• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 3-extra diagnosability of bubble-sort star graph networks

    2021-08-16 02:21:02-,

    -,

    (School of Mathematics and Computer Science, Shanxi Normal University, Linfen 041004, China)

    Abstract: The g-extra diagnosability of G is a new fault diagnosis method for interconnection networks, which limits every good component to at least (g+1) fault free nodes. As a desirable topology structure of interconnection networks, the n-dimensional bubble-sort star graph BSn has some important properties. In this paper, we prove that the 3-extra diagnosability of BSn is 8n-20 under the PMC model for n≥5 and under the MM* model for n≥12.

    Key words: interconnection network; connectivity; diagnosability; bubble-sort star graph

    Interconnection networks (networks for short) can be regarded as network topologies. A network is represented by a graph where vertices represent processors and edges represent communication links between two processors. We can exchange graphs and networks. For the system, it is of great significance to study the topological properties of its network. Because the processors may fail and cause faults in the system, node fault identification is very important for such systems. To deal with faults, we first identify the fault processors from the fault-free processors. The process of identifying faults is called system diagnosis.

    If all faulty processors can be identified without replacement and the number of faulty processors does not exceedt, then this system ist-diagnosable. The diagnosabilityt(G) is the maximum number oftwhereGist-diagnosable[1-4]. Dahbura, et al.[2]proposed an algorithm with time complexO(n2.5) about at-diagnosable system. Some diagnosis models for identifying fault processors are introduced. The main method is the PMC diagnosis model[5]. The diagnosis of the system is that two connected processors test each other. Maeng, et al.[6](MM model) propose another diagnosis model. In the MM model, a node sends the same task to its 2 neighbors, and then compares their responses. Sengupta, et al.(1)Sengupta A, Dahbura A T. On self-diagnosable multiprocessor systems: Diagnosis by the comparison approach[J]. IEEE Transactions on Computers, 1992, 41(11): 1386-1396.put forward a special example of the MM model, called the MM*model, where each node must test any pair of its neighbors. Numerous studies have been investigated under the PMC model, MM model or MM*model (see [3-4,7-11]). In 2005, Lai, et al.[4]introduced conditional diagnosability of systems, which is also called restricted diagnosability. They assume that all neighbors of any vertex in the system are not included in the fault set. The restricted diagnosability of the system has received much attention[12-16]. In 2012, Peng, et al.[10]proposed ag-good neighbor diagnosability (also known asg-good neighbor conditional diagnosability). This method of system fault diagnosis requires each good node to have at leastggood neighbors.In the PMC model, Peng, et al.[10]studied theg-good-neighbor diagnosability of ann-dimensional hypercube. In the MM*model, Wang, et al.[17]studied the diagnosability ofg-good neighbors of then-dimensional hypercube.Theg-good-neighbor diagnosability of the system has received much attention, too [11,16,18-21]. In 2016, Zhang, et al.[22]proposedg-extra diagnosability. It is a new method of system fault-diagnosis, which limits each fault-free component to have at least (g+1) fault-free nodes. Zhang, et al.[22]studied theg-extra diagnosability of then-dimensional hypercube with the PMC model and the MM*model. In 2016, Wang, et al.[23]studied the 2-extra diagnosability of the bubble-sort star graphBSnin PMC model and the MM*model.

    The bubble-sort star graph is studied after studying the star graph and the bubble-sort graph. The star graph and the bubble-sort graph have been proved to be an important viable candidate for interconnecting a multiprocessor system[24]. A feature of the star graph includes a low degree of node,small diameter, symmetry, and high degree of fault-tolerance. For details, see [7,25-37]. In Refs.[38-39], the diagnosability of a star graph under the PMC model and the MM model is studied. Lin, et al.[9]showed that the conditional diagnosability of the star graphSnunder the comparison diagnosis model is 3n-7.Guo, et al.[40]showed that the conditional diagnosability of the bubble-sort star graphBSnunder the MM model is 6n-15 forn≥6 and under the PMC model is 8n-21 forn≥5. Using the PMC model and the MM*model, Wang, et al.[23]studied the 2-extra diagnosability ofBSn. Guo, et al.[41]studied the extra connectivity ofBSn.

    As a favorable topology structure of interconnection networks, then-dimensional bubble-sort star graphBSnhas many good properties. In this paper, we prove that the 3-extra diagnosability ofBSnis 8n-20 under the PMC model withn≥5 and under the MM*model withn≥12.

    1 Preliminaries

    In this section, there are some definitions and notations needed for our discussion; then-dimensional bubble-sort star graphBSn, the PMC model and the MM*model are introduced.

