• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy transfer followed by electron transfer(ETET)endows a TPE-NBD dyad with enhanced environmental sensitivity

    2021-08-26 02:07:52XiWuDongyngLiJinLiWeijieChiXieHnChoWngZhochoXuJunYinXiogngLiu
    Chinese Chemical Letters 2021年6期

    Xi Wu,Dongyng Li,Jin Li,Weijie Chi,Xie Hn,Cho Wng,Zhocho Xu*,Jun Yin,*,Xiogng Liu,*

    a Fluorescence Research Group,Singapore University of Technology and Design,Singapore 487372,Singapore

    b Key Laboratory of Pesticide and Chemical Biology,Ministry of Education,Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis,International Joint Research Center for Intelligent Biosensing Technology and Health,College of Chemistry,Central China Normal University,Wuhan 430079,China

    c CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    ABSTRACT Energy transfer and electron transfer are both fundamental mechanisms enabling numerous functional materials and applications.While most materials systems employ either energy transfer or electron transfer,the combined effect of energy and electron transfer processes in a single donor/acceptor system remains largely unexplored.Herein,we demonstrated the energy transfer followed by electron transfer(ETET)process in a molecular dyad TPE-NBD.Due to energy transfer,the fluorescence of TPE-NBD was greatly enhanced in non-polar solvents.In contrast,polar solvents activated subsequent electron transfer and markedly quenched the emission of TPE-NBD.Consequently,ETET endows TPE-NBD with significant polarity sensitivities.We expect that employing ETET could generate many functional materials with unprecedented properties,i.e.,for single laser powered multicolor fluorescence imaging and sensing.

    Keywords:Energy transfer Electron transfer Polarity probes Environmental sensitivity

    A deep understanding of photophysical and photochemical mechanisms is critical for the rational design of optoelectronic materials[1-3].Most of these existing mechanisms can be broadly classified into two categories:(1)energy transfer and(2)charge/electron transfer[4].The applications of the respective mechanisms have enabled many useful technologies[5].Yet,the combined effects of both energy transfer and electron transfer in a single donor-acceptor system received far less attention.Understanding the collective effects of energy and electron transfers at the molecular level,however,could pave new avenues for developing unprecedented functional materials.

    To date,energy transfer processes have been thoroughly studied in various materials systems[6,7].The mechanisms of energy transfer include both Frster resonance energy transfer(FRET)[8]and Dexter energy transfer(DET)[9].FRET takes place mainly via dipole-dipole interactions between an energy donor(D)and acceptor(A).The efficiency of FRET critically depends on the distance and orientation between the donor and the acceptor,as well as the spectral overlap between the donor’s emission and the acceptor’s absorption spectra[10].DET occurs via a double electron-transfer process:Upon photoexcitation of the donor,one electron transfers from the donor LUMO to the acceptor LUMO;the other from the acceptor HOMO to the donor HOMO.The efficiency of DET strongly depends on the donor-acceptor distance and the overlap between donor and acceptor orbitals[10].FRET usually takes place from 10?to 100?,while DET typically occurs within 10?[11].Notably,both FRET and DET have enabled numerous biophysical and biochemical applications,such as detecting various biomolecules and ions[12],studying protein conformational changes[13],sequencing DNAs[14],monitoring polymerase chain reactions[15],constructed high-resolution microenvironment mapping[16]and developing fluorogenic dyes[17].

    Photoinduced electron transfer(PET)is another fundamental photophysical mechanism[18].During PET,a single electron moves from the electron donor to the acceptor,leading to the formation of charge-separated bi-radicals,which are highly reactive and non-emissive[19].PET strongly depends on theenergy levels of the donor and acceptor frontier molecular orbitals,the distance between the electron donor and acceptor,and solvent polarity[20].PET also leads to the creations of many fluorescent functional materials.For example,de Silva pioneered the field of molecular logic gates[21],many of which utilize PET to modulate fluorescent output[22].Nagano et al.developed highly sensitive nitric oxide[23]and nitrative probes[24].Our group showed that PET fluorophores allowed wash-free bioimaging of lipid droplets and mitochondria,and provided a new route for constructing AIEgens[20].

    Currently,most existing photosystems employ either energy transfer or electron transfer[25].However,research on the combined effect of both energy transfer and electron transfer in a single donor-acceptor dyad remains sporadic,especially in purely organic compounds[26-29].In this manuscript,we reported an energy transfer followed by electron transfer(ETET)mechanism in an organic dyad TPE-NBD(Scheme 1a).With the help of fluorescence output to probe the short-lived excited-state dynamics,our combined experimental and computational studies provided unambiguous evidence on the polarity dependent ETET processes.We expect that ETET would empower many useful applications,such as bright multicolour fluorescence imaging,sensing,as well as photodynamic and photothermal therapies.

