• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The structure of 4-hydroxylphenylpyruvate dioxygenase complexed with 4-hydroxylphenylpyruvic acid reveals an unexpected inhibition mechanism

    2021-08-26 02:07:46XioningWngHongynLinJunjunLiuXinyunZhoXiChenWenhoYngGungfuYngChngguoZhn
    Chinese Chemical Letters 2021年6期

    Xioning Wng,Hongyn Lin,Junjun Liu,Xinyun Zho,Xi Chen,*,Wenho Yng*,Gungfu Yng*,Chng- guo Zhn

    a College of Chemistry and Material Science,South-Central University for Nationalities,Wuhan 430074,China

    b Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,College of Chemistry,Central China Normal University,Wuhan 430079,China

    c School of Pharmacy,Tongji Medical College of Huazhong University of Science & Technology,Wuhan 430030,China

    d Department of Pharmaceutical Sciences,College of Pharmacy,University of Kentucky,Lexington,KY 40536,United States

    ABSTRACT 4-Hydroxyphenylpyruvate dioxygenase(HPPD)is an important target for both drug and pesticide discovery.As a typical Fe(II)-dependent dioxygenase,HPPD catalyzes the complicated transformation of 4-hydroxyphenylpyruvic acid(HPPA)to homogentisic acid(HGA).The binding mode of HPPA in the catalytic pocket of HPPD is a focus of research interests.Recently,we reported the crystal structure of Arabidopsis thaliana HPPD(AtHPPD)complexed with HPPA and a cobalt ion,which was supposed to mimic the pre-reactive structure of AtHPPD-HPPA-Fe(II).Unexpectedly,the present study shows that the restored AtHPPD-HPPA-Fe(II)complex is still nonreactive toward the bound dioxygen.QM/MM and QM calculations reveal that the HPPA resists the electrophilic attacking of the bound dioxygen by the trim of its phenyl ring,and the residue Phe381 plays a key role in orienting the phenyl ring.Kinetic study on the F381A mutant reveals that the HPPD-HPPA complex observed in the crystal structure should be an intermediate of the substrate transportation instead of the pre-reactive complex.More importantly,the binding mode of the HPPA in this complex is shared with several well-known HPPD inhibitors,suggesting that these inhibitors resist the association of dioxygen(and exert their inhibitory roles)in the same way as the HPPA.The present study provides insights into the inhibition mechanism of HPPD inhibitors.

    Keywords:4-Hydroxyphenylpyruvate dioxygenase QM/MM calculation Potential surface scan Substrate self-inhibition

    4-Hydroxyphenylpyruvate dioxygenase(HPPD)is a member of Fe(II)-dependent α-keto dioxygenase that catalyzes the conversion of 4-hydroxyphenylpyruvic acid(HPPA)to homogentisic acid(HGA).HPPD can also catalyze the conversion of other α-keto acid,such as phenylpyruvate and isocaproate to 2-hydroxyphenylacetate and β-hydroxy β-methylbutyrate,respectively[1,2].Featured in aerobic forms of life,HPPD participates in the tyrosine catabolism,which is necessary for the photosynthesis process.As an effective target for herbicides[3-5]and promising target for the treatment of type I tyrosinemia and alkaptonuria[6],HPPD attracts much research interests.

    Numerous studies were performed to unveil the catalytic mechanism of HPPD[7-11]as well as other α-keto acid dioxygenases.Different to mechanism of majority α-keto dioxygenases that have three substrates(Scheme S1 in Supporting information),HPPD has only two substrates,i.e.,HPPA and dioxygen,to accomplish all the chemistry that common to this family.The commonly accepted mechanism is that the catalysis is initiated by the bidentate binding of HPPA with the ferrous center in the HPPD active site,followed by the oxygen addition,keto acid decarboxylation,phenyl ring hydroxylation,side chain migration,and dissociation of the product HGA(Scheme 1).The reported catalytic constants(kcat)for the conversion of HPPA catalyzed by wild-type HPPD range from 1.1 s-1to 7.8 s-1[10,12-14].According to the transition state theory,the activation free energy for this reaction is about 16-17 kcal/mol.These studies also showed that among those steps the phenyl ring hydroxylation step should be rate-determining[9,11,15].

    Scheme 1.The common catalytic mechanism for the conversion of HPPA catalyzed by HPPD.

    Similar to other α-keto dioxygenases,the HPPD shows ordered substrate/inhibitor binding.The association of HPPA or HPPD inhibitor is always prior to the binding of the dioxygen.It was observed that the association of the HPPA greatly induced the reactivity toward dioxygen[16].Most HPPD inhibitors mimic substrate HPPA.However,experimental studies indicated that the HPPD-inhibitor-Fe(II)complexes performed poorly in associating the molecule dioxygen[17].

