• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of Khasi Speech Representations with Different Spectral Features and Hidden Markov States

    2021-08-16 01:56:16BronsonSyiemSushantaKabirDuttaJuweshBinongLairenlakpamJoyprakashSingh

    Bronson Syiem| Sushanta Kabir Dutta | Juwesh Binong |Lairenlakpam Joyprakash Singh

    Abstract—In this paper,we present a comparison of Khasi speech representations with four different spectral features and novel extension towards the development of Khasi speech corpora.These four features include linear predictive coding (LPC),linear prediction cepstrum coefficient (LPCC),perceptual linear prediction (PLP),and Mel frequency cepstral coefficient (MFCC).The 10-hour speech data were used for training and 3-hour data for testing.For each spectral feature,different hidden Markov model (HMM) based recognizers with variations in HMM states and different Gaussian mixture models (GMMs) were built.The performance was evaluated by using the word error rate (WER).The experimental results show that MFCC provides a better representation for Khasi speech compared with the other three spectral features.

    1.Introduction

    Speech is the easiest mode of communications between individuals and in fact it is the most efficient form of exchanging information among humans.The perception of speech looks simple for humans but in reality it is quite complicated.The same word of a language can be pronounced differently by different people depending upon the region they have been living in.Also,every individual has unique pitch and formant.Hence,the representation of the speech signal is required in order to understand different features associated with and to preserve the information needed to determine the phonetic identity of speech.Generally,the representation of speech is specified by a model description including the parameters and coefficients of the signal[1].Based on these parameters,speech representations can be classified into two groups,namely the parametric representation (based on model parameters,e.g.,pulse code modulation) and the non-parametric representation (only consisting of signal coefficients,e.g.,sinusoids)[1].The representation of speech in a complete and compact form is of great importance in an automatic speech recognition (ASR) system[2].The usage of an appropriate representation of the speech signal yields a more efficient speech coding system,which could improve the quality of speech synthesis and the performance of recognizers[1].Speech recognition systems generally assume that the speech signal is a realization of some messages encoded as a sequence of one or more symbols.To realize the reverse operation of recognizing the underlying symbol sequence from the spoken utterance,the continuous speech waveform is first converted to a sequence of equally spaced discrete parameter vectors[3].This sequence of parameter vectors is assumed to form an exact representation of the speech waveform for the duration covered by a single vector (typically 10 ms or so).Much research has been carried out in this area to represent speech,however,majority of the work done uses only a few different signal representations.The cepstrum coefficient (CC) is a representation which is the most commonly used in speech recognition systems[4].

    Using the canonical representation of speech,the separation of voiced and unvoiced sounds with the TIMIT database was performed in the past[1].The experiment focused on this separation with a high-efficient result was achieved.However,it did not perform the investigation of speech recognition.Other related studies using the spectral representation with combined pitch-synchronous acoustic features were also done,in which the result showed a relatively low word error rate (WER)[5].However,the experiment was only performed with few spectral features.The speech representation based on phase locked loop (PLL) features of voiced sounds with the TIMIT database showed a higher recognition rate when it was measured over a range of high noise[6],yet issues remain to cover the unvoiced segments.The phone recognition using three spectral features (linear prediction cepstral coefficient (LPCC),perceptual linear prediction (PLP),and Mel frequency cepstral coefficient (MFCC)) on the Manipuri language was performed with three different modes of conversation.The results showed a slight improvement[7].However,they did not perform the analysis with varying hidden Markov model (HMM) states and mixture models.In this work,the speech recognition would be performed with varying HMM states and mixture models,and meanwhile more spectral features will be used.

    Despite major advancements have been achieved in the state-of-the-art speech recognition systems,there still exists a huge and challenging task,particularly for those with low resource languages.Till date,very limited research has been conducted with regard to to Khasi speech recognition and as far as our knowledge is concerned,no Khasi speech recognition with different HMM states has been performed.In this paper,we investigate the Khasi speech representation using different spectral features with three different HMM states,which is an extended version of our previous work[8].