    To investigate the combined effect of energy transfer and electron transfer,we prepared a molecular dyad TPE-NBD along with three reference compounds:TPE,NBD,and TPE&NBD(the mixture of TPE and NBD of equal concentrations(Scheme 1b)).The synthesis details can be found in Supporting information.During sample preparation,we kept the concentrations of all compounds low at 10 μmol/L and conducted additional tests to ensure no aggregate formations(Fig.S3 in Supporting information).Subsequently,we measured the UV-vis absorption spectra of these compounds(Fig.1a).The first absorption band of TPE peaked at 307 nm in dioxane,while NBD exhibited two absorption bands peaked at 452 nm and 322 nm,respectively.As expected,TPE&NBD showed a superimposed UV-vis spectrum of TPE and NBD.Most interestingly,the UV-vis spectrum of TPE-NBD is(almost)identical to that of TPE&NBD(considering experimental errors).The UV-vis spectra in other solvents showed the same pattern(Fig.S1 in Supporting information).These identical spectra between TPE&NBD and TPE-NBD led us to conclude that the TPE and NBD fragments in TPE-NBD are spectroscopically independent units in the ground state.

    Scheme 1.(a)Schematic illustration of the ETET mechanism.(b)Chemical structures of TPE,NBD,TPE&NBD,and TPE-NBD.

    Fig.1.(a)UV-vis absorption spectra of TPE,NBD,TPE&NBD and TPE-NBD in dioxane.Fluorescence spectra of TPE,NBD,TPE&NBD and TPE-NBD in(b)toluene excited at 310 nm and(c)DMSO excited at 300 nm.(d)Fluorescence spectra of TPENBD in various solvents excited at the respective peak UV-vis absorption wavelength.[TPE]=[NBD]=[TPE&NBD]=[TPE-NBD]=10 μmol/L;all tests are done at room temperature.

    To probe the potential energy transfer between TPE and NBD,we measured the emission spectra of all four compounds by exciting them at 310 nm(around the peak UV-vis absorption wavelength of the TPE fragment;Fig.1b).Compound TPE is not fluorescent,due to significant molecular motions and associated non-radiative decays in the excited state[30,31].Compounds NBD and TPE&NBD emit moderately bright fluorescence.In TPE&NBD,the intermolecular distance between TPE and NBD seems too large for efficient intermolecular energy transfer to occur;besides,TPE in TPE&NBD does not emit.It is thus not surprising that NBD and TPE&NBD demonstrate similar fluorescence features as NBD is the only fluorescent component.In contrast,the emission intensities of TPE-NBD are greatly intensified by~3 times in comparison to those of NBD and TPE&NBD.The enhanced emission of TPE-NBD indicated efficient energy transfer from the TPE moiety to the closely linked NBD fragment.The emission spectra in other nonpolar solvents also revealed such an energy transfer process(Fig.S2 in Supporting information).Interestingly,these results show that during the energy transfer process,the energy donor(such as TPE)does not have to be emissive.

    Nonetheless,as the solvent polarity increased,the emission intensity of TPE-NBD experienced a substantial reduction(Table S1 in Supporting information).For example,when we excited all four compounds at 300 nm in DMSO,the fluorescence of TPE-NBD became much weaker than that of NBD and TPE&NBD(Fig.1c).These results show that in addition to energy transfer,a quenching mechanism becomes dominant in polar solvents for TPE-NBD.In addition,considering that this quenching process is notable only in TPE-NBD(but not NBD),we conclude that this fluorescence quenching is related to the interactions between TPE and NBD.Finally,a comparison of the emission intensities between TPE-NBD(weak)and TPE&NBD(strong)showed that this quenching process also depends on the distance between TPE and NBD.That is,a close distance leads to more effective quenching in polar solvents.

    To shed light on the underlying mechanism,we directly excited the NBD fragment of TPE-NBD at~450 nm.In this way,we avoided energy transfer from TPE to NBD.The results show that the emission of the NBD fragments still strongly decreases as the solvent polarity increases(Fig.1d and Fig.S4 in Supporting information).Taking the above observations into account,we hypothesized that the quenching process was a consequence of photoinduced electron transfer between TPE and NBD.That is,energy transfer followed by electron transfer(ETET)in TPE-NBD takes place in polar solvents.

    We also collected the fluorescence excitation spectra and measured the fluorescence lifetime of TPE-NBD in different solvents(Fig.S5 and Table S2 in Supporting information).In agreement with the emission data,the fluorescence excitation spectra become weak with increasing solvent polarity.Similarly,the fluorescence lifetime of TPE-NBD dropped from 9.43 ns in toluene to nearly 0 in DMSO.These data are consistent with the polarity dependence of PET.That is,high-polarity solvents enhance PET[20].