    Recently,we reported the crystal structure of Arabidopsis thaliana HPPD(AtHPPD)complexed with the substrate HPPA[12]and a cobalt ion(Fig.1).In this complex,the pyruvate moiety of HPPA in a bidentate chelation with the cobalt ion leads to an octahedral coordination geometry involving the facial triad.The phenolic hydroxyl forms a hydrogen bond with the side chain of Asn423.The benzene ring of HPPA shapes a T-π interaction with Phe381.Compared to the other reported AtHPPD structures(PDB ID:1SQD,1SP9 and 1TG5)[18,19],the HPPD-HPPA-Co(II)structure mainly shows the following differences:1)a conformational alteration for residue Phe428 on the C-terminal α-helix,2)β-sheet fragment(Phe250-Phe253)rotates~30°transforming into a loop,and 3)a conformation change for Gln293 upon the binding of HPPA.These differences reflect the flexibility of the HPPD binding pocket that can accommodate more substrate conformations,and the potential role of Gln293 in the connection of H-bond network of Ser267-Asn282-Gln307.

    Fig.1.(A)Full view and(B)close view of the binding of HPPA at the catalytic site of the AtHPPD-HPPA crystal complex.Values are in the unit of angstrom.

    In our previous works the bound HPPA was proven to be in keto form by hybrid quantum mechanics/molecular mechanics(QM/MM)calculations.These calculations also showed that structure of the restored HPPD-HPPA-Fe(II)complex resembled the crystal complex structure with RMSD value 0.073?for the key geometrical parameters in the metal centers[12].It was thought that the latter mimicked the pre-reactive HPPD-HPPA complex.However,the HPPA binding mode in this complex differs significantly to the proposed ones[20-22],in which the keto and carboxylic groups of HPPA lie respectively trans to the residue Glu394 and His226,and the phenyl ring flipps away from the residue Glu394.These differences prompted us to re-investigate the HPPD-HPPA-Co(II)crystal complex in order to find out the nature of this structure.

    In this study,the cobalt ion in the crystal structure is replaced with a ferrous ion to construct a AtHPPD-HPPA-Fe(II)complex.Since there are unpaired electrons in the catalytic site of the restored complex,it is necessary to determine the spin state for this complex.Previous studies showed that different density functionals provide qualitatively different predictions[23]on the relative stability for the intermediate species in different spin states.The benchmark CCSD(T)calculations supported the B3LYP energetic[23].

    Collected in Table 1 are the selected geometrical parameters,atomic charges and spin densities for selected atoms,and the relative Gibbs free energy for the HPPD-HPPA-O2complex with different spin multiplicity.Part parameters are also shown in Fig.S1(Supporting information)for comparison.In spin states such as the singlet,triplet and quintet state,the dioxygen is attached to the ferrous ion with interatomic Fe-O distances of 1.7-2.0?.However,in septet state the dioxygen is separated from the ferrous center with interatomic Fe-O distance of 3.6?.The optimized Fe-O distances in triplet,quintet and septet state are consistent with the results obtained in previous studies on α-ketoglutarate dependent oxygenase[24,25].According to the relative energies for the geometries obtained in different spin states(Table 1),the quintet,triplet,open-shell singlet,and singlet states lie about 0.5,11.8,24.1 and 28.4 kcal/mol above the ground septet state,which are thought to be a consequence of tighter binding of O2to Fe[23].Population analysis on septet state shows that there are respectively 4 and 2 unpaired alpha-electrons on the ferrous ion and the dioxygen,implying a strong Pauli repulsive interaction between them.The repulsive force should also resist the approaching of the dioxygen to the nearby HPPA α-KG group.Hence,the septet state should not be favorable for the upcoming dioxygen addition reaction.In quintet state,the electrons from the dioxygen are partially counter balanced by that of the iron leading to a net spin density of 0.55,consistent with the predictions of previous studies[23].The quintet state is only~0.5 kcal/mol less stable than the septet,and is by far more stable than the other three states by~11-23 kcal/mol.Population analysis also shows that in quintet state the bound dioxygen is negatively charged and is in doublet spin state,which is thought to be a reactive species toward the α-KG group.Above discussions suggest that the quintet should be the most favorable spin state for the dioxygen addition reaction.This conclusion is consistent with the experimental observations[26,27]and previous theoretical studies on the O2-activation steps of α-KG dioxygenases[9,23],which are also most likely to be run on the quintet potential energy surface(PES).