    2.Khasi Language

    The Khasi language is one of the Austro-Asiatic languages under the Monkhmer branch and is spoken by the natives of the state Meghalaya[9].Depending on the geographical location and local residents,the dialects vary to some extent.Based on this,Bareh proposed a total of 11 Khasi dialects[10].According to the research of Nagarajaet al.,Khasi dialects are comprised of four major dialects including Khasi Proper (from Sohra),Pnar,Lyngngam,and War[11].Amongst these four dialects,Khasi Proper is the standard Khasi dialect and hence it is chosen to be studied in this work.

    3.HMM State

    HMM can be considered as a stochastic,finite state machine with an unobserved state used for modeling speech utterance[12].In HMM,the state is hidden,however,the output that depends on the state is assumed to be visible.Since the state is hidden,the only parameters for HMM are the transition probabilitiesaj,kand the emission probabilities (also called output probabilities)[13].Fig.1shows the general state diagram of HMM with thejth state and theith output probability distribution function.The states are fed forward,in other words,the states can stay in itself or move from the left-right direction but not in the reverse (right-left) direction.The starting state (q1) and the exit state (qj) are assumed to be non-emitting states,which means these states do not generate observations.The states (q2toqj–1)are considered to be emitting states with output probabilities ofb1tobi.These output probabilities generate the observation ot(the acoustic feature vector).Each observation probability is represented by a Gaussian mixture density[14].In this work,the 3,5,and 7 HMM states have been considered.

    Fig.1.Left to the right HMM state diagram with the jth state and the ith output probability distribution function.

    4.Spectral Features

    In ASR systems,the feature plays a crucial factor.In this work,four different spectral features including linear prediction coding (LPC),LPCC,PLP,and MFCC have been used and they are briefly explained as below.

    4.1.LPC

    LPC is the method of estimating basic speech parameters (e.g.,pitch and formant) and used for representing speech with a low bit rate[15].It is based on the fact that a present speech sample can be approximated as a linear combination of past speech samples.

    4.2.LPCC

    LPCC is the derived feature of LPC,which is one of the most popular techniques used for the speaker recognition system[16].To compute the LPCC feature,the LPC spectral envelope is first computed.The technique is similar to the MFCC computation.In MFCC,pre-emphasis is applied to the speech waveform,whereas in LPCC it is applied to the spectrum of the input speech signal[17].

    4.3.PLP

    This technique is similar to LPC.However,in PLP the spectral characteristics are transformed to match the human auditory system characteristics,hence PLP is more adaptable to human hearing compared with LPC.The main difference between these two techniques is that PLP assumes the all-pole transfer function of the vocal tract with a specified number of resonances[15].

    4.4.MFCC

    This feature is defined as the representation of the short-term power spectrum of a speech sound.It is based on a linear cosine transform of a log power spectrum on a non-linear Mel scale of frequency.In MFCC,the frequency bands are equally spaced on the Mel scale.This characteristic feature enables MFCC to approximate the human auditory system’s response more closely compared with the linearly spaced frequency bands used in the normal cepstrum[18].

    5.Database Description

    The collection of speech data can be made from different modes (e.g.,read mode,lecture mode,or conversation mode).The speech data used for this experiment are read-based,uttered by 120 Khasi native speakers.The speech data were recorded in a laboratory by using the Zoom H4N Handy portable digital recorder with a sampling rate of 16 kHz,where each speaker was given 50 unique sentences to read.The detailed description of the speech database is shown inTable 1.