    1.1 Notations

    Table 1 Some symbols in the graph[42]

    1.2 The PMC model and the MM* model

    In the PMC model[5], to diagnose a systemG, two adjacent nodes inGhave the ability to test each other. Foruv∈E(G), the test performed byuonvis represented by the ordered pair (u,v).The result of testing (u,v) is 1 (resp. 0) ifutestingvis faulty (resp. fault-free). We usually assume that the test results are reliable (resp. unreliable) ifuis fault-free (resp. faulty). The test allocationTof systemGis the test set of each adjacent vertex pair. It is expressed as directed test graph (V(G),L), where (u,v)∈Lmeans thatuv∈E(G). Syndrome is the set of test results for all testsT. A fault set is made up of all fault processors. Given a syndromeσ, ifσsatisfiesu∈VFandσ(u,v) = 1 for any (u,v)∈Liffv∈F, thenF?V(G) is consistent withσ.This means thatFmay be faulty processors.Because the test results generated by the faulty processor are not reliable. A setFof faulty vertices may produce many different syndromes.However, different fault sets may cause the same syndrome.Letσ(F) be the set of all syndromes consistent with it.LetF1,F2∈V(G),F1≠F2. Ifσ(F1)∩σ(F2)=?, then they are distinguishable and we say (F1,F2) is a distinguishable pair, otherwise, they are indistinguishable and (F1,F2) is an indistinguishable pair.

    In the MM model[6], the same test task is sent from one processor to a pair of processors and their responses are compared to perform the diagnosis. There are three assumptions: (a) all faults are invariable; (b) the faulty processor produces incorrect output; (c) the comparison performed by the fault processor is not reliable. The comparison of the systemG=(V,E) is transformed into a multigraph, which is represented byM(V(G),L) whereLis the marked edge set.(u,v)w∈Ldenotes a comparison in whichwcomparesuandv, which means thatuw,vw∈E(G). The syndromeσ*represents the set of all comparison results inM(V(G),L). If the results (u,v)ware different, thenσ*((u,v)w)=1. Otherwise,σ*((u,v)w)=0. In the MM*model, ifuw,vw∈E(G), then (u,v)w∈L. Consistent and indistinguishable are similar to those in PMC.

    LetF1andF2be a distinct pair ofg-good-neighbor subsets with |F1|≤tand |F2|≤tinV. IfF1andF2are distinguishable for each distinct pair (F1,F2), then the systemG=(V,E) isg-good-neighbort-diagnosable. Theg-good-neighbor diagnosabilitytg(G)=max{t:Gisg-good-neighbort-diagnosable}.

    Proposition1[10]For any given systemG,tg(G)≤tg′(G) ifg≤g′.

    In a systemG=(V,E), a setF?Vis called a conditional set if it does not contain all the neighbor vertices of any vertex inG. A systemGis conditionalt-diagnosable if every two distinct conditional subsetsF1,F2∈Vwith |F1|≤t, |F2|≤t, are distinguishable. The conditional diagnosabilitytc(G)=max{t:Gis conditionalt-diagnosable}. By [8],tc(G)≥t(G).

    Theorem1[18]For a systemG=(V,E),t(G)=t0(G)≤t1(G)≤tc(G).

    1.3 The bubble-sort star graph

    Let [n]={1,2,…,n}, and letSnbe the symmetric group on [n] containing all permutationsp=p1p2…pnof [n]. {(1i): 2≤i≤n} is a generating set forSn. Thus, {(1,i): 2≤i≤n}∪{(i,i+1): 2≤i≤n-1} is a generating set forSn. Then-dimensional bubble-sort star graphBSn[40,45]is the graph with vertex setV(BSn)=Snin which two verticesuv∈E(BSn) iffu=v(1,i), 2≤i≤n, oru=v(i,i+1), 2≤i≤n-1. Clearly,BSnis a (2n-3)-regular graph withn! vertices. The graphsBSnforn=2,3,4 are depicted in Fig.1.

    Fig.1 The bubble-sort star graphs BS2, BS3 and BS4

    Note thatBSnis a special Cayley graph.BSnhas the following useful properties.

    Proposition3For any integern≥1,BSnis (2n-3)-regular, vertex transitive.

    Proposition4For any integern≥2,BSnis bipartite.

    Theorem4[44]Every nonidentity permutation in the symmetric group is uniquely (up to the order of the factors) a product of disjoint cycles, each of which has length at least 2.

    Proposition5[45]LetBSnbe the bubble-sort star graph. Ifuv∈E(BSn), then |N(u)∩N(v)|=0. Ifuv?E(BSn), then |N(u)∩N(v)|≤3.

    Lemma1(2)Wang S. The tightly super 3-extra connectivity of bubble-sort star graphs [J]. RAIRO-Theoretical Informatics and Applications (to appear).LetA={(1),(14),(15), (34)}. Ifn≥5,F1=N(A),F2=A∪N(A), then |F1|=8n-23, |F2|=8n-19,F1is a 3-extra cut ofBSn, andBSn-F1has two componentsBSn-F2andBSn[A].