    Table 1 Key interatomic distances,atomic charges,spin densities and relative QM/MM Gibbs free energy of the ternary HPPD-HPPA-O2 complex calculated at different spin states.a

    Analysis mentioned above suggests that quintet state is most favorable for the reaction of bound dioxygen with HPPA.According to the accepted mechanism of HPPD catalysis described in Scheme 1,the negatively charged oxygen atom from the dioxygen,namely Oa,will attack the carbonyl carbon C2'of the α-KG group,affording an oxidized intermediate,which should be a local minimum of the potential energy surface(PES)along the reaction coordinate.During these calculations the RC2'-C3'-ROa-C2'is set as the reaction coordinate.However,the QM/MM minimum energy path scan on the PES fails to locate this local minimum.In fact,these calculations show that with the approaching of the Oa to the C2'atom(Fig.2)the total energy of the complex structure keeps rising,demonstrating that the nucleophilic attack of the bound dioxygen is hold back by certain factors.Thus,in this ternary complex structure the bound HPPA behaves like an HPPD inhibitor by resisting the association of dioxygen.

    Fig.2.Relative QM/MM energy profile for the attack of the bound dioxygen on the carbonyl carbon of HPPA in the ternary HPPD-HPPA-O2 complex in quintet state.The relative energy is determined at the B3LYP/6-311++G(2d,2p):AMBER level.

    In order to locate the possible factors that hinder the approaching of the dioxygen to the α-KG group of HPPA,we perform reaction coordinate calculations on a QM-cluster constructed from the crystal complex.Surprisingly,calculations on this QM-cluster show that the dioxygen associates successfully with the HPPA(Figs.S2 and S3 in Supporting information).This suggests that the protein environment surrounding the catalytic triad should play important role in affecting the interaction of dioxygen with HPPA.By comparing the pre-reactive structure of the QM-cluster with the QM region of the HPPD-HPPA-O2complex,it is found that the orientation of the phenyl ring profoundly affects the electrophilic attacking of the bound dioxygen.NCIPLOTs analysis(Fig.3B)on one snapshot from the QM/MM PES scan shows that there is a significant repulsive interaction(brown region)between the incoming dioxygen and the phenyl carbon atoms,and a weak attractive interaction(blue region)between the dioxygen and the benzene hydrogen.Obviously,both interactions should hold back the nucleophilic attacking of the bound dioxygen on the α-KG group.On the other hand,the orientation of the phenyl ring is fixed by sidechains of the residue Gln379,Phe381,and Asn423 and buried water(Fig.3A).Among these residues,the Phe381 should play a key role in restraining the rotation of the phenyl ring.B-factor analysis on the AtHPPD-HPPA crystal structure shows low temperature values for these residues(Fig.S8 in Supporting information).Hence,these aromatic side chains are not likely to rotate upon thermal fluctuations.

    Fig.3.(A)Residues around the phenyl ring of HPPA in the optimized structure of ternary HPPD-HPPA-O2 complex.The value is in the unit of angstrom.(B)NCIPLOTs of non-bonded interactions among the attacking dioxygen,4-hydroxyl group,and pyruvate group.The green area illustrates attractive interaction and the brown area represents repulsive interaction.The color scale is-0.04<ρ <0.04 a.u.

    To verify the assumption mentioned above,QM/MM geometrical optimization is performed on a F381A mutant,followed by PES scan along the reaction coordinate RC2'-C3'-ROa-C2'(Fig.4).As can be seen from this figure,in F381A mutant the Oa from the bound dioxygen gradually approaches C2'of the α-KG group and successfully covalently bond with the latter.During the forming of the Oa-C2'bond,the C3'atom departs from the C2'atom,leading to the release of a carbon dioxide.Meanwhile,the HPPA phenyl ring rotates~40°,which is three times it does in the wild-type enzyme(Fig.S4 in Supporting information).Noteworthily,the mechanism described here is different to the one obtained from the QM-cluster calculations(Fig.S2 in Supporting information),in which addition of the dioxygen and departure of the carbon dioxide are taken place in a stepwise manner.This suggests that the position of the phenyl ring may also affect the shape of potential energy profile for the reaction of the bound dioxygen with the α-KG group.Free energy barrier and free energy change for this step are respectively calculated to be 18.8 and-40.3 kcal/mol,demonstrating that the dioxygen will readily be associated with the substrate HPPA.

    Fig.4.Relative energy profile and geometries of the stationary points for the dioxygen addition step in F398A mutant.The total charge and multiplicity for the QM region are set to be 0 and quintet,respectively.The relative energy is determined at the B3LYP/6-311++G(2d,2p):AMBER level.