    Table 1:Database description

    6.Experimental Setup

    The experiment was carried out in the Ubuntu 14.04 long term support (LTS) platform using the hidden Markov model toolkit (HTK).The features were extracted by applying a Hamming window of 25-ms size with a frame shift of 10 ms.The extracted spectral features were used for creating the acoustic model (AM),whereas the transcription labeled files were used for creating the language model (LM).The numbers of wave files used for training and testing were 6000 and 1800,respectively.Different AMs were built by using 3,5,and 7 HMM states to represent each phone.Then the global mean and variance per HMM state were calculated by using the predefined prototype along with the acoustic vectors and transcriptions of the training data set[19].The optimal values for the HMM parameters (transition probability,mean and variance vectors for each observation function) were re-estimated once an initial set of models was created.The pronunciation dictionary/lexicon was built by splitting the word sequence into the phone sequence.Table 2shows the illustration of the dictionary used in the experiment.Each phone acted as an acoustic unit that was further used for training the HMM model[20].LM was used for creatingn-gram corresponding to the text transcription.In this experiment,we used bi-gram LM.Finally,the decoder captured the distinct sounds of each word and produced the output.It was further matched with the trained HMM for each sound then the phone sequence was determined like in a pronunciation dictionary.Finally,the word was recognized.The detailed process is schematically shown inFig.2.

    Table 2:Illustration of lexicon used in the experiment

    Fig.2.Schematic representation of speech recognition.

    7.Results and Discussion

    In this study,we have used four different spectral features with three different coefficient dimensions.HMM-based recognizers were built with different HMM states and different Gaussian mixture models(GMMs).From the experiment,we investigated the following three cases.

    7.1.Case 1

    In this case,the 13-dimensional spectral features were used to model HMMs with three different HMM states (3,5,and 7) and GMMs.The results are shown inFig.3.Using the LPC feature,we observed a relatively low reduction in WER irrespective of the variations in HMM states and GMMs.With the LPCC feature,more reductions of WER were noticed with respect to the changes in HMM states and GMMs.Furthermore,using the PLP and MFCC features,much more reductions of WER were presented as compared with the formal two features.For each feature,increasing the mixture components,more improvements in recognition were observed particularly for those with LPCC,PLP,and MFCC.However,a further increase in the HMM states to 7 shows a reduction in recognition performance.

    Fig.3.Scatter plot showing WER with respect to HMM states and GMMs for LPC,LPCC,PLP,and MFCC with 13-dimensional features.

    7.2.Case 2

    In this case,we used 26-dimensional features to build the models.By increasing the feature dimension,an improvement in recognition accuracy was observed.However,no improvement was obtained by using the LPC feature when increasing the feature dimension as well as HMM states and mixture components.Like in the first case (Case 1),there was a reduction in recognition performance when further increasing HMM states to 7,but with the increase of mixture components,it yielded good performance.The detailed change of WER can be observed inFig.4.

    Fig.4.Scatter plot showing WER with respect to HMM states and GMMs for LPC,LPCC,PLP,and MFCC with 26-dimensional features.

    7.3.Case 3

    In the last case,we further increased the feature dimension to 39.The results can be observed fromFig.5.With further increasing the feature dimension,a more obvious improvement was raised in recognition than those in Case 1 and Case 2.However,by using the LPC feature,it showed poor performance.Besides 5 states,the variations of HMM states also did not show much enhancement in recognition.

    In all the three cases,it was observed that the LPC and LPCC features resulted in poor performance.This may be due to the high noise sensitivity and the lack of using the human auditory feature during the feature extraction process as stated in [19].Further,it was observed that increasing the feature dimension could improve the performance.This possibly results from the insufficient coefficient to capture the phones under a low feature dimension.In order to make HMM more accurate,the mixture size must be increased[7]and,from the experiment,the optimal mixture size was found to be 64.Furthermore,though the increase of HMM states led to the increase of acoustic likelihood,it was found that when exceeding 5 states,no improvement was produced.This may be due to the short sequence of phones considered for creating the HMM model.The best performance was achieved by using 39-dimensional MFCC features with 5 HMM states,with the recognition accuracy of 90.36%.

    Fig.5.Scatter plot showing WER with respect to HMM states and GMMs for LPC,LPCC,PLP,and MFCC with 39-dimensional features.

    8.Conclusion

    In this experiment,we performed a comparison of Khasi speech representations with different spectral features and HMM states.The performance evaluation was done by building different HMM-based recognizers using the HTK ASR toolkit for different spectral features with different feature dimensions,HMM states,and GMMs.The experimental results showed the MFCC feature provided a better representation of Khasi speech.This study reveals that the ASR system does not only depend on model parameters but also the type of features used.One major outcome which can be derived from this work is that it has provided baseline information of the different features and HMM states.For future work,since ASR is a data driven system,more speech data can be incorporated and also the neural network classifier can be applied to improve the system performance.