    A connected graphGis superg-extra connected if for each minimumg-extra cutF,G-Fhas a component withg+1 vertices. Besides,G-Fexactly contains 2 components, where one component hasg+1 vertices, thenGis called to be tightly |F| superg-extra connected.

    Theorem6①Forn≥5, the bubble-sort star graphBSnis tightly (8n-23) super 3-extra connected.

    2 The 3-extra diagnosability of the bubble-sort star graph under the PMC

    Theorem7[2,11]A systemG=(V,E) isg-extrat-diagnosable in PMC model iffGhasuv∈E(G) whereu∈V(G-F1-F2) andv∈F1F2orv∈F2F1forg-extra setsF1,F2∈V,F1≠F2, |F1|≤tand |F2|≤t(See Fig. 2).

    Fig.2 Illustration of a distinguishable pair (F1, F2) under the PMC model

    Corollary1Letn≥5. Then the 3-extra diagnosability of the bubble-sort star graphBSnunder the PMC model is 8n-20.

    ProofLetF1andF2be each distinct pair of 3-extra subsetsF1andF2ofBSnwith |F1|≤8n-20 and |F2|≤8n-20. Assume thatV(BSn)=F1∪F2. By the definition of the symmetric groupSn,n!=|Sn|=|F1∪F2|=|F1|+|F2|-|F1∩F2|≤|F1|+|F2|≤2(8n-20)=16n-40. Sincen≥5,n!> 16n-40, a contradiction. Therefore,V(BSn)≠F1∪F2.

    3 The 3-extra diagnosability of the bubble-sort star graph under the MM*

    Theorem9[2,11]A systemG=(V,E) isg-extrat-diagnosable in the MM*model iff forg-extra setsF1,F2∈V,F1≠F2, |F1|≤tand |F2|≤t, they have one of 3 conditions: ①Ghasuw,vw∈E(G) whereu,w∈V(G-F1-F2) andv∈F1F2orv∈F2F1.②Ghasuw,vw∈E(G) whereu,v∈F1F2andw∈V(G-F1-F2).③Ghasuw,vw∈E(G) whereu,v∈F2F1andw∈V(G-F1-F2) (See Fig.3).

    Fig.3 Illustration of a distinguishable pair (F1, F2) under the MM* model.

    A component of a graphGis odd according as it has an odd number of vertices. We denote byo(G) the number of odd components ofG.

    Lemma3([42]Tutte′s Theorem) A graphG=(V,E) has a perfect matching if and only ifo(G-S) ≤|S| for allS?V.

    Claim1BSn-F1-F2does not contain isolated vertex.

    Since |F1|≤8n-20, |F2|≤8n-20 and |F1∩F2|≥8n-23, we have |F2F1|=|F2|-|F1∩F2|≤8n-20-(8n-23)=3 and |F1F2|≤3.

    Case1|F2F1|=3.

    In this case, |F1∩F2|= 8n-23. By Theorem 5,F1∩F2is a minimum 3-extra cut ofBSn. By Theorem 6,BSnis tightly (8n-23) super 3-extra connected, i.e.,BSn-(F1∩F2) has two components, one of which is a connected subgraph of order 4. Since every componentGiofBSn[(F2∩F1)∪W] has |V(Gi)|≥5, we have that |V(BSn-F1-F2)|=4. By Lemma 3, |W|≤o(G-(F1∪F2))≤|F1∪F2|≤|F1|+|F2|≤8n-20+8n-20=16n-40. Thus,n!=|V(BSn)|=|V(BSn-F1-F2)|+ |F2F1|+|F1F2|+|W|+|F2∩F1|≤4+3+3+16n-40+8n-23=24n-53, a contradiction ton≥5.

    Case2|F2F1|=2.

    Letx,y∈F2F1. Supposexy?E(BSn). SinceF1is a 3-extra set ofBSn, we have that every componentBiofBSn[W∪(F2F1)]) has |V(Bi)|≥4. Suppose thatx,y∈V(Bi). Then there is anxy-path inBi. It’s only possible that there are edges between {x,y} andWinBSn[W∪(F2F1)]). Therefore, thexy-path is thexwy, wherew∈W. This contradicts the fact that there is just a vertex ofF2F1such that it is adjacent to a vertex ofW. Therefore,BSn[W∪(F2F1)]) has two componentsB1andB2such thatx∈V(B1) andy∈V(B2). Since |V(B1)|≥4, |W|≥3. Since every vertex ofWis adjacent to just a vertex ofF2F1and |V(B2)|≥4, we have that |W|≥6. If |F1F2|= 3, then |F1∩F2|=8n-23, a contradiction. Therefore, 1≤|F1F2|≤2. If |F1F2|=1, then, by Proposition 5, |W|=6. Let {z}=F1F2. We have that |N({x,y})∩(F1∩F2)|+ |N(z)∩(F1∩F2)|+|N(W)((F2F1)∪(F1F2))|≥2(2n-6)+2n-9+6(2n-5)-24=18n-75> 8n-22 whenn≥6, a contradiction to |F1∩F2|=8n-22. LetF1F2={u,v}. Suppose thatuv?E(BSn).