    It is necessary to address the role of the residue Phe381 during the catalysis in order to characterize the HPPD-HPPA complex observed in the crystal.Kinetic experiments[12]showed that the Kmfor F381A mutant was 9.1 μmol/L,whereas the one for the wild-type HPPD was 1.9 μmol/L.The F381A mutant had similar kcat(0.92 s-1)to that of the wild-type(1.08 s-1).These data suggest that Phe381 may not directly participate the catalytic reaction.Hence,HPPA observed in the crystal structure should be a temporary intermediate during the substate transportations,instead of the previously assumed pre-reactive configuration.As HPPA is transported into pre-reactive configuration,it will be readily converted to HGA and released to the environment,leaving an empty catalytic pocket.As evidenced by the crystal structure reporting the bound HPPA(Fig.S11 in Supporting information),three out of four subunits are vacant,implying that most conversion reactions in these places have completed.The present study demonstrates that the HPPA binding mode observed in the crystal structure is not the reactive mode.Despite various binding modes advanced so far,more proofs are still needed to validate them.So far,it is still an open question for the determine the reactive binding mode of HPPA.

    It is interesting to compare the HPPA binding mode in this study to the ones of known HPPD inhibitors[28]NTBC(PDB ID:5CTO),sulcotrione(PDB ID:5YWG)and Y13508 according to the crystal structures(Fig.5).For each inhibitor in Fig.5,two carbonyl groups form chelation interaction with the ferrous ion and its aromatic ring forms a π-π stacking interaction with side chains of Phe381 and Phe424.The overall binding mode of HPPA is quite like the binding modes of these three inhibitors,except that HPPA phenyl ring only forms a T-π stacking against the phenyl sidechain of Phe381.The minimum substructures of these HPPD inhibitors mimic the α-keto acid moiety of HPPA.The orientation of their aromatic rings resembles the HPPA phenyl ring.The QM/MM calculations combined with QM calculations predict that the free energy change for the binding of dioxygen to the iron is only-1.5 kcal/mol,suggesting a very weak negative binding affinity between them.As illustrated in previous section(Fig.3),the phenyl ring will block the further association of dioxygen to the ketone carbon,hence the bound HPPA will behave like an inhibitor due to the failure of associating the O2.The aromatic rings of the HPPD inhibitors show similar shape and orientation to the HPPA phenyl ring.Following the story of the latter,these aromatic rings will also repel the association of dioxygen to the adjacent ketone carbons.Thus,these inhibitors exert their roles by preventing the addition of O2and suppressing the oxidation of the active site metal ion.This inference is supported by the experimental observation that the HPPD does not bind O2in the presence of its inhibitors.

    Fig.5.Binding modes of the HPPA(yellow scheme),Y13508(green scheme),NTBC(blue scheme)and sulcotrione(pink scheme)in the catalytic site of HPPD.

    In our experiments on the conversion reaction of HPPA catalyzed by AtHPPD,significant substrate-inhibition effect was also observed with Ksi=226.0 μmol/L and Km=44.4 μmol/L(see Supporting information for details).The inhibition constants(Ki)of NTBC[28],sulcotrione and Y13508 against HPPD were reported to be 6.43,5.79 and 1.30 nmol/L,respectively.These data imply that HPPA binds to HPPD with different conformations.Some conformations lead to the reaction product HGA or the intermediate HPA.Some others do not react with HPPD leading to substrate self-inhibition.In this study,we prove that the substrate conformation observed in the AtHPPD-HPPA crystal structure is an inactive form,which contributes to the substrate self-inhibition of HPPD.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    The work was supported by the National Key R&D Program(No.2018YFD0200100),National Natural Science Foundation of China(Nos.21837001,21273089,22007035,U20A2038),the Open Project Fund of the Key Laboratory of the Pesticides and Chemical Biology of Central China Normal University(No.2018-A01),the Fundamental Research Funds for the South-Central University for Nationalities(No.CZW20020),the Fundamental Research Funds for the Central Universities(No.KJ02072020-0657)and Hubei Province Natural Science Foundation(No.2020CFB487).

    Appendix A.Supplementary data

    Supplementary material related to this articlecanbe found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.02.041.