    Disclosures

    The authors declare no conflicts of interest.

    国产精品一区二区在线观看99| 99九九在线精品视频| 满18在线观看网站| 精品亚洲成a人片在线观看| 午夜福利视频精品| 操美女的视频在线观看| 一二三四社区在线视频社区8| 精品亚洲成国产av| 久久久精品区二区三区| 9热在线视频观看99| 啦啦啦在线免费观看视频4| 亚洲伊人久久精品综合| 国产在线视频一区二区| 欧美精品高潮呻吟av久久| 波多野结衣av一区二区av| 少妇被粗大的猛进出69影院| 亚洲精品久久成人aⅴ小说| 国产真人三级小视频在线观看| 乱人伦中国视频| 亚洲精品国产av蜜桃| 男人舔女人的私密视频| 水蜜桃什么品种好| 国产男女内射视频| 欧美日韩福利视频一区二区| 午夜福利免费观看在线| 亚洲成人国产一区在线观看| 国产免费av片在线观看野外av| 欧美 日韩 精品 国产| 午夜激情av网站| 丝袜美足系列| 9色porny在线观看| 大码成人一级视频| 免费不卡黄色视频| av超薄肉色丝袜交足视频| 满18在线观看网站| 18禁国产床啪视频网站| 国产在线一区二区三区精| 欧美精品啪啪一区二区三区 | 免费观看a级毛片全部| 国产免费现黄频在线看| 深夜精品福利| 国产野战对白在线观看| 欧美亚洲日本最大视频资源| 美国免费a级毛片| 精品一区二区三区av网在线观看 | 捣出白浆h1v1| 少妇精品久久久久久久| 亚洲国产欧美日韩在线播放| 97精品久久久久久久久久精品| 亚洲 欧美一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲成国产人片在线观看| 精品熟女少妇八av免费久了| 啪啪无遮挡十八禁网站| 亚洲人成77777在线视频| 人妻一区二区av| 欧美黑人精品巨大| 成人国产一区最新在线观看| 久久人人爽人人片av| 国产无遮挡羞羞视频在线观看| 国产日韩欧美视频二区| 国产成人a∨麻豆精品| 亚洲国产精品一区三区| 91麻豆av在线| 亚洲伊人久久精品综合| 如日韩欧美国产精品一区二区三区| 在线看a的网站| 亚洲一码二码三码区别大吗| 国产欧美日韩精品亚洲av| 国产一区有黄有色的免费视频| 99热全是精品| 亚洲自偷自拍图片 自拍| a 毛片基地| 亚洲专区中文字幕在线| 日韩视频在线欧美| 波多野结衣av一区二区av| 黄网站色视频无遮挡免费观看| 午夜福利视频精品| 首页视频小说图片口味搜索| 国产亚洲午夜精品一区二区久久| 中文字幕最新亚洲高清| 黑人欧美特级aaaaaa片| 亚洲精品国产色婷婷电影| 国产一区二区 视频在线| 搡老乐熟女国产| 50天的宝宝边吃奶边哭怎么回事| 淫妇啪啪啪对白视频 | 色播在线永久视频| 久久精品熟女亚洲av麻豆精品| 午夜免费成人在线视频| av在线老鸭窝| 国产av一区二区精品久久| 久久久欧美国产精品| 国产一卡二卡三卡精品| 男女无遮挡免费网站观看| 在线观看免费视频网站a站| 丝袜喷水一区| 搡老岳熟女国产| 国产在线观看jvid| 在线观看人妻少妇| av在线app专区| 国产亚洲精品第一综合不卡| 一边摸一边做爽爽视频免费| 亚洲精品成人av观看孕妇| 亚洲欧美精品综合一区二区三区| 欧美精品啪啪一区二区三区 | 欧美 日韩 精品 国产| 建设人人有责人人尽责人人享有的| 水蜜桃什么品种好| 欧美国产精品va在线观看不卡| 王馨瑶露胸无遮挡在线观看| 曰老女人黄片| 中文字幕制服av| 极品少妇高潮喷水抽搐| 国产亚洲精品第一综合不卡| 免费黄频网站在线观看国产| 12—13女人毛片做爰片一| 12—13女人毛片做爰片一| 亚洲全国av大片| 18禁观看日本| 飞空精品影院首页| 性色av一级| 黄网站色视频无遮挡免费观看| 国产亚洲av片在线观看秒播厂| 欧美精品啪啪一区二区三区 | 美国免费a级毛片| 