    To gain further insights into the ETET mechanism,we collected transient absorption spectra(TAS)of TPE-NBD.We firstly conducted the experiments in dioxane,where TPE-NBD is highly emissive.Upon direct excitation of the NBD fragment at 450 nm,we observed an excited state absorption(ESA)band from~350 nm to~420 nm,a ground state bleaching(GSB)band from~420 nm to~490 nm,and a stimulated emission(SE)band from~490 nm to~620 nm(Fig.2a).In particular,the GSB and SE bands perfectly match the steady-state UV-vis absorption and emission spectra of TPE-NBD(or its NBD fragment),respectively.We also noted that ESA/GBS/SE bands of the NBD fragment have a long lifetime of~8 ns,in good agreement with the bright emission of TPE-NBD(Fig.2a inset and Fig.S6 in Supporting information).

    When exciting TPE-NBD at 340 nm(by aiming at the TPE fragment),energy transfer from TPE to NBD was observed(Figs.2b and c).We noted a new ESA band peaked at~420 nm and attributed it to the TPE fragment,due to its similarity to previously reported data of TPE[30].The ESA of TPE rapidly decayed with a lifetime of~1 ps.Following this decay,we noticed the formation of the ESA/GSB/SE bands of the NBD fragment,indicating energy transfer from the TPE fragment to the NBD moiety in TPE-NBD.Indeed,by probingΔA dynamics at 550 nm in the SE band,we observed a rapid intensification with a lifetime of 0.9 ps,followed by a slow decay(with a lifetime of 10.8 ns;Fig.2c inset).Similar slow decays were also noted in the ESA and GSB bands of the NBD moiety(Fig.S7 in Supporting information).

    We next performed the TAS experiments in DMSO,where TPE-NBD became non-emissive.Upon exciting TPE-NBD at 340 nm,we again observed the ESA band of the TPE moiety(Fig.S8 in Supporting information).Interestingly,the peak of this ESA band continuously evolved,suggesting significant conformational changes of TPE in polar solvents.This ESA band also experiences a ra pid decay within~2 ps,followed by the formation of the ESA/GSB/SE bands of the NBD moiety,indicating energy transfer from TPE to NBD(Fig.2d).

    Fig.2.(a)Transient absorption spectra of TPE-NBD in dioxane,upon excitation at 450 nm;the inset shows the corresponding decay dynamics at 550.1 nm and the single-exponential fitting.Transient absorption spectra of TPE-NBD in dioxane(b)within 2 ps and(c)from 2 ps to 7718 ps,upon excitation at 340 nm;the inset in(c)shows the corresponding decay dynamics and the exponential fitting at 550.1 nm.(d)Transient absorption spectra of TPE-NBD in DMSO from 2.6 ps to 7718 ps,upon excitation at 340 nm;the inset shows the corresponding decay dynamics and the single-exponential fitting at 464.8 nm.

    Notably,the de-excitation rate of the NBD fragment is significantly enhanced in DMSO.For example,the decay lifetime of NBD is shortened to 222 ps in DMSO(vs.~10 ns in dioxane),following the nearly zero quantum yield of TPE-NBD in polar solvents(Fig.2d inset and Fig.S9 in Supporting information).The rapid decay of the NBD fragment suggests the presence of a significant non-radiative process,i.e.,photoinduced electron transfer(PET).However,in our TAS experiments,we did not directly observe the formation of the electron-transfer(ET)state,probably owing to the limited wavelength range covered in our TAS experiments.

    To reveal the fluorescence quenching mechanism,we performed detailed excited-state calculations of TPE-NBD at the M06-2X/def2SVP level of theory in vacuo(Figs.3a and b,and Fig.S10 in Supporting information).Our computational results showed that by exciting TPE-NBD at short wavelengths,the energy is largely absorbed by the TPE fragment[in the Franck Condon(FC)state;highlighted in light purple],and then quickly transfer to the NBD fragment[the locally-excited(LE)state;highlighted in blue],as the distance between TPE and NBD moieties is small(7.066?;Fig.S11 in Supporting information)in TPE-NBD.The LE state is highly emissive with a relatively large oscillator strength(f=0.18),corresponding to the emission from the NBD moiety.Moreover,on the S1potential energy surface,a low-lying dark electron-transfer state(f=0)exists(the ET state;highlighted in green).This ET state corresponds to electron transfer from the TPE to NBD fragments in TPE-NBD,thus corroborating our hypothesis of PET as the quenching mechanism.Besides,this ET state is more stable than the LE state by 0.493 eV,suggesting a potential PET quenching even in non-polar environments.Nonetheless,given that TPE-NBD is highly emissive in non-polar solvents,the energy barrier to enter this dark ET state via state-crossing should be high.In other words,only energy transfer occurs in TPE-NBD,while electron transfer is constrained at a minimal level in non-polar environments.

    Fig.4.Schematic illustrations of ETET based applications.(a)Single-laser powered multicolor labelling and sensing applications via ETET;(b)Photothermal/photodynamic therapy and reaction-based sensing applications based on ETET.