    By Proposition 5, |N(x)∩N(u)∩W|≤3 and |N(x)∩N(v)∩W|≤3. Since every vertex ofWis adjacent to just a vertex ofF1F2, |(N(x)∩N(u)∩W)∪(N(x)∩N(v)∩W)|=|(N(x)∩N(u)∩W)|+ |(N(x)∩N(v)∩W)|. SinceF2is a 3-extra set ofBSn, |N(u)∩W|≥3 and |N(v)∩W|≥3. Therefore, |(N(x)∩N(u)∩W)∪(N(x)∩N(v)∩W)|=|(N(x)∩N(u)∩W)|+|(N(x)∩N(v)∩W)|≤6. Similarly, |(N(y)∩N(u)∩W)∪(N(y)∩N(v)∩W)|=|(N(y)∩N(u)∩W)|+|(N(y)∩N(v)∩W)|≤6. Since (N(x)∩W)∩(N(y)∩W)=?, 6≤|(N({x,y,u,v})∩W|≤12.

    Casea1N({u})∩W≠? andN({v})∩W=?.

    By Proposition 5, |N(x)∩N(u)∩W|≤3 and |N(y)∩N(u)∩W|≤3. Since every vertex inWis adjacent touinBSn[W∪(F1F2)], |W|=6. From the above discussion, there is a contradiction.

    Casea2N({u})∩W≠? andN({v})∩W≠?.

    By Proposition 5, |N(x)∩N(u)∩W|≤3 and |N(x)∩N(v)∩W|≤3. If |N(x)∩N(u)∩W|≠0, then, by Proposition 4, |N(x)∩N(v)∩W|=0. Let |N(x)∩N(u)∩W|≠0. Then |N(x)∩N(v)∩W|=0. Since every vertex ofWis adjacent to just a vertex ofF1F2, |N(x)∩N(u)∩W|=3.

    SinceN({v})∩W≠?, 1≤|N(y)∩N(v)∩W|≤3. Note that |N(y)∩N(u)∩W|=0 and every vertex ofWis adjacent to just a vertex ofF1F2. Therefore, |N(y)∩N(v)∩W|=3 and |W|=6. From the above discussion, there is a contradiction.

    Supposexy∈E(BSn). From the above discussion, 1≤|F1F2|≤2. We consider the following subcases.

    Caseb1N({x})∩W≠? andN({y})∩W=?.

    Let |F1F2|=1 and {u}=F1F2. SinceF1is a 3-extra set ofBSn, |N(x)∩W|≥2. By Proposition 5, |N(x)∩N(u)∩W|≤3. SinceF2is a 3-extra set ofBSn, |N(u)∩W|≥3. Therefore, |W|= 3. We have that |N({x,y,u})∩(F1∩F2)|+|N(W)((F2F1)∪(F1F2))|≥3(2n-5)+(2n-4)+(2n-7)+(2n-6)-9=14n-41> 8n-22 whenn≥4, a contradiction to |F1∩F2|=8n-22.Let |F1F2|=2 and {u,v}=F1F2.

    Suppose thatuv?E(BSn). By Case a1, there is a contradiction.

    Suppose thatuv∈E(BSn). Recall that |N(x)∩W|≥2. IfN({u})∩W≠? andN({v})∩W≠?, then there is a 5-cycle, a contradiction to Proposition 4. IfN({u})∩W≠? andN({v})∩W=?, then 2≤|W|≤3. Similarly to above, there is a contradiction.

    Caseb2N({x})∩W≠? andN({y})∩W≠?.

    Let |F1F2|=1 and {u}=F1F2. Since every vertex ofWis adjacent to just a vertex ofF2F1, (N({x})∩W)∩(N({y})∩W)=?. Forw1∈N({x})∩Wandw2∈N({y})∩W,w1u,w2u∈E(BSn) and hencexw1uw2yxis a 5-cycle, a contradiction to Proposition 4. Let |F1F2|=2 and {u,v}=F1F2.

    Suppose thatuv?E(BSn). By Case a2, there is a contradiction. Suppose thatuv∈E(BSn).

    By Proposition 5, |N(x)∩N(u)∩W|≤3 and |N(x)∩N(v)∩W|≤3. IfN(x)∩N(u)∩W≠? andN(x)∩N(v)∩W≠?, then there is a 5-cycle, a contradiction. LetN(x)∩N(u)∩W≠?. Then |N(x)∩N(u)∩W|≤3. Similarly, |N(y)∩N(3)∩W|≤3. Therefore, 2≤|W|≤6. Similarly to above, there is a a contradiction.