91九色精品人成在线观看| 中文字幕精品免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 国产av又大| 国产免费福利视频在线观看| 91成年电影在线观看| 香蕉丝袜av| 亚洲av欧美aⅴ国产| 国产精品自产拍在线观看55亚洲 | 日韩大片免费观看网站| 十分钟在线观看高清视频www| 国产97色在线日韩免费| 狂野欧美激情性xxxx| av又黄又爽大尺度在线免费看| 亚洲国产av新网站| 18禁黄网站禁片午夜丰满| 国产欧美日韩一区二区精品| 日韩人妻精品一区2区三区| 啪啪无遮挡十八禁网站| 老鸭窝网址在线观看| 最近最新免费中文字幕在线| a级毛片在线看网站| 美女大奶头黄色视频| 国产成人精品久久二区二区91| 久久人妻福利社区极品人妻图片| 国产男女超爽视频在线观看| 久久久水蜜桃国产精品网| 人妻一区二区av| 国产精品二区激情视频| 中文字幕人妻丝袜一区二区| 国产精品二区激情视频| 亚洲精品一二三| 国产一卡二卡三卡精品| 免费在线观看完整版高清| 亚洲欧美一区二区三区黑人| 午夜福利在线免费观看网站| 最近最新中文字幕大全免费视频| 精品国产乱码久久久久久小说| 国产一区二区三区av在线| av福利片在线| 三级毛片av免费| 爱豆传媒免费全集在线观看| 午夜成年电影在线免费观看| 久久影院123| 高潮久久久久久久久久久不卡| 中国国产av一级| 国产av国产精品国产| 91九色精品人成在线观看| 久久精品国产综合久久久| 一二三四在线观看免费中文在| 久久国产精品影院| 99热全是精品| 亚洲国产欧美日韩在线播放| 999精品在线视频| 亚洲 国产 在线| 91成人精品电影| 97精品久久久久久久久久精品| 亚洲成人免费电影在线观看| 久久av网站| 建设人人有责人人尽责人人享有的| 亚洲全国av大片| 亚洲中文字幕日韩| 欧美在线黄色| 久久久国产精品麻豆| 久久久国产成人免费| 我的亚洲天堂| 欧美日韩黄片免| 99精品欧美一区二区三区四区| 亚洲美女黄色视频免费看| 精品国产乱子伦一区二区三区 | 久久精品人人爽人人爽视色| 美女主播在线视频| 我的亚洲天堂| 亚洲中文字幕日韩| 午夜福利,免费看| 亚洲精品一二三| 国产亚洲欧美在线一区二区| 亚洲人成电影观看| 精品一区二区三区四区五区乱码| 欧美日韩亚洲国产一区二区在线观看 | 飞空精品影院首页| tube8黄色片| 一本一本久久a久久精品综合妖精| 成在线人永久免费视频| 欧美激情高清一区二区三区| 1024视频免费在线观看| 99热国产这里只有精品6| 一本—道久久a久久精品蜜桃钙片| 美女扒开内裤让男人捅视频| 制服人妻中文乱码| 丁香六月欧美| 午夜两性在线视频| 一区二区日韩欧美中文字幕| 超色免费av| 正在播放国产对白刺激| 欧美 亚洲 国产 日韩一| 黄网站色视频无遮挡免费观看| 精品亚洲成国产av| 久久av网站| 少妇裸体淫交视频免费看高清 | 国产精品一区二区在线不卡| 亚洲av片天天在线观看| 日韩一区二区三区影片| 亚洲精品国产av蜜桃| 国产成人系列免费观看| 99精品欧美一区二区三区四区| 大陆偷拍与自拍| 超色免费av| 久久久久久亚洲精品国产蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 精品国内亚洲2022精品成人 | videos熟女内射| 1024香蕉在线观看| 一个人免费在线观看的高清视频 | 国产成人一区二区三区免费视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av电影在线观看一区二区三区| 中文字幕av电影在线播放| 欧美 亚洲 国产 日韩一| 动漫黄色视频在线观看| 亚洲av成人不卡在线观看播放网 | 免费不卡黄色视频| 亚洲中文日韩欧美视频| 老熟妇仑乱视频hdxx| 久久毛片免费看一区二区三区| 