩电影二区| 亚洲精品第二区| 免费观看无遮挡的男女| 国产成人免费观看mmmm| 国产永久视频网站| 午夜视频国产福利| 国产精品人妻久久久影院| 国产一区二区在线观看日韩| 国产乱人偷精品视频| 亚洲精品国产色婷婷电影| 大香蕉久久网| 久久av网站| 国产无遮挡羞羞视频在线观看| 少妇的逼好多水| 一区二区av电影网| 亚洲精品日韩av片在线观看| 国产男女超爽视频在线观看| 亚洲美女搞黄在线观看| 春色校园在线视频观看| 多毛熟女@视频| 国产精品无大码| 亚洲欧美日韩东京热| 欧美丝袜亚洲另类| 十分钟在线观看高清视频www | 亚洲精品视频女| 亚洲国产日韩一区二区| 国产精品爽爽va在线观看网站| 午夜福利在线观看免费完整高清在| 亚洲人成网站高清观看| 午夜福利网站1000一区二区三区| 另类亚洲欧美激情| 久久精品国产亚洲av天美| 美女cb高潮喷水在线观看| 亚洲av电影在线观看一区二区三区| 欧美日韩在线观看h| 亚洲无线观看免费| 日日啪夜夜爽| 久久久久精品久久久久真实原创| 99久久精品一区二区三区| 国产视频内射| 春色校园在线视频观看| 国产视频首页在线观看| 精品久久久久久久久亚洲| 免费大片黄手机在线观看| 久热久热在线精品观看| 免费观看的影片在线观看| 男女啪啪激烈高潮av片| 免费人成在线观看视频色| 国产精品嫩草影院av在线观看| 久久ye,这里只有精品| 国产午夜精品久久久久久一区二区三区| 不卡视频在线观看欧美| 国产大屁股一区二区在线视频| 国产精品一区www在线观看| 国产男女内射视频| 成人综合一区亚洲| 国产视频首页在线观看| 在线观看三级黄色| 熟女电影av网| 中文字幕人妻熟人妻熟丝袜美| 91精品伊人久久大香线蕉| 亚洲国产av新网站| 国产精品一区二区在线观看99| 人人妻人人爽人人添夜夜欢视频 | 日本欧美国产在线视频| 在线观看国产h片| 久久久久精品久久久久真实原创| 女人久久www免费人成看片| 久久久久久久大尺度免费视频| 国产精品嫩草影院av在线观看| 日韩欧美精品免费久久| 免费av中文字幕在线| 欧美日韩在线观看h| 国产一区二区三区综合在线观看 | 久久99热这里只频精品6学生| 26uuu在线亚洲综合色| 身体一侧抽搐| 国产伦理片在线播放av一区| 亚洲精品第二区| 嫩草影院新地址| 日本色播在线视频| h日本视频在线播放| 中文字幕精品免费在线观看视频 | 日本黄色日本黄色录像| 亚洲综合精品二区| 高清日韩中文字幕在线| av网站免费在线观看视频| 国产男女超爽视频在线观看| 熟女av电影| 嘟嘟电影网在线观看| 久久人人爽av亚洲精品天堂 | 亚洲精品一二三| 99热这里只有精品一区| 亚洲精品成人av观看孕妇| 日韩强制内射视频| 搡女人真爽免费视频火全软件| 国产永久视频网站| 亚洲人成网站高清观看| 黄色视频在线播放观看不卡| 精品一区二区三区视频在线| 又粗又硬又长又爽又黄的视频| 99视频精品全部免费 在线| 91狼人影院| 亚洲精品久久久久久婷婷小说| av黄色大香蕉| 欧美成人午夜免费资源| 亚洲精品日本国产第一区| 舔av片在线| 中文精品一卡2卡3卡4更新| 亚洲怡红院男人天堂| 国产免费福利视频在线观看| 欧美最新免费一区二区三区| 亚洲欧美日韩东京热| 18+在线观看网站| 亚洲精品一区蜜桃| 国产淫片久久久久久久久| 欧美成人一区二区免费高清观看| 国产成人91sexporn| 亚洲国产高清在线一区二区三| 欧美激情国产日韩精品一区| 国产在线男女| 久久久久久久久久久丰满| 中文字幕免费在线视频6| 精品人妻熟女av久视频| 国产淫片久久久久久久久| 卡戴珊不雅视频在线播放| 五月玫瑰六月丁香| 久久久久久久久大av| 又大又黄又爽视频免费| 国产乱人视频| 伦精品一区二区三区| 国产精品久久久久久精品电影小说 | 亚洲国产精品一区三区| 成人影院久久| 两个人的视频大全免费| 国产成人精品福利久久| 精品一品国产午夜福利视频| 国产精品久久久久久久久免| 国产中年淑女户外野战色| 久久国产亚洲av麻豆专区| 成人18禁高潮啪啪吃奶动态图 | 久久久久网色| 热99国产精品久久久久久7| 老司机影院成人| 婷婷色综合www| 国产人妻一区二区三区在| 18禁裸乳无遮挡免费网站照片| 欧美国产精品一级二级三级 | 免费观看性生交大片5| 国模一区二区三区四区视频| 男女边吃奶边做爰视频| 黄片wwwwww| 久久国产乱子免费精品| 亚洲第一区二区三区不卡| 亚洲第一区二区三区不卡| 五月开心婷婷网| 人人妻人人爽人人添夜夜欢视频 | xxx大片免费视频| 性色av一级| 在线观看免费视频网站a站| 交换朋友夫妻互换小说| 蜜桃在线观看..| 色网站视频免费| 成人综合一区亚洲| 国产一区二区在线观看日韩| 岛国毛片在线播放| 日日摸夜夜添夜夜添av毛片| 久久精品国产亚洲网站| 欧美一区二区亚洲| 一本—道久久a久久精品蜜桃钙片| 色婷婷av一区二区三区视频| 亚洲精品亚洲一区二区| 老司机影院毛片| 免费av不卡在线播放| 日本黄色日本黄色录像| 国产成人aa在线观看| 午夜福利影视在线免费观看| 一本一本综合久久| 亚洲成人手机| av线在线观看网站| 边亲边吃奶的免费视频| 亚洲精品国产成人久久av| 熟女人妻精品中文字幕| 国产成人一区二区在线| 亚洲国产av新网站| 精品一区二区三区视频在线| 国产成人精品一,二区| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 精品国产一区二区三区久久久樱花 | 多毛熟女@视频| 22中文网久久字幕| 亚洲av在线观看美女高潮| 九九爱精品视频在线观看| 极品教师在线视频| 免费黄色在线免费观看| 成年人午夜在线观看视频| 国产老妇伦熟女老妇高清| 麻豆成人午夜福利视频| 最近2019中文字幕mv第一页| 亚洲av免费高清在线观看| 啦啦啦中文免费视频观看日本| 欧美成人一区二区免费高清观看| 精品亚洲成a人片在线观看 | 亚洲欧美日韩另类电影网站 | 十八禁网站网址无遮挡 | 国产精品爽爽va在线观看网站| av不卡在线播放| 九草在线视频观看| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 国产乱人偷精品视频| 亚洲欧美日韩无卡精品| 亚洲人与动物交配视频| 午夜福利在线观看免费完整高清在| 九色成人免费人妻av| 成年免费大片在线观看| 亚洲中文av在线| 中国三级夫妇交换| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 超碰av人人做人人爽久久| 国产精品久久久久久久久免| 国产有黄有色有爽视频| 九色成人免费人妻av| 99热这里只有是精品在线观看| 精品一区二区三卡| 久久国产乱子免费精品| 国内精品宾馆在线| 老女人水多毛片| 国产欧美日韩精品一区二区| 久久99精品国语久久久| 大片免费播放器 马上看| 国产淫语在线视频| 只有这里有精品99| 国语对白做爰xxxⅹ性视频网站| 国产免费又黄又爽又色| 婷婷色综合大香蕉| 简卡轻食公司| 久久久久国产网址| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美一区二区三区国产| 亚洲色图av天堂| 亚洲av日韩在线播放| av在线观看视频网站免费| 五月开心婷婷网| 久久99热这里只频精品6学生| 黄片无遮挡物在线观看| 日韩av不卡免费在线播放| 三级经典国产精品| 成人午夜精彩视频在线观看| 最近2019中文字幕mv第一页| 韩国av在线不卡| 最近2019中文字幕mv第一页| 