    Case3|F2F1|=1.

    Case3.1|F1∩F2|=8n-23.

    Similarly to above, there is a contradiction.

    Case3.2|F1∩F2|=8n-22.

    Since |F1|≤8n-20, 1≤|F1F2|≤2. When |F1F2|= 2, we discuss in Case 2. Let |F1F2|=1. Letx∈F2F1. SinceF1is a 3-extra set ofBSn, we have that every componentBiofBSn[W∪(F2F1)]) has |V(Bi)|≥4. Sincex∈F2F1,BSn[W∪(F2F1)]) has a componentB1. Letx∈V(B1). Since |V(B1)|≥4, |W|≥3 and there area,b,c∈Wsuch thatxa,xb,xc∈E(BSn). Lety∈F1F2. SinceF2is a 3-extra set ofBSn,ya,yb,yc∈E(BSn) and |W|=3. Therefore, |F2∩F1|≥3(2n-5)+2(2n-6)-3=10n-30>8n-22=|F1∩F2|, a contradiction ton≥7.

    Case3.3|F1∩F2|=8n-21.

    In this case, |F1F2|=|F2F1|=1. We discuss it in Case 3.2. Claim 1 is complete.

    Letu∈V(BSn-F1-F2). Thenuis adjacent toBSn-F1-F2from Claim 1. Since (F1,F2) can not be applied in Theorem 9, according to the condition (1) in Theorem 9, adjacent verticesu,w∈V(BSn-F1-F2) does not satisfyuw∈E(BSn) andvw∈E(BSn) wherev∈F1ΔF2. We deduce thatuis not adjacent to any vertex of (F1F2)∪(F2F1). According to the generality ofu,V(BSn-F1-F2) is not connected toF1ΔF2.

    Combining Lemma 2 and Lemma 4, we have the following theorem.

    Theorem10Letn≥12. Then the 3-extra diagnosability of the bubble-sort star graphBSnunder the MM*model is 8n-20.

    4 Conclusions

    In this paper, we investigate the problem of the 3-extra diagnosability of the bubble-sort star graphBSnunder the PMC model and the MM*model. It is proved that 3-extra diagnosability ofBSnis 8n-20 under the PMC model forn≥5 and under the MM*model forn≥12. The above results show that the 3-extra diagnosability is several times larger than the classical diagnosability ofBSndepending on the condition: 3-extra. The work will help engineers to develop more different measures of 3-extra diagnosability based on application environment, network topology, network reliability, and statistics related to fault patterns.