    18禁裸乳无遮挡免费网站照片| 久久6这里有精品| 日韩高清综合在线| 亚洲天堂国产精品一区在线| 国产白丝娇喘喷水9色精品| 成人毛片a级毛片在线播放| 插逼视频在线观看| 18+在线观看网站| 女人被狂操c到高潮| 99国产精品一区二区蜜桃av| 免费观看人在逋| 日韩欧美三级三区| 男女做爰动态图高潮gif福利片| 国产av不卡久久| 性色avwww在线观看| 亚洲久久久久久中文字幕| 国产成人一区二区在线| av天堂在线播放| 免费高清视频大片| 国产黄色小视频在线观看| a级毛片免费高清观看在线播放| 午夜福利在线在线| 中国美白少妇内射xxxbb| 国产aⅴ精品一区二区三区波| 桃色一区二区三区在线观看| 男插女下体视频免费在线播放| 精品99又大又爽又粗少妇毛片| 亚洲中文日韩欧美视频| 精品少妇黑人巨大在线播放 | 亚洲欧美精品综合久久99| 国产亚洲精品久久久com| 天美传媒精品一区二区| 日本a在线网址| 在现免费观看毛片| 成年免费大片在线观看| 亚洲七黄色美女视频| 亚洲美女视频黄频| 中文亚洲av片在线观看爽| 成人亚洲欧美一区二区av| 欧美日韩综合久久久久久| av福利片在线观看| 国产精品久久视频播放| 一个人免费在线观看电影| 午夜老司机福利剧场| 麻豆精品久久久久久蜜桃| 男女视频在线观看网站免费| 三级毛片av免费| 精品人妻一区二区三区麻豆 | 中文资源天堂在线| 97超碰精品成人国产| 免费在线观看成人毛片| 成人午夜高清在线视频| 色综合站精品国产| 在线免费观看的www视频| 波多野结衣高清作品| 久久久久久久午夜电影| 性插视频无遮挡在线免费观看| 日韩 亚洲 欧美在线| 国产亚洲欧美98| 日韩高清综合在线| or卡值多少钱| 在线免费观看的www视频| 深夜a级毛片| 美女免费视频网站| 色噜噜av男人的天堂激情| 深爱激情五月婷婷| 内地一区二区视频在线| 老熟妇乱子伦视频在线观看| 大型黄色视频在线免费观看| 国产高清激情床上av| 国产欧美日韩精品亚洲av| 99久久精品热视频| 麻豆久久精品国产亚洲av| 熟女电影av网| 成年女人看的毛片在线观看| 日本黄色视频三级网站网址| 国内少妇人妻偷人精品xxx网站| 国产成人91sexporn| 一边摸一边抽搐一进一小说| 国内精品久久久久精免费| 国内精品美女久久久久久| 国产成年人精品一区二区| 精品欧美国产一区二区三| 亚洲欧美日韩高清在线视频| 日韩,欧美,国产一区二区三区 | 一个人看视频在线观看www免费| 亚洲三级黄色毛片| 十八禁国产超污无遮挡网站| 淫妇啪啪啪对白视频| 亚洲成av人片在线播放无| 神马国产精品三级电影在线观看| 成人特级av手机在线观看| 天天躁日日操中文字幕| 99热全是精品| 99久久精品国产国产毛片| 日韩成人av中文字幕在线观看 | 99热全是精品| 三级毛片av免费| 色av中文字幕| 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 免费大片18禁| 熟女人妻精品中文字幕| 99热6这里只有精品| 秋霞在线观看毛片| 亚洲四区av| 欧美xxxx黑人xx丫x性爽| 69人妻影院| 可以在线观看的亚洲视频| 亚洲av免费高清在线观看| 亚洲精品456在线播放app| 国产成人freesex在线 | 丝袜喷水一区| 亚洲成人久久性| 高清日韩中文字幕在线| a级毛片a级免费在线| 日本精品一区二区三区蜜桃| 少妇丰满av| 搡老岳熟女国产| 欧美又色又爽又黄视频| 久久精品久久久久久噜噜老黄 | 亚洲在线观看片| 两个人的视频大全免费| 搡老妇女老女人老熟妇| 国产aⅴ精品一区二区三区波| 人妻夜夜爽99麻豆av| 欧美一区二区国产精品久久精品| 成人av在线播放网站| 亚洲国产精品久久男人天堂| 亚洲人成网站在线观看播放| 成人一区二区视频在线观看| 欧美国产日韩亚洲一区| 老司机福利观看| 日本三级黄在线观看| av在线老鸭窝| 免费av不卡在线播放| 久久久久久久久久黄片| 午夜爱爱视频在线播放| 国产 一区 欧美 日韩| 国产毛片a区久久久久| 欧美日韩一区二区视频在线观看视频在线 | 久久九九热精品免费| 精品久久久久久久末码| 亚洲av免费高清在线观看| 国产久久久一区二区三区| 国产色爽女视频免费观看| 亚洲经典国产精华液单| 日本精品一区二区三区蜜桃| 久久草成人影院| 一个人看的www免费观看视频| 久久中文看片网| av女优亚洲男人天堂| 91在线观看av| 丰满人妻一区二区三区视频av| 欧美色视频一区免费| 免费av观看视频| 色噜噜av男人的天堂激情| 免费观看的影片在线观看| 精品久久久久久久人妻蜜臀av| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 亚洲成av人片在线播放无| 精品久久久久久久久亚洲| 国模一区二区三区四区视频| 色5月婷婷丁香| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 亚洲成a人片在线一区二区| 亚洲不卡免费看| 国产色爽女视频免费观看| 国产乱人偷精品视频| 又黄又爽又刺激的免费视频.