    It is of note that that the energy transfer in TPE-NBD was Dexter energy transfer(DET),because the distance between TPE and NBD fragments is less than 10?.Moreover,between two types of energy transfer,the efficiency of FRET depends on the quantum yield of the energy donor(TPE).When the energy donor is non-emissive(with a quantum yield of 0),the rate of FRET becomes negligible[32].In contrast,DET does not depend on the donor quantum yield,but only on the overlap between the normalized donor emission and normalized acceptor absorption spectra.Accordingly,even though TPE is not emissive,efficient energy transfer could still take place in TPE-NBD via DET.

    As solvent polarity increases,the highly polar ET state should become much more stable resulting in a lower energy barrier for the state-crossing to occur.This is due to strong dipole-dipole and induced dipole interactions with polar solvent molecules.Indeed,our calculations show that the energy gap between LE and ETstates enlarged from 0.493 eV in vacuo to 0.550 eV in DMSO(Fig.3c).The further stabilized ET state could substantially activate PET,thus significantly quenching the fluorescence of TPE-NBD in polar solvents.These theoretical predictions are fully consistent with experimental observations.

    Interestingly,on the basis that the ET state is more stable than the LE state in all environments,our calculations predicted that compound NBD(without PET)should be brighter than TPE-NBD(with different degrees of PET as solvent polarity increases)in the absence of energy transfer(by directly exciting the NBD moieties).Inspired by this prediction,we normalized the emission intensities of TPE-NBD and NBD to the UV-vis absorbance at the excitation wavelength(to eliminate concentration dependence)and compared the resulted intensities(Fig.S12 in Supporting information).Our results show that TPE-NBD is indeed less emissive than NBD,confirming the presence of a dark state in TPE-NBD.These data unambiguously show that energy transfer followed by electron transfer(ETET)could take place in molecular dyads.

    We found that the ETET mechanism was also applicable to many other compounds(Fig.S13 in Supporting information)[33].We also expect that ETET has a broad range of applications.For example,in multicolour imaging and sensing,several lasers are often required to excite various fluorophores with distinct absorption and emission bands.With ETET,however,only one laser that matches the λabsof the energy donor is needed,which could greatly simplify the optical setup and reduce the cost(Fig.4a).Moreover,since many fluorophores have a low molar extinction coefficient,connecting an energy donor with a high molar extinction coefficient could greatly boost the brightness of various fluorophores via energy transfer in non-polar solvents.In contrast,in polar solvents,the activation of electron transfer could completely quench the emissions of all dyads.Collectively,ETET could endow these compounds with greatly enhanced environmental sensitivities,which are useful for fluorescent sensing and fluorogenic imaging.

    Besides,the linker between the donor and acceptor fragments served as one additional reaction site for modulating the ETET process(Fig.4b).When the donor and the acceptor are very close to each other,both energy transfer and electron transfer could happen in polar solvents,thus quenching the emission.When the linker is cut off via biochemical reactions,ETET becomes inhibited,with the potential turn-on of dual-colour fluorescence(from the donor and acceptor fragments,respectively)for ratiometric imaging.Finally,when ETET is on(with no fluorescence),such dyads could also serve as useful agents for photothermal and photodynamic therapies(Fig.4b).

    In summary,through a detailed experimental and theoretical investigation of the fluorescence characteristics of a molecular dyad TPE-NBD,we revealed a distinct photophysical mechanism:energy transfer followed by electron transfer(ETET).As a result of the energy transfer,this dyad exhibit greatly enhanced brightness in non-polar solvents.In contrast,with the activation of photoinduced electron transfer(after energy transfer)in polar solvents,this dyad becomes nonemissive.We expect that the enhanced environmental sensitivity via the combined effects of both energy and electron transfer endow ETET with a great potential for a wide range of applications,such as in multicolour bioimaging via a single laser excitation,ratiometric biosensing,photodynamic and photothermal therapies.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by Singapore University of Technology and Design(No.T1SRCI17126)and A*STAR under its Advanced Manufacturing and Engineering Program(No.A2083c0051),the National Natural Science Foundation of China(Nos.21878286,21908216),and Dalian Institute of Chemical Physics(Nos.DMTO201603,TMSR201601).The authors are grateful for the computing service of SUTD-MIT IDC and the National Supercomputing Center(Singapore).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.12.038.