久久人妻熟女aⅴ| 国产欧美日韩综合在线一区二区| 黄色怎么调成土黄色| 秋霞在线观看毛片| 亚洲国产毛片av蜜桃av| 亚洲精品国产精品久久久不卡| 桃红色精品国产亚洲av| av网站在线播放免费| 搡老熟女国产l中国老女人| 国产无遮挡羞羞视频在线观看| 欧美在线黄色| 51午夜福利影视在线观看| 国产熟女午夜一区二区三区| 一级毛片电影观看| 男人爽女人下面视频在线观看| 亚洲专区中文字幕在线| 欧美日本中文国产一区发布| 欧美精品一区二区免费开放| 日本wwww免费看| 夫妻午夜视频| 五月天丁香电影| av天堂在线播放| 美女高潮到喷水免费观看| 国产熟女午夜一区二区三区| 国产成人av激情在线播放| 国产精品一二三区在线看| 青春草视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 免费观看a级毛片全部| 久久午夜综合久久蜜桃| 午夜日韩欧美国产| 国产无遮挡羞羞视频在线观看| 国产一区有黄有色的免费视频| 91精品三级在线观看| 高清黄色对白视频在线免费看| 日本wwww免费看| 97精品久久久久久久久久精品| 国产精品久久久久久精品古装| 国产不卡av网站在线观看| 亚洲人成电影观看| 日本av手机在线免费观看| 啦啦啦啦在线视频资源| 午夜福利视频在线观看免费| 十八禁网站免费在线| 中国美女看黄片| 桃花免费在线播放| 在线观看免费高清a一片| 亚洲精品国产区一区二| 一个人免费看片子| 亚洲中文av在线| 香蕉国产在线看| 久久久精品94久久精品| 不卡av一区二区三区| 97在线人人人人妻| 天天添夜夜摸| 久久久国产成人免费| 九色国产91popny在线| 亚洲中文字幕日韩| 久久精品综合一区二区三区| 国产熟女午夜一区二区三区| 国产又黄又爽又无遮挡在线| 女同久久另类99精品国产91| 国产主播在线观看一区二区| cao死你这个sao货| 国产v大片淫在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品青青久久久久久| 九色成人免费人妻av| 桃红色精品国产亚洲av| 久久国产精品人妻蜜桃| 国产乱人伦免费视频| 国产不卡一卡二| 一夜夜www| 欧美丝袜亚洲另类 | 亚洲自拍偷在线| 女生性感内裤真人,穿戴方法视频| 亚洲色图 男人天堂 中文字幕| 久久伊人香网站| 日本熟妇午夜| 国产av一区二区精品久久| 露出奶头的视频| 18禁裸乳无遮挡免费网站照片| 国产v大片淫在线免费观看| 亚洲成av人片在线播放无| 国产爱豆传媒在线观看 | 99久久综合精品五月天人人| 成人精品一区二区免费| 在线观看www视频免费| 国产黄a三级三级三级人| 精品久久久久久久末码| 日本在线视频免费播放| 精品久久久久久久人妻蜜臀av| 日本黄色视频三级网站网址| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 亚洲熟女毛片儿| 国内揄拍国产精品人妻在线| 最近最新中文字幕大全免费视频| 国产69精品久久久久777片 | 亚洲欧洲精品一区二区精品久久久| 老司机在亚洲福利影院| 成人三级黄色视频| 少妇裸体淫交视频免费看高清 | 日日夜夜操网爽| 亚洲成人免费电影在线观看| 在线免费观看的www视频| 这个男人来自地球电影免费观看| 人妻丰满熟妇av一区二区三区| 欧美日韩黄片免| 亚洲精品色激情综合| 国产精品 国内视频| 欧美日韩亚洲国产一区二区在线观看| 免费无遮挡裸体视频| 久久久久久久午夜电影| 一个人免费在线观看电影 | 狠狠狠狠99中文字幕| 亚洲精品国产一区二区精华液| 免费无遮挡裸体视频| 久久精品国产清高在天天线| 色精品久久人妻99蜜桃| 正在播放国产对白刺激| 国产99白浆流出| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美激情综合另类| 