| 赤兔流量卡办理| 九九热线精品视视频播放| 男插女下体视频免费在线播放| 又爽又黄无遮挡网站| 最近最新中文字幕大全电影3| 搡老熟女国产l中国老女人| 日本 av在线| 精品久久久久久久末码| 久久精品国产亚洲av天美| 赤兔流量卡办理| 中文字幕免费在线视频6| 99热6这里只有精品| 午夜精品在线福利| 桃色一区二区三区在线观看| 国产 一区 欧美 日韩| 久久鲁丝午夜福利片| 国产爱豆传媒在线观看| 波多野结衣高清作品| 少妇人妻精品综合一区二区 | 国产免费男女视频| 亚洲熟妇熟女久久| 别揉我奶头 嗯啊视频| 两个人的视频大全免费| 国产精品久久视频播放| 久久久欧美国产精品| 日本五十路高清| 亚洲无线在线观看| 美女cb高潮喷水在线观看| 熟女人妻精品中文字幕| 在线看三级毛片| 国产精品一区二区免费欧美| 黄色一级大片看看| 老熟妇仑乱视频hdxx| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品久久男人天堂| 午夜福利在线在线| 亚洲精品粉嫩美女一区| 能在线免费观看的黄片| 真实男女啪啪啪动态图| 国产探花极品一区二区| 日本-黄色视频高清免费观看| av中文乱码字幕在线| 美女免费视频网站| 激情 狠狠 欧美| 在现免费观看毛片| 久久精品国产鲁丝片午夜精品| 欧美最新免费一区二区三区| 九色成人免费人妻av| 亚洲欧美精品综合久久99| 色哟哟哟哟哟哟| 我要搜黄色片| 免费一级毛片在线播放高清视频| 高清日韩中文字幕在线| 成年女人毛片免费观看观看9| 久久鲁丝午夜福利片| 看非洲黑人一级黄片| 99九九线精品视频在线观看视频| 免费搜索国产男女视频| av女优亚洲男人天堂| 麻豆乱淫一区二区| 免费一级毛片在线播放高清视频| 国产爱豆传媒在线观看| 长腿黑丝高跟| 男女视频在线观看网站免费| 99久国产av精品| 亚洲中文字幕一区二区三区有码在线看| 深爱激情五月婷婷| 真人做人爱边吃奶动态| 91av网一区二区| 日韩av在线大香蕉| 久久精品国产鲁丝片午夜精品| 真人做人爱边吃奶动态| 91狼人影院| 国产伦一二天堂av在线观看| 免费观看在线日韩| 久久亚洲精品不卡| 激情 狠狠 欧美| 国产真实乱freesex| 91狼人影院| 天堂动漫精品| 色av中文字幕| 在线观看av片永久免费下载| 中国国产av一级| 麻豆av噜噜一区二区三区| 精品久久久久久久久久免费视频| 午夜免费男女啪啪视频观看 | eeuss影院久久| 听说在线观看完整版免费高清| 99热6这里只有精品| 国产精品人妻久久久久久| 午夜福利在线在线| 亚洲内射少妇av| 麻豆国产av国片精品| 午夜日韩欧美国产| 亚洲18禁久久av| 午夜精品国产一区二区电影 | 搡女人真爽免费视频火全软件 | 午夜福利在线观看免费完整高清在 | 久久6这里有精品| 看片在线看免费视频| 色吧在线观看| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久亚洲av鲁大| 午夜爱爱视频在线播放| 精品一区二区三区人妻视频| 欧美xxxx黑人xx丫x性爽| 国产免费男女视频| 18禁在线播放成人免费| 老女人水多毛片| 黄片wwwwww| 热99re8久久精品国产| h日本视频在线播放| 国产精品,欧美在线| 亚洲国产色片| 亚洲人成网站高清观看| 91狼人影院| 久久久久久九九精品二区国产| 久久精品夜夜夜夜夜久久蜜豆| 一个人免费在线观看电影| 国产精品伦人一区二区| 欧美+日韩+精品| 久久久午夜欧美精品| 91在线精品国自产拍蜜月| a级一级毛片免费在线观看| 日日撸夜夜添| 人妻少妇偷人精品九色| 中国美白少妇内射xxxbb| 人人妻人人澡欧美一区二区| 床上黄色一级片| 嫩草影院入口| 女人被狂操c到高潮| 国产探花在线观看一区二区| 熟女电影av网| 免费av毛片视频| 亚洲欧美清纯卡通| 搞女人的毛片| av免费在线看不卡| 韩国av在线不卡| 熟妇人妻久久中文字幕3abv| 日本黄色视频三级网站网址| 免费看a级黄色片| 亚洲一级一片aⅴ在线观看| 美女内射精品一级片tv| 国产v大片淫在线免费观看| 国产精品1区2区在线观看.