    国产成人精品福利久久| 欧美精品一区二区免费开放| 在线观看三级黄色| 一区二区三区乱码不卡18| 成人二区视频| 亚洲欧美日韩东京热| 国产爱豆传媒在线观看| 欧美另类一区| 国产精品99久久99久久久不卡 | 韩国高清视频一区二区三区| 在线精品无人区一区二区三 | 亚洲人成网站在线播| 中文资源天堂在线| 国产亚洲5aaaaa淫片| 黑人猛操日本美女一级片| 精品一区二区三区视频在线| 中文字幕久久专区| 男女啪啪激烈高潮av片| 亚洲国产精品一区三区| 日本黄色片子视频| 欧美+日韩+精品| 成人毛片a级毛片在线播放| 日本vs欧美在线观看视频 | 亚洲不卡免费看| 国产成人freesex在线| 国产黄频视频在线观看| 一级毛片久久久久久久久女| 欧美日韩亚洲高清精品| 国产精品一区二区在线观看99| 精品国产乱码久久久久久小说| 黄色怎么调成土黄色| 久久99热6这里只有精品| 久久毛片免费看一区二区三区| 国产高潮美女av| 国产一区亚洲一区在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品一二三| 亚洲激情五月婷婷啪啪| 伦理电影免费视频| 一级av片app| 麻豆成人av视频| 大话2 男鬼变身卡| 久久久成人免费电影| 91精品国产国语对白视频| 蜜桃亚洲精品一区二区三区| 亚洲久久久国产精品| 久久99精品国语久久久| 最近中文字幕高清免费大全6| 青春草国产在线视频| 另类亚洲欧美激情| 欧美日韩在线观看h| 国产精品女同一区二区软件| 中文字幕制服av| 欧美激情极品国产一区二区三区 | 黄色欧美视频在线观看| 午夜福利高清视频| 99九九线精品视频在线观看视频| 香蕉精品网在线| 亚州av有码| 国产av国产精品国产| 蜜桃亚洲精品一区二区三区| 精品国产一区二区三区久久久樱花 | 日韩av免费高清视频| 亚洲精品日本国产第一区| 精品久久久噜噜| 久久国产精品大桥未久av | 国语对白做爰xxxⅹ性视频网站| 精品亚洲成a人片在线观看 | 香蕉精品网在线| 久久鲁丝午夜福利片| 免费观看a级毛片全部| 在线观看国产h片| 国产精品国产三级国产专区5o| 国产精品人妻久久久久久| 汤姆久久久久久久影院中文字幕| 少妇裸体淫交视频免费看高清| 亚洲av综合色区一区| 一个人看视频在线观看www免费| 黄片无遮挡物在线观看| 99久久综合免费| 久久精品国产鲁丝片午夜精品| 色网站视频免费| 国产成人免费观看mmmm| 国产片特级美女逼逼视频| 精品一品国产午夜福利视频| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| 香蕉精品网在线| 亚洲色图av天堂| 国产伦精品一区二区三区视频9| 天天躁日日操中文字幕| 欧美97在线视频| 日韩人妻高清精品专区| 超碰av人人做人人爽久久| 成人二区视频| 九九在线视频观看精品| 亚洲欧洲日产国产| 男人狂女人下面高潮的视频| 国产精品久久久久久av不卡| av视频免费观看在线观看| 久久热精品热| 国产精品一区二区在线不卡| 纯流量卡能插随身wifi吗| .国产精品久久| 一级毛片 在线播放| 色婷婷久久久亚洲欧美| 亚洲精品一二三| 精品人妻视频免费看| 亚洲,一卡二卡三卡| 亚洲精品乱码久久久v下载方式| 免费av不卡在线播放| 中国三级夫妇交换| 狂野欧美激情性bbbbbb| 国产一区二区三区综合在线观看 | 新久久久久国产一级毛片| 人人妻人人看人人澡| 色哟哟·www| 亚洲精品国产成人久久av| 久久韩国三级中文字幕| 欧美xxxx性猛交bbbb| 99热这里只有是精品50| 亚洲欧美日韩东京热| 国产精品成人在线| 丰满人妻一区二区三区视频av| 夜夜骑夜夜射夜夜干| 特大巨黑吊av在线直播| 黄色欧美视频在线观看| 久久国产精品大桥未久av | 又黄又爽又刺激的免费视频.