国产午夜精品论理片| 国产精品久久久av美女十八| 亚洲av熟女| 欧美大码av| 两个人的视频大全免费| 国产午夜精品久久久久久| 日本一区二区免费在线视频| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 最近最新中文字幕大全免费视频| 色尼玛亚洲综合影院| 欧美三级亚洲精品| 天堂√8在线中文| 国产成人aa在线观看| 中文字幕高清在线视频| 777久久人妻少妇嫩草av网站| 国产亚洲精品第一综合不卡| 两个人免费观看高清视频| 久久久水蜜桃国产精品网| 性色av乱码一区二区三区2| 高清毛片免费观看视频网站| 国产精品美女特级片免费视频播放器 | 国产激情久久老熟女| 亚洲中文日韩欧美视频| 国产精品影院久久| 又粗又爽又猛毛片免费看| av中文乱码字幕在线| 免费电影在线观看免费观看| 亚洲九九香蕉| 久久性视频一级片| 国产日本99.免费观看| 色综合欧美亚洲国产小说| 亚洲欧美日韩高清在线视频| 国产成+人综合+亚洲专区| 亚洲电影在线观看av| 午夜免费成人在线视频| 久久中文看片网| 18禁美女被吸乳视频| 99久久国产精品久久久| 看黄色毛片网站| 少妇人妻一区二区三区视频| 99国产精品一区二区蜜桃av| 伦理电影免费视频| 亚洲精品在线美女| 久久久精品欧美日韩精品| 国产v大片淫在线免费观看| 亚洲国产高清在线一区二区三| 国内毛片毛片毛片毛片毛片| 精品久久久久久成人av| ponron亚洲| 亚洲av熟女| 免费一级毛片在线播放高清视频| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 国产午夜精品论理片| 欧美成人性av电影在线观看| 中国美女看黄片| 99国产精品99久久久久| 日韩 欧美 亚洲 中文字幕| 欧美在线一区亚洲| 国内精品久久久久精免费| 美女午夜性视频免费| 欧美一区二区国产精品久久精品 | 丁香六月欧美| 午夜福利欧美成人| 热99re8久久精品国产| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜一区二区| 国产人伦9x9x在线观看| 99re在线观看精品视频| 在线观看免费日韩欧美大片| 亚洲中文日韩欧美视频| 日韩精品免费视频一区二区三区| 国产av又大| 国产亚洲精品av在线| 亚洲美女视频黄频| av福利片在线| 超碰成人久久| 日本精品一区二区三区蜜桃| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费| 免费看美女性在线毛片视频| 最近最新中文字幕大全电影3| 最好的美女福利视频网| 岛国在线免费视频观看| 黑人操中国人逼视频| 国产欧美日韩精品亚洲av| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕日韩| 香蕉丝袜av| 91大片在线观看| 国产av在哪里看| 一本一本综合久久| 欧美激情久久久久久爽电影| 亚洲熟妇中文字幕五十中出| www.精华液| 亚洲精品一区av在线观看| 成人av在线播放网站| 国产黄片美女视频| 麻豆国产97在线/欧美 | 可以在线观看毛片的网站| 18禁黄网站禁片免费观看直播| 亚洲五月婷婷丁香| 欧美精品啪啪一区二区三区| 亚洲熟妇熟女久久| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 成人高潮视频无遮挡免费网站| 亚洲精品美女久久av网站| 国产精品久久电影中文字幕| 日韩精品青青久久久久久| 黄片大片在线免费观看| 一本大道久久a久久精品| 床上黄色一级片| 欧美中文综合在线视频| 久久精品人妻少妇| 午夜免费激情av| 国产精品1区2区在线观看.