| 亚洲国产欧洲综合997久久,| 欧美极品一区二区三区四区| 我的老师免费观看完整版| 日韩成人av中文字幕在线观看 | 悠悠久久av| 在线免费观看的www视频| 欧美zozozo另类| 中文字幕精品亚洲无线码一区| 亚洲国产精品久久男人天堂| 国产一级毛片七仙女欲春2| 亚洲av.av天堂| 99久久精品国产国产毛片| 欧美日韩国产亚洲二区| 久久久久久大精品| 欧美高清成人免费视频www| 色哟哟·www| 午夜久久久久精精品| 蜜臀久久99精品久久宅男| 女人十人毛片免费观看3o分钟| 天堂影院成人在线观看| 在线观看66精品国产| 嫩草影视91久久| 草草在线视频免费看| 观看美女的网站| 国产精品伦人一区二区| 久久久久国产精品人妻aⅴ院| 看非洲黑人一级黄片| 国产精华一区二区三区| 亚洲av五月六月丁香网| 毛片一级片免费看久久久久| 婷婷亚洲欧美| 嫩草影院入口| 日本成人三级电影网站| 欧美成人一区二区免费高清观看| 国产精品不卡视频一区二区| 精品乱码久久久久久99久播| 美女 人体艺术 gogo| 欧美激情国产日韩精品一区| 男女下面进入的视频免费午夜| 综合色av麻豆| 1024手机看黄色片| 精品久久久噜噜| 插逼视频在线观看| 亚洲国产欧美人成| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久成人| 色综合亚洲欧美另类图片| 亚洲精品456在线播放app| 国产三级在线视频| 欧美色欧美亚洲另类二区| 午夜福利在线在线| 中文字幕精品亚洲无线码一区| ponron亚洲| 简卡轻食公司| 久久欧美精品欧美久久欧美| 日本撒尿小便嘘嘘汇集6| 蜜臀久久99精品久久宅男| 1024手机看黄色片| 亚洲av二区三区四区| or卡值多少钱| 中文字幕免费在线视频6| 人人妻人人看人人澡| 国内精品美女久久久久久| 九色成人免费人妻av| 韩国av在线不卡| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 国产精品久久久久久av不卡| 久久精品国产亚洲av涩爱 | 国产亚洲av嫩草精品影院| 在线国产一区二区在线| 久久中文看片网| 熟女人妻精品中文字幕| 午夜日韩欧美国产| 欧美一区二区精品小视频在线| 国产一区二区在线观看日韩| 少妇裸体淫交视频免费看高清| 如何舔出高潮| 黄色配什么色好看| 亚洲国产欧洲综合997久久,| 中文字幕免费在线视频6| 人人妻人人澡欧美一区二区| 久久国内精品自在自线图片| 一个人看视频在线观看www免费| 日韩制服骚丝袜av| 最近在线观看免费完整版| 成人高潮视频无遮挡免费网站| 精品不卡国产一区二区三区| 精品一区二区免费观看| 天天躁日日操中文字幕| 久久久久久久久久久丰满| 91在线观看av| 日日啪夜夜撸| 欧美日韩乱码在线| 国产午夜精品论理片| 欧美日韩精品成人综合77777| 国产v大片淫在线免费观看| 黄片wwwwww| 别揉我奶头 嗯啊视频| 久久久久久伊人网av| 久久人妻av系列| 亚洲自偷自拍三级| 精品久久久久久久人妻蜜臀av| 狂野欧美激情性xxxx在线观看| 日本一本二区三区精品| 少妇被粗大猛烈的视频| 久99久视频精品免费| 99视频精品全部免费 在线| 男女边吃奶边做爰视频| 国产视频内射| 99久久精品一区二区三区| 国产乱人视频| 我要看日韩黄色一级片| 欧美色欧美亚洲另类二区| 午夜福利在线观看免费完整高清在 | 亚洲丝袜综合中文字幕| 有码 亚洲区| 人人妻人人看人人澡| 久久综合国产亚洲精品| 亚洲av五月六月丁香网| 国产亚洲精品久久久com| 老熟妇仑乱视频hdxx| 秋霞在线观看毛片| 看非洲黑人一级黄片| 久久久久精品国产欧美久久久| 深夜精品福利| 国产激情偷乱视频一区二区| 国产一区亚洲一区在线观看| 九九爱精品视频在线观看| 国内少妇人妻偷人精品xxx网站| 91久久精品国产一区二区成人| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 国产一区二区三区在线臀色熟女| 校园春色视频在线观看| av在线蜜桃| 午夜亚洲福利在线播放| 精品久久久久久久久久免费视频| 一级a爱片免费观看的视频| 秋霞在线观看毛片| 色噜噜av男人的天堂激情| 亚洲天堂国产精品一区在线| АⅤ资源中文在线天堂| 久久精品国产鲁丝片午夜精品| 黄片wwwwww| 欧美色欧美亚洲另类二区| 在线观看免费视频日本深夜| 听说在线观看完整版免费高清| 成年免费大片在线观看| 