    www.av在线官网国产| 国产女主播在线喷水免费视频网站| 久久av网站| 精品酒店卫生间| 亚洲激情五月婷婷啪啪| 国产高清国产精品国产三级| a级毛色黄片| 日韩视频在线欧美| 亚洲成人av在线免费| 制服丝袜香蕉在线| 国产一区二区三区av在线| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美另类精品又又久久亚洲欧美| 我的女老师完整版在线观看| 97超视频在线观看视频| 18禁在线播放成人免费| 欧美日韩视频高清一区二区三区二| 国产免费视频播放在线视频| 简卡轻食公司| 啦啦啦啦在线视频资源| 少妇精品久久久久久久| 亚洲人成网站在线观看播放| videosex国产| 亚洲av欧美aⅴ国产| av免费观看日本| 黑人猛操日本美女一级片| 插阴视频在线观看视频| 免费日韩欧美在线观看| 国产亚洲一区二区精品| 一级黄片播放器| 久久久久久久国产电影| 欧美丝袜亚洲另类| 国产欧美日韩一区二区三区在线 | 国产av精品麻豆| 亚洲经典国产精华液单| 国产av码专区亚洲av| 国产高清不卡午夜福利| 日本-黄色视频高清免费观看| 你懂的网址亚洲精品在线观看| videosex国产| 亚洲精品aⅴ在线观看| 成人手机av| 欧美人与性动交α欧美精品济南到 | 国产无遮挡羞羞视频在线观看| 热re99久久精品国产66热6| 一个人免费看片子| 99国产精品免费福利视频| 美女脱内裤让男人舔精品视频| 黄色一级大片看看| 天天躁夜夜躁狠狠久久av| 色婷婷av一区二区三区视频| 国产高清有码在线观看视频| 免费观看的影片在线观看| 嘟嘟电影网在线观看| 老女人水多毛片| 少妇的逼水好多| 五月开心婷婷网| 男女免费视频国产| 亚洲精品自拍成人| av播播在线观看一区| av免费观看日本| 欧美日韩在线观看h| 日韩制服骚丝袜av| 一边亲一边摸免费视频| 激情五月婷婷亚洲| 黄色怎么调成土黄色| 卡戴珊不雅视频在线播放| 午夜91福利影院| 午夜老司机福利剧场| 日韩 亚洲 欧美在线| 欧美3d第一页| 亚洲国产成人一精品久久久| 久久精品国产鲁丝片午夜精品| 午夜精品国产一区二区电影| 99国产精品免费福利视频| 街头女战士在线观看网站| 免费av中文字幕在线| 最近的中文字幕免费完整| 热99久久久久精品小说推荐| 欧美人与性动交α欧美精品济南到 | 少妇精品久久久久久久| a级毛片在线看网站| 精品久久国产蜜桃| 亚洲五月色婷婷综合| 久久国产精品男人的天堂亚洲 | 国产一区二区在线观看av| 99久久综合免费| 成人二区视频| 欧美最新免费一区二区三区| 日韩av在线免费看完整版不卡| 欧美精品人与动牲交sv欧美| 国产精品一国产av| 欧美另类一区| 午夜激情av网站| 久久精品熟女亚洲av麻豆精品| 80岁老熟妇乱子伦牲交| 全区人妻精品视频| 美女主播在线视频| a级毛片免费高清观看在线播放| a级毛片免费高清观看在线播放| 卡戴珊不雅视频在线播放| 久久精品久久久久久久性| 久久久欧美国产精品| 国产永久视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 天堂8中文在线网| 人妻少妇偷人精品九色| 免费黄频网站在线观看国产| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 黄色怎么调成土黄色| 欧美 亚洲 国产 日韩一| 97精品久久久久久久久久精品| 国产69精品久久久久777片| 日韩欧美一区视频在线观看| 国产免费现黄频在线看| 国产熟女午夜一区二区三区 | 亚洲国产精品成人久久小说| av在线老鸭窝| 久久女婷五月综合色啪小说| 在线观看免费日韩欧美大片 | 久久婷婷青草| 人人妻人人澡人人爽人人夜夜| 少妇精品久久久久久久| 岛国毛片在线播放| 国产黄色免费在线视频| 国产男女内射视频| 午夜激情av网站| 一级爰片在线观看| .国产精品久久| 日本av免费视频播放| 免费大片18禁| 亚洲五月色婷婷综合| 成年女人在线观看亚洲视频| 国产白丝娇喘喷水9色精品| av播播在线观看一区| 日韩av免费高清视频| 一级毛片我不卡| 自线自在国产av| 日韩成人伦理影院| 我的老师免费观看完整版| 日本vs欧美在线观看视频| 观看美女的网站| 国产乱来视频区| 国产不卡av网站在线观看| 男女边摸边吃奶| 国产在线免费精品| 黄片无遮挡物在线观看| 国产伦精品一区二区三区视频9| 又粗又硬又长又爽又黄的视频| 婷婷色综合www| 成年av动漫网址| 久久亚洲国产成人精品v| 成人毛片a级毛片在线播放| √禁漫天堂资源中文www| 一区二区三区免费毛片| 亚洲精品一区蜜桃| 熟女电影av网| 99热国产这里只有精品6| 嫩草影院入口| 99热这里只有是精品在线观看| 91成人精品电影| av有码第一页| 3wmmmm亚洲av在线观看| 亚洲欧美日韩卡通动漫| 久久久久久久国产电影| 国产一区二区三区综合在线观看 | 日本黄大片高清| 日韩制服骚丝袜av| 久久97久久精品| 亚洲精品一区蜜桃| 99视频精品全部免费 在线| 免费人妻精品一区二区三区视频| 极品人妻少妇av视频| 美女国产视频在线观看| 日本av手机在线免费观看| 嫩草影院入口| 欧美成人精品欧美一级黄| 