亚洲图色成人| h视频一区二区三区| 亚洲精品aⅴ在线观看| 久久99热这里只频精品6学生| 乱系列少妇在线播放| 成人美女网站在线观看视频| 男女免费视频国产| 久久久国产一区二区| 国产欧美日韩一区二区三区在线 | 在线观看免费日韩欧美大片 | 久久精品夜色国产| 看十八女毛片水多多多| 有码 亚洲区| 国产v大片淫在线免费观看| 亚洲欧美一区二区三区黑人 | 国产精品国产三级国产av玫瑰| 亚洲人成网站在线播| 亚洲成人中文字幕在线播放| 人人妻人人添人人爽欧美一区卜 | 97在线人人人人妻| 亚洲精品自拍成人| 91久久精品国产一区二区成人| 成人综合一区亚洲| 亚洲国产欧美人成| 欧美高清成人免费视频www| av一本久久久久| 国产午夜精品一二区理论片| 成人18禁高潮啪啪吃奶动态图 | 下体分泌物呈黄色| 日韩,欧美,国产一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 日本欧美国产在线视频| 91在线精品国自产拍蜜月| 亚洲国产精品国产精品| 欧美精品一区二区大全| 国产视频首页在线观看| 老熟女久久久| 国产乱人视频| 啦啦啦视频在线资源免费观看| 成人综合一区亚洲| 草草在线视频免费看| 国产一级毛片在线| 免费高清在线观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 91狼人影院| 久久人人爽人人爽人人片va| 国产乱人偷精品视频| 日本av免费视频播放| 99久国产av精品国产电影| 亚洲中文av在线| 国产精品一区二区在线不卡| 日本欧美视频一区| 亚洲精品日韩av片在线观看| 麻豆成人午夜福利视频| av天堂中文字幕网| 99九九线精品视频在线观看视频| 欧美日韩亚洲高清精品| 欧美精品人与动牲交sv欧美| a级毛片免费高清观看在线播放| videos熟女内射| 亚洲av欧美aⅴ国产| 女人十人毛片免费观看3o分钟| 麻豆成人av视频| 97超视频在线观看视频| 国产精品蜜桃在线观看| 网址你懂的国产日韩在线| 午夜福利高清视频| 高清不卡的av网站| 在线观看人妻少妇| 国产精品国产三级专区第一集| av在线播放精品| 国产欧美日韩精品一区二区| 亚州av有码| 国产在线一区二区三区精| 美女主播在线视频| 免费黄色在线免费观看| 国产高潮美女av| 能在线免费看毛片的网站| 精品少妇黑人巨大在线播放| 伦理电影免费视频| 青春草视频在线免费观看| 亚洲av福利一区| av线在线观看网站| 免费观看a级毛片全部| 国产精品一二三区在线看| 精品人妻视频免费看| 成人无遮挡网站| 人人妻人人爽人人添夜夜欢视频 | 欧美激情国产日韩精品一区| 自拍欧美九色日韩亚洲蝌蚪91 | 一级爰片在线观看| 观看av在线不卡| 韩国高清视频一区二区三区| 全区人妻精品视频| 久久青草综合色| 国产成人一区二区在线| 国产亚洲午夜精品一区二区久久| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| 亚洲精品第二区| 亚洲电影在线观看av| 91精品伊人久久大香线蕉| 亚洲无线观看免费| 国国产精品蜜臀av免费| 丝袜喷水一区| 99热国产这里只有精品6| 国产视频内射| 男人舔奶头视频| 国产成人a∨麻豆精品| 国产探花极品一区二区| 97在线视频观看| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 亚洲,一卡二卡三卡| 在线播放无遮挡| 国产精品免费大片| 亚洲第一av免费看| 精品久久久久久电影网| 免费在线观看成人毛片| 性高湖久久久久久久久免费观看| 精品一区在线观看国产| 国产免费又黄又爽又色| 一级毛片 在线播放| 99久久人妻综合| 精品人妻视频免费看| 成年免费大片在线观看| 