| 母亲3免费完整高清在线观看| 男男h啪啪无遮挡| 日韩欧美一区二区三区在线观看| 可以免费在线观看a视频的电影网站| 欧美一区二区精品小视频在线| 男人的好看免费观看在线视频 | 亚洲熟妇中文字幕五十中出| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 给我免费播放毛片高清在线观看| 国产伦在线观看视频一区| 亚洲精品美女久久av网站| 亚洲男人的天堂狠狠| 国产精品久久久久久亚洲av鲁大| 桃红色精品国产亚洲av| 岛国在线观看网站| 天天添夜夜摸| 国产精品野战在线观看| 99在线人妻在线中文字幕| 亚洲人成网站高清观看| 国产精品久久久人人做人人爽| 精品一区二区三区四区五区乱码| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 亚洲成av人片在线播放无| 亚洲精品色激情综合| 日本在线视频免费播放| 亚洲乱码一区二区免费版| 好男人在线观看高清免费视频| 精品不卡国产一区二区三区| 51午夜福利影视在线观看| 精品高清国产在线一区| 亚洲美女黄片视频| 嫩草影院精品99| 91老司机精品| 18禁黄网站禁片免费观看直播| 精品一区二区三区四区五区乱码| 久久精品人妻少妇| 一进一出抽搐动态| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频| 久久婷婷成人综合色麻豆| 亚洲精华国产精华精| 又黄又粗又硬又大视频| 欧美性猛交黑人性爽| 怎么达到女性高潮| 免费高清视频大片| 制服人妻中文乱码| 在线永久观看黄色视频| 欧美另类亚洲清纯唯美| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类 | 操出白浆在线播放| 两个人的视频大全免费| 男插女下体视频免费在线播放| 亚洲专区国产一区二区| 国产成人影院久久av| 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一小说| 亚洲电影在线观看av| 久9热在线精品视频| 999精品在线视频| 女警被强在线播放| 国产av在哪里看| 免费看日本二区| 日本 av在线| 国产精品 欧美亚洲| 国产精品av视频在线免费观看| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 最近在线观看免费完整版| 精品国产亚洲在线| 可以在线观看的亚洲视频| 大型黄色视频在线免费观看| 99热6这里只有精品| 色在线成人网| 91国产中文字幕| 久久婷婷成人综合色麻豆| 中文字幕精品亚洲无线码一区| 亚洲乱码一区二区免费版| 午夜福利成人在线免费观看| www日本黄色视频网| 老司机福利观看| 色综合亚洲欧美另类图片| xxx96com| 国产av不卡久久| 亚洲人成网站高清观看| 国产午夜精品久久久久久| 91九色精品人成在线观看| 91av网站免费观看| 成人高潮视频无遮挡免费网站| 一个人免费在线观看电影 | 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| 夜夜夜夜夜久久久久| 亚洲 欧美 日韩 在线 免费| 亚洲狠狠婷婷综合久久图片| 久久国产精品人妻蜜桃| 精品久久久久久,| 一进一出抽搐动态| 欧美三级亚洲精品| 男女视频在线观看网站免费 | 全区人妻精品视频| 久久中文字幕一级| 50天的宝宝边吃奶边哭怎么回事| 少妇人妻一区二区三区视频| 一级作爱视频免费观看| 在线十欧美十亚洲十日本专区| АⅤ资源中文在线天堂| 少妇的丰满在线观看| 999精品在线视频| 中国美女看黄片| 国产精品国产高清国产av| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 亚洲自拍偷在线| 精品熟女少妇八av免费久了| 熟女电影av网| 中国美女看黄片| 国产精品一区二区精品视频观看| 免费在线观看完整版高清|