99re6热这里在线精品视频| 视频在线观看一区二区三区| 日韩大片免费观看网站| 最近手机中文字幕大全| 久久久久久久大尺度免费视频| 飞空精品影院首页| 亚洲国产精品999| 婷婷色麻豆天堂久久| 日韩强制内射视频| 中文乱码字字幕精品一区二区三区| 免费黄色在线免费观看| 一区二区日韩欧美中文字幕 | 亚洲国产毛片av蜜桃av| 日韩熟女老妇一区二区性免费视频| 边亲边吃奶的免费视频| 免费不卡的大黄色大毛片视频在线观看| 人人澡人人妻人| 一边摸一边做爽爽视频免费| 午夜免费男女啪啪视频观看| 亚洲精品乱码久久久久久按摩| 爱豆传媒免费全集在线观看| 中文字幕精品免费在线观看视频 | 九色亚洲精品在线播放| 久久精品国产亚洲av天美| 国产精品国产av在线观看| 寂寞人妻少妇视频99o| av福利片在线| 久久久久人妻精品一区果冻| 亚洲国产精品成人久久小说| 日韩精品免费视频一区二区三区 | 中文字幕免费在线视频6| 久久亚洲国产成人精品v| 美女大奶头黄色视频| 一本—道久久a久久精品蜜桃钙片| 久久影院123| 午夜激情av网站| 在线亚洲精品国产二区图片欧美 | 欧美日韩精品成人综合77777| 精品久久国产蜜桃| 热99国产精品久久久久久7| 婷婷色av中文字幕| 在线播放无遮挡| 人成视频在线观看免费观看| 成人国产麻豆网| 视频中文字幕在线观看| 99热全是精品| av在线老鸭窝| 国产男女超爽视频在线观看| 国产 一区精品| av又黄又爽大尺度在线免费看| 国产欧美另类精品又又久久亚洲欧美| 黑人欧美特级aaaaaa片| 亚洲精品日本国产第一区| 涩涩av久久男人的天堂| 免费av不卡在线播放| 18在线观看网站| 亚洲综合色惰| 国产成人av激情在线播放 | 在线观看www视频免费| 精品亚洲乱码少妇综合久久| 人妻制服诱惑在线中文字幕| 超色免费av| 各种免费的搞黄视频| 日本av手机在线免费观看| 少妇 在线观看| 黄色欧美视频在线观看| 一个人看视频在线观看www免费| 在线看a的网站| 精品久久蜜臀av无| 亚洲精品国产av成人精品| 久久人人爽人人片av| 中文字幕人妻熟人妻熟丝袜美| 日日摸夜夜添夜夜添av毛片| 熟女电影av网| 人人妻人人澡人人看| 青春草亚洲视频在线观看| 一级毛片我不卡| 人妻系列 视频| 丁香六月天网| 国产精品久久久久久久电影| 日韩中字成人| 18禁在线无遮挡免费观看视频| 午夜91福利影院| 成人二区视频| 亚洲国产日韩一区二区| 欧美日韩成人在线一区二区| 国产国拍精品亚洲av在线观看| 中文字幕最新亚洲高清| 亚洲欧美清纯卡通| 18禁动态无遮挡网站| kizo精华| 母亲3免费完整高清在线观看 | 日韩中文字幕视频在线看片| 免费观看性生交大片5| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 两个人的视频大全免费| 2018国产大陆天天弄谢| 在线 av 中文字幕| 久久精品国产a三级三级三级| 国产色婷婷99| 亚洲国产日韩一区二区| 成人手机av| 青春草亚洲视频在线观看| 亚洲精品日本国产第一区| av线在线观看网站| 99国产精品免费福利视频| 天天操日日干夜夜撸| 大香蕉久久成人网| 日韩不卡一区二区三区视频在线| 国产精品一国产av| 久久久久人妻精品一区果冻| 国内精品宾馆在线| 自线自在国产av| 亚洲性久久影院| 最新的欧美精品一区二区| 免费av中文字幕在线| 国产片特级美女逼逼视频| 久久久国产欧美日韩av| 色94色欧美一区二区| 亚洲精品,欧美精品| 久久影院123| 国产精品熟女久久久久浪| tube8黄色片| 成人亚洲精品一区在线观看| 婷婷色综合大香蕉| 欧美性感艳星| 少妇人妻精品综合一区二区| 日韩欧美一区视频在线观看| 插逼视频在线观看| 亚洲av男天堂| 亚洲精品久久午夜乱码| a 毛片基地| 乱码一卡2卡4卡精品| 全区人妻精品视频| 亚洲怡红院男人天堂| 国产亚洲最大av| 成年人午夜在线观看视频| 伊人久久国产一区二区| 在线精品无人区一区二区三| 久久久亚洲精品成人影院| 色吧在线观看| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲 | videos熟女内射| 看免费成人av毛片| 91aial.com中文字幕在线观看| 少妇的逼好多水| 亚洲精品国产av成人精品| 国产日韩欧美亚洲二区| 两个人的视频大全免费| 亚洲怡红院男人天堂| 最近中文字幕高清免费大全6| 狂野欧美激情性bbbbbb| 久久亚洲国产成人精品v| 大香蕉久久成人网| 国产视频首页在线观看| 久久久久精品性色| 日韩电影二区| 人体艺术视频欧美日本| 国产 一区精品| 国产综合精华液| 亚洲精品中文字幕在线视频| 久久久精品免费免费高清| 亚洲精品亚洲一区二区| 久久人人爽人人爽人人片va| 亚洲av免费高清在线观看| 老女人水多毛片| 99国产综合亚洲精品| 一本色道久久久久久精品综合| 国产精品三级大全| 日韩亚洲欧美综合| 国产免费又黄又爽又色| 你懂的网址亚洲精品在线观看| 国产熟女午夜一区二区三区 | 99热这里只有是精品在线观看| 久久久久久久亚洲中文字幕| 插逼视频在线观看| 国产伦精品一区二区三区视频9| 