| 免费大片黄手机在线观看| 少妇人妻 视频| 精品久久久精品久久久| 亚洲欧美成人精品一区二区| 九九久久精品国产亚洲av麻豆| 亚洲综合精品二区| 人妻一区二区av| 搡女人真爽免费视频火全软件| av不卡在线播放| av专区在线播放| 免费高清在线观看视频在线观看| 成人无遮挡网站| 久久国产精品男人的天堂亚洲 | 欧美成人午夜免费资源| 国产乱人视频| 综合色丁香网| 精品久久久噜噜| freevideosex欧美| 成人无遮挡网站| av专区在线播放| 亚洲熟女精品中文字幕| 国产亚洲精品久久久com| 国产欧美日韩精品一区二区| 欧美bdsm另类| 亚洲国产精品成人久久小说| 日韩,欧美,国产一区二区三区| 欧美xxxx性猛交bbbb| 亚洲国产毛片av蜜桃av| 国产亚洲5aaaaa淫片| 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| 五月伊人婷婷丁香| 久久久久精品性色| 国产精品一区二区三区四区免费观看| 日韩av免费高清视频| 婷婷色av中文字幕| 国产免费一级a男人的天堂| 偷拍熟女少妇极品色| 国产乱人偷精品视频| 午夜福利高清视频| 最后的刺客免费高清国语| 在线观看免费视频网站a站| 久久99蜜桃精品久久| 男男h啪啪无遮挡| 男女无遮挡免费网站观看| 国产黄频视频在线观看| 久久久久网色| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 精品99又大又爽又粗少妇毛片| 亚洲电影在线观看av| 成人影院久久| 最近最新中文字幕大全电影3| 久久久亚洲精品成人影院| 亚洲aⅴ乱码一区二区在线播放| 黄色欧美视频在线观看| 一区二区av电影网| 久久99热这里只有精品18| 水蜜桃什么品种好| 99精国产麻豆久久婷婷| 在线观看国产h片| 日日啪夜夜爽| freevideosex欧美| 在线观看美女被高潮喷水网站| 纯流量卡能插随身wifi吗| 久久久久久久久久久免费av| 亚洲综合色惰| 如何舔出高潮| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 久久久久久久久久久丰满| 亚洲精品亚洲一区二区| 午夜福利影视在线免费观看| 免费大片黄手机在线观看| 国产国拍精品亚洲av在线观看| 青春草国产在线视频| 精品国产露脸久久av麻豆| 国产精品精品国产色婷婷| 国产大屁股一区二区在线视频| 欧美亚洲 丝袜 人妻 在线| 能在线免费看毛片的网站| 91精品一卡2卡3卡4卡| 99热国产这里只有精品6| 简卡轻食公司| 全区人妻精品视频| 一级毛片久久久久久久久女| 成人午夜精彩视频在线观看| 99久久中文字幕三级久久日本| 国产中年淑女户外野战色| 女性生殖器流出的白浆| 综合色丁香网| 蜜桃在线观看..| 国产成人91sexporn| 国产乱来视频区| 99精国产麻豆久久婷婷| 免费观看无遮挡的男女| 少妇的逼水好多| 亚洲国产av新网站| 国产一级毛片在线| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 亚洲在久久综合| 一边亲一边摸免费视频| av在线app专区| 一区二区三区精品91| 大香蕉97超碰在线| 三级经典国产精品| 校园人妻丝袜中文字幕| 人人妻人人看人人澡| 99热网站在线观看| 免费黄网站久久成人精品| 亚洲激情五月婷婷啪啪| 男人爽女人下面视频在线观看| 亚洲中文av在线| 欧美国产精品一级二级三级 | 插逼视频在线观看| 男男h啪啪无遮挡| 日韩在线高清观看一区二区三区| 国产亚洲91精品色在线| av在线app专区| 日本色播在线视频| 久久精品国产亚洲网站| 国产乱人视频| 在线免费十八禁| 久久久久久久久久久免费av| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 国产精品秋霞免费鲁丝片| 亚洲精品第二区| 熟女电影av网| videossex国产| 欧美激情国产日韩精品一区| 男女边吃奶边做爰视频| 大又大粗又爽又黄少妇毛片口| 搡女人真爽免费视频火全软件| 青春草国产在线视频| 高清黄色对白视频在线免费看 | 国产深夜福利视频在线观看| 哪个播放器可以免费观看大片| 国产精品一区www在线观看| 欧美最新免费一区二区三区| 一区二区三区四区激情视频| 久久久久久久久久成人| 亚洲国产欧美人成| 国产淫语在线视频| 亚洲自偷自拍三级| 国产高清三级在线| 日韩伦理黄色片| 国产乱来视频区| 永久免费av网站大全| 大片免费播放器 马上看| 欧美人与善性xxx| 欧美国产精品一级二级三级 | 1000部很黄的大片| 欧美日韩国产mv在线观看视频 | 久久国内精品自在自线图片| 夫妻性生交免费视频一级片| 国精品久久久久久国模美| 另类亚洲欧美激情| 欧美另类一区| 午夜视频国产福利| 国产精品99久久久久久久久| 高清av免费在线| 久久久久久久久久久丰满| 久久国产乱子免费精品| 国产亚洲一区二区精品| 日韩一本色道免费dvd| 一区二区三区乱码不卡18| 欧美激情极品国产一区二区三区 | 熟女电影av网| 一区二区三区乱码不卡18| 精品酒店卫生间| 在线观看人妻少妇| 