男人舔奶头视频| 水蜜桃什么品种好| 免费观看av网站的网址| 99久久综合免费| 伦理电影大哥的女人| 人人妻人人添人人爽欧美一区卜 | 久久99蜜桃精品久久| 日韩 亚洲 欧美在线| 国产永久视频网站| 久久国内精品自在自线图片| 免费观看av网站的网址| av不卡在线播放| 久久人妻熟女aⅴ| 国产精品久久久久成人av| 九九在线视频观看精品| 大片免费播放器 马上看| 夫妻性生交免费视频一级片| 美女福利国产在线 | 99久久精品热视频| 中文字幕制服av| 男女下面进入的视频免费午夜| 国产精品蜜桃在线观看| 最黄视频免费看| 国产欧美日韩一区二区三区在线 | 国产午夜精品一二区理论片| 成人特级av手机在线观看| 亚洲精品一二三| 色视频在线一区二区三区| 日韩国内少妇激情av| 亚洲精品久久午夜乱码| 国产在线免费精品| 国产av国产精品国产| 波野结衣二区三区在线| 插阴视频在线观看视频| 国产av码专区亚洲av| 日韩免费高清中文字幕av| 人体艺术视频欧美日本| 2021少妇久久久久久久久久久| 高清黄色对白视频在线免费看 | 狂野欧美激情性bbbbbb| 交换朋友夫妻互换小说| 亚洲精品第二区| 免费人妻精品一区二区三区视频| 熟女人妻精品中文字幕| 欧美三级亚洲精品| 高清欧美精品videossex| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 国产乱人视频| 亚洲成人一二三区av| www.色视频.com| 国产一区有黄有色的免费视频| 亚洲自偷自拍三级| 国产高清三级在线| 亚洲精品色激情综合| 男人添女人高潮全过程视频| 黑人猛操日本美女一级片| 在线精品无人区一区二区三 | 中国美白少妇内射xxxbb| 免费av中文字幕在线| 国产毛片在线视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲经典国产精华液单| 性色avwww在线观看| 日本黄大片高清| 99热6这里只有精品| 亚洲美女黄色视频免费看| 狂野欧美激情性bbbbbb| 国产精品成人在线| 中文字幕亚洲精品专区| 久久99热这里只有精品18| 观看免费一级毛片| 国产男人的电影天堂91| 人妻 亚洲 视频| 青春草亚洲视频在线观看| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩卡通动漫| 大陆偷拍与自拍| 免费观看的影片在线观看| 男的添女的下面高潮视频| 成年免费大片在线观看| 少妇丰满av| tube8黄色片| 色哟哟·www| 久久久久久久久久成人| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看| 国产淫片久久久久久久久| 日韩av不卡免费在线播放| 干丝袜人妻中文字幕| 男女下面进入的视频免费午夜| 观看免费一级毛片| 一级毛片电影观看| www.av在线官网国产| 亚洲va在线va天堂va国产| 久久热精品热| 一级av片app| 日本vs欧美在线观看视频 | 人妻一区二区av| 六月丁香七月| 三级国产精品欧美在线观看| 最近2019中文字幕mv第一页| 日本午夜av视频| av在线app专区| 一本色道久久久久久精品综合| av视频免费观看在线观看| 少妇猛男粗大的猛烈进出视频| 国产成人精品久久久久久| 青春草国产在线视频| 久久久久精品久久久久真实原创| 一级爰片在线观看| 国产视频首页在线观看| 女人久久www免费人成看片| 性色avwww在线观看| 国产乱人视频| 中文字幕制服av| 99久久中文字幕三级久久日本| 国产久久久一区二区三区| 97超视频在线观看视频| 成人美女网站在线观看视频| 成人漫画全彩无遮挡| 成人亚洲欧美一区二区av| 久久久久网色| 国产精品成人在线|