老熟妇乱子伦视频在线观看| 亚洲18禁久久av| 夜夜夜夜夜久久久久| 在线a可以看的网站| 国产黄a三级三级三级人| 麻豆av噜噜一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲激情五月婷婷啪啪| 一个人观看的视频www高清免费观看| 麻豆一二三区av精品| 观看美女的网站| 欧美最新免费一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲美女黄片视频| 欧美3d第一页| 亚洲欧美日韩无卡精品| 97超级碰碰碰精品色视频在线观看| 全区人妻精品视频| 午夜亚洲福利在线播放| 国产 一区 欧美 日韩| 国产高清视频在线播放一区| 99九九线精品视频在线观看视频| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜| 日本欧美国产在线视频| 老熟妇乱子伦视频在线观看| 亚洲熟妇熟女久久| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 蜜桃亚洲精品一区二区三区| 日韩欧美三级三区| 国产亚洲精品av在线| 卡戴珊不雅视频在线播放| 国产一级毛片七仙女欲春2| a级毛色黄片| 久久精品国产亚洲av香蕉五月| 99精品在免费线老司机午夜| a级毛片免费高清观看在线播放| 国产亚洲精品av在线| 黄色视频,在线免费观看| 亚洲人成网站在线观看播放| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 国产乱人视频| 日日干狠狠操夜夜爽| 人妻丰满熟妇av一区二区三区| 少妇丰满av| 免费看av在线观看网站| 亚洲精品亚洲一区二区| 最近在线观看免费完整版| 日本黄大片高清| 亚洲五月天丁香| 亚洲最大成人中文| 亚洲av熟女| 久久久久国产精品人妻aⅴ院| 毛片女人毛片| 村上凉子中文字幕在线| 真实男女啪啪啪动态图| 免费看美女性在线毛片视频| 你懂的网址亚洲精品在线观看 | 一级毛片久久久久久久久女| 三级男女做爰猛烈吃奶摸视频| 51国产日韩欧美| 亚洲欧美成人综合另类久久久 | 人妻久久中文字幕网| 国产一区亚洲一区在线观看| 在线国产一区二区在线| 免费看美女性在线毛片视频| 成人精品一区二区免费| 免费电影在线观看免费观看| 麻豆乱淫一区二区| 亚洲av中文av极速乱| 99riav亚洲国产免费| 亚洲欧美日韩东京热| 亚洲内射少妇av| 联通29元200g的流量卡| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 欧美bdsm另类| 99久国产av精品| 日本色播在线视频| 在线播放国产精品三级| 日韩强制内射视频| 在线a可以看的网站| 热99re8久久精品国产| 九九久久精品国产亚洲av麻豆| 亚洲三级黄色毛片| 嫩草影院新地址| 全区人妻精品视频| 又爽又黄无遮挡网站| 亚洲国产欧洲综合997久久,| 尾随美女入室| 毛片女人毛片| 亚洲成人中文字幕在线播放| 久久久精品大字幕| 女人十人毛片免费观看3o分钟| 国产精品综合久久久久久久免费| 亚洲av电影不卡..在线观看| 天堂√8在线中文| 99久久九九国产精品国产免费| 国产美女午夜福利| 日本 av在线| 观看免费一级毛片| 天堂√8在线中文| 国产亚洲精品综合一区在线观看| 超碰av人人做人人爽久久| 看黄色毛片网站| 免费大片18禁| 两性午夜刺激爽爽歪歪视频在线观看| 卡戴珊不雅视频在线播放| 日本免费一区二区三区高清不卡| 直男gayav资源| 国产精品精品国产色婷婷| av.在线天堂| 亚洲欧美精品综合久久99| 国产精品三级大全| 成人亚洲欧美一区二区av| 日本黄色片子视频| 十八禁网站免费在线| 白带黄色成豆腐渣| 一本久久中文字幕| 国产精品无大码| 精品国内亚洲2022精品成人| 日韩av在线大香蕉| 久久欧美精品欧美久久欧美| 丝袜喷水一区| 亚洲av熟女| 国产成人精品久久久久久| 久久99热6这里只有精品| 天堂动漫精品| 成年版毛片免费区| 少妇人妻精品综合一区二区 | 国产高清激情床上av| 国产亚洲精品av在线| 久久午夜亚洲精品久久| 精品国产三级普通话版| 看黄色毛片网站| 18禁裸乳无遮挡免费网站照片| 久久国产乱子免费精品| 天堂av国产一区二区熟女人妻| 日韩高清综合在线| 亚洲成人中文字幕在线播放| 成人精品一区二区免费| 春色校园在线视频观看| 亚洲精品成人久久久久久| 亚洲中文日韩欧美视频| 国产亚洲av嫩草精品影院| 午夜a级毛片| 搡老熟女国产l中国老女人|