伊人久久精品亚洲午夜| 久久综合国产亚洲精品| 亚洲欧美成人精品一区二区| 成人影院久久| 国产精品不卡视频一区二区| 亚洲精品国产成人久久av| 青春草视频在线免费观看| 十分钟在线观看高清视频www | 男人添女人高潮全过程视频| 在线观看三级黄色| 毛片女人毛片| 你懂的网址亚洲精品在线观看| 高清不卡的av网站| 国产精品一区二区三区四区免费观看| 久久精品久久精品一区二区三区| 高清视频免费观看一区二区| 精品一区在线观看国产| 人人妻人人看人人澡| 有码 亚洲区| 精品久久久噜噜| 一级毛片 在线播放| 高清毛片免费看| 3wmmmm亚洲av在线观看| 国产精品蜜桃在线观看| 亚洲成人中文字幕在线播放| 性色av一级| 久久精品人妻少妇| 色婷婷久久久亚洲欧美| 国产高潮美女av| 99久国产av精品国产电影| 成人亚洲欧美一区二区av| 久久6这里有精品| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 亚洲欧美成人精品一区二区| 一级二级三级毛片免费看| av视频免费观看在线观看| 精品久久久久久久久av| 秋霞伦理黄片| 男女边吃奶边做爰视频| 久久久欧美国产精品| 黑人猛操日本美女一级片| 一级毛片aaaaaa免费看小| 五月玫瑰六月丁香| 水蜜桃什么品种好| 久久热精品热| 免费在线观看成人毛片| 国产极品天堂在线| 麻豆乱淫一区二区| 国产爱豆传媒在线观看| 久久久久国产精品人妻一区二区| 国产极品天堂在线| 麻豆乱淫一区二区| 国产精品无大码| 成年免费大片在线观看| 亚洲熟女精品中文字幕| 中文字幕亚洲精品专区| 亚洲精品亚洲一区二区| 卡戴珊不雅视频在线播放| 人妻 亚洲 视频| 成人国产麻豆网| 熟女人妻精品中文字幕| 国产精品一区二区三区四区免费观看| 一边亲一边摸免费视频| 熟妇人妻不卡中文字幕| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 日韩中字成人| 国产在线一区二区三区精| 搡女人真爽免费视频火全软件| 九九爱精品视频在线观看| 日韩不卡一区二区三区视频在线| 极品少妇高潮喷水抽搐| 美女国产视频在线观看| 中文在线观看免费www的网站| 高清日韩中文字幕在线| 在线观看一区二区三区激情| 啦啦啦在线观看免费高清www| 久久国产精品男人的天堂亚洲 | 午夜福利在线在线| 免费看av在线观看网站| 少妇丰满av| 熟妇人妻不卡中文字幕| 一级毛片 在线播放| 丝袜喷水一区| 大片电影免费在线观看免费| 一级毛片黄色毛片免费观看视频| 久久久久网色| 婷婷色麻豆天堂久久| 人妻系列 视频| 国产精品福利在线免费观看| 蜜桃亚洲精品一区二区三区| 国产伦精品一区二区三区视频9| 亚洲av在线观看美女高潮| 九九久久精品国产亚洲av麻豆| 又爽又黄a免费视频| 亚洲伊人久久精品综合| 亚洲人成网站在线播| 午夜福利高清视频| 亚洲精品第二区| 亚洲真实伦在线观看| 亚洲成人一二三区av| 美女主播在线视频| 99久久人妻综合| 欧美最新免费一区二区三区| 美女福利国产在线 | 成人18禁高潮啪啪吃奶动态图 | 久久久久久久国产电影| 国产精品一及| 成人一区二区视频在线观看| 我要看日韩黄色一级片| 国产探花极品一区二区| 18禁在线无遮挡免费观看视频| 国产有黄有色有爽视频| 久久久久网色| 亚洲精品,欧美精品| 一级av片app| 久久久久精品久久久久真实原创| 老女人水多毛片| 国产亚洲91精品色在线| 国产精品不卡视频一区二区| 国产成人一区二区在线| 国产精品久久久久久av不卡| 制服丝袜香蕉在线| 99热全是精品| 黄片wwwwww| 97在线人人人人妻| 国产精品免费大片| 伦精品一区二区三区| 免费观看无遮挡的男女| 日本免费在线观看一区| 黄色视频在线播放观看不卡| 欧美日韩在线观看h| 国产爽快片一区二区三区| 日日撸夜夜添| av专区在线播放| 成人漫画全彩无遮挡| 黄色配什么色好看| 我要看黄色一级片免费的| 1000部很黄的大片| 美女高潮的动态| 美女主播在线视频| 最近最新中文字幕大全电影3| 国产国拍精品亚洲av在线观看| kizo精华| 天天躁日日操中文字幕| 1000部很黄的大片| 妹子高潮喷水视频| 亚洲国产av新网站| 亚洲丝袜综合中文字幕| 深爱激情五月婷婷| 亚洲成人av在线免费| 久久久久网色| 欧美日韩在线观看h| av线在线观看网站| 久久久国产一区二区| 免费看不卡的av| 日本av手机在线免费观看| .