久久午夜综合久久蜜桃| 亚洲精品成人av观看孕妇| 99久久精品一区二区三区| 欧美日韩在线观看h| 久久久久网色| 91精品三级在线观看| 国产精品人妻久久久影院| 蜜桃国产av成人99| 人体艺术视频欧美日本| 久久人人爽人人爽人人片va| 日本黄色片子视频| 久久久久久久久久久免费av| 国产男女内射视频| 飞空精品影院首页| 久久久国产精品麻豆| 日韩三级伦理在线观看| 国产精品99久久99久久久不卡 | 亚洲在久久综合| 国产一区二区在线观看日韩| 色婷婷久久久亚洲欧美| 精品一区二区三卡| 色婷婷久久久亚洲欧美| 欧美97在线视频| 2022亚洲国产成人精品| 成人无遮挡网站| 免费人成在线观看视频色| 欧美日韩在线观看h| 精品国产国语对白av| 国产一区有黄有色的免费视频| 80岁老熟妇乱子伦牲交| 久久久午夜欧美精品| 日日爽夜夜爽网站| 午夜福利视频在线观看免费| 天堂中文最新版在线下载| 欧美日韩视频高清一区二区三区二| 麻豆乱淫一区二区| 99国产精品免费福利视频| 欧美bdsm另类| 性色avwww在线观看| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲国产日韩| av不卡在线播放| 欧美变态另类bdsm刘玥| 国产黄色免费在线视频| 日韩强制内射视频| 久久久久久人妻| 免费观看av网站的网址| 国产男女内射视频| 建设人人有责人人尽责人人享有的| 欧美变态另类bdsm刘玥| 精品国产一区二区久久| 99九九在线精品视频| 夜夜爽夜夜爽视频| 亚洲激情五月婷婷啪啪| av国产精品久久久久影院| 99热这里只有精品一区| 色网站视频免费| 精品久久国产蜜桃| 韩国高清视频一区二区三区| 在线精品无人区一区二区三| 国产国语露脸激情在线看| av卡一久久| 日韩欧美一区视频在线观看| 免费人妻精品一区二区三区视频| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| videosex国产| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美清纯卡通| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 最后的刺客免费高清国语| 国产不卡av网站在线观看| 99热国产这里只有精品6| 国内精品宾馆在线| 少妇的逼水好多| 久久久久久伊人网av| 国内精品宾馆在线| 国产精品不卡视频一区二区| 成人黄色视频免费在线看| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验| freevideosex欧美| 日日爽夜夜爽网站| 考比视频在线观看| 欧美bdsm另类| 美女cb高潮喷水在线观看| 免费看不卡的av| 日韩制服骚丝袜av| 简卡轻食公司| 亚洲精品美女久久av网站| 精品久久蜜臀av无| 九色亚洲精品在线播放| 国产一区二区三区综合在线观看 | 伦理电影大哥的女人| 日韩三级伦理在线观看| 免费黄色在线免费观看| 久久精品国产亚洲av涩爱| 十分钟在线观看高清视频www| 插阴视频在线观看视频| 午夜免费观看性视频| 美女主播在线视频| 亚洲精品国产av成人精品| h视频一区二区三区| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 日日啪夜夜爽| 91午夜精品亚洲一区二区三区| 一级毛片电影观看| 三上悠亚av全集在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲图色成人| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 夫妻午夜视频| 九九爱精品视频在线观看| 男的添女的下面高潮视频| videossex国产| 久久av网站| 亚洲内射少妇av| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 国产亚洲一区二区精品| 亚洲精品自拍成人| 亚洲精品第二区| 国产黄色免费在线视频| 秋霞在线观看毛片| 日产精品乱码卡一卡2卡三| a级毛片黄视频| 国产av码专区亚洲av| 热re99久久国产66热| 日韩精品免费视频一区二区三区 | 女性生殖器流出的白浆| 免费观看性生交大片5| 91精品三级在线观看| 国产日韩一区二区三区精品不卡 | 欧美日本中文国产一区发布| 精品一区在线观看国产| 日本欧美视频一区| 国产欧美另类精品又又久久亚洲欧美| 亚洲五月色婷婷综合| 欧美亚洲 丝袜 人妻 在线| a 毛片基地| 国产免费一级a男人的天堂| 王馨瑶露胸无遮挡在线观看| 国产精品.久久久| 午夜福利视频精品| 亚洲精品美女久久av网站| 美女xxoo啪啪120秒动态图| 另类亚洲欧美激情| 国产欧美另类精品又又久久亚洲欧美| 亚洲图色成人| 视频区图区小说| 丝袜在线中文字幕| 特大巨黑吊av在线直播| 亚洲色图 男人天堂 中文字幕 | 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 亚洲综合色惰| 香蕉精品网在线| 日本av免费视频播放| 欧美 日韩 精品 国产| 18在线观看网站