国产精品久久| 日本-黄色视频高清免费观看| 精品人妻熟女av久视频| 自拍偷自拍亚洲精品老妇| 国产精品蜜桃在线观看| 久久久久视频综合| 欧美日本视频| 久久韩国三级中文字幕| 1000部很黄的大片| 亚洲精品中文字幕在线视频 | 在线观看免费视频网站a站| 我要看日韩黄色一级片| 人人妻人人澡人人爽人人夜夜| 99久国产av精品国产电影| 日日啪夜夜撸| 欧美高清性xxxxhd video| 超碰97精品在线观看| 日韩中字成人| 国产成人a区在线观看| 成人影院久久| 成人亚洲精品一区在线观看 | 国产男女超爽视频在线观看| 男人爽女人下面视频在线观看| 亚洲va在线va天堂va国产| 午夜福利高清视频| 亚洲av不卡在线观看| 黑人高潮一二区| 国产精品人妻久久久久久| 久久国产亚洲av麻豆专区| 大话2 男鬼变身卡| 亚洲精品中文字幕在线视频 | 我要看日韩黄色一级片| .国产精品久久| 乱系列少妇在线播放| 美女主播在线视频| 久久国产精品男人的天堂亚洲 | 一级毛片黄色毛片免费观看视频| 亚洲欧美日韩另类电影网站 | 热re99久久精品国产66热6| 制服丝袜香蕉在线| 亚洲av综合色区一区| 十分钟在线观看高清视频www | .国产精品久久| 黄色视频在线播放观看不卡| 久久精品久久久久久噜噜老黄| 国产色婷婷99| 在线观看美女被高潮喷水网站| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 少妇被粗大猛烈的视频| 免费人成在线观看视频色| 日本爱情动作片www.在线观看| 一级毛片黄色毛片免费观看视频| 久久99热6这里只有精品| 亚洲综合色惰| 97超碰精品成人国产| 嫩草影院入口| 欧美xxⅹ黑人| 国产精品久久久久久精品古装| 亚洲一级一片aⅴ在线观看| 亚洲精华国产精华液的使用体验| 欧美成人一区二区免费高清观看| 2022亚洲国产成人精品| 高清在线视频一区二区三区| 搡老乐熟女国产| 亚洲色图av天堂| 欧美精品亚洲一区二区| 草草在线视频免费看| 久久婷婷青草| 少妇猛男粗大的猛烈进出视频| 欧美精品人与动牲交sv欧美| 午夜精品国产一区二区电影| 国产国拍精品亚洲av在线观看| 日韩,欧美,国产一区二区三区| 在线 av 中文字幕| 自拍偷自拍亚洲精品老妇| 国产大屁股一区二区在线视频| 丰满迷人的少妇在线观看| 在线天堂最新版资源| 99热全是精品| 国产精品国产三级国产av玫瑰| 91狼人影院| 久久国内精品自在自线图片| 一区在线观看完整版| 日韩视频在线欧美| 日日摸夜夜添夜夜爱| 久久久久久九九精品二区国产| 熟妇人妻不卡中文字幕| 男女国产视频网站| 人体艺术视频欧美日本| 热re99久久精品国产66热6| 亚洲精品色激情综合| 99re6热这里在线精品视频| 老司机影院成人| 久久精品国产自在天天线| 久久这里有精品视频免费| 99久久综合免费| 汤姆久久久久久久影院中文字幕| 免费黄频网站在线观看国产| 超碰av人人做人人爽久久| 大话2 男鬼变身卡| 亚洲精品国产av蜜桃| 日本猛色少妇xxxxx猛交久久| 国产黄片美女视频| 人妻系列 视频| 亚洲精品色激情综合| 久久鲁丝午夜福利片| 国产精品99久久99久久久不卡 | 成人国产麻豆网| 久久毛片免费看一区二区三区| 日韩欧美精品免费久久| 国产真实伦视频高清在线观看| 亚洲人成网站高清观看| 女人十人毛片免费观看3o分钟| 久久精品人妻少妇| 乱码一卡2卡4卡精品| 久久久久久久精品精品| 日韩欧美 国产精品| 亚洲图色成人| 国产精品女同一区二区软件| 成人毛片60女人毛片免费| 国产深夜福利视频在线观看| 成人漫画全彩无遮挡| 在线看a的网站| 国产爽快片一区二区三区| 噜噜噜噜噜久久久久久91| 精品国产露脸久久av麻豆| 国产精品久久久久久久久免| 欧美另类一区| 欧美三级亚洲精品| 纯流量卡能插随身wifi吗| 国产视频首页在线观看| 精品国产露脸久久av麻豆| 香蕉精品网在线| 丰满乱子伦码专区| 亚洲国产高清在线一区二区三| 久久久久久久大尺度免费视频| 91久久精品国产一区二区三区| 免费观看av网站的网址| 国产91av在线免费观看| 在线观看国产h片| 在线看a的网站| av线在线观看网站| 欧美日韩视频高清一区二区三区二| 91久久精品电影网| 涩涩av久久男人的天堂| 天美传媒精品一区二区| 久久久亚洲精品成人影院| 国产色爽女视频免费观看| 一二三四中文在线观看免费高清| 91午夜精品亚洲一区二区三区| 亚洲国产毛片av蜜桃av| 久久韩国三级中文字幕| 街头女战士在线观看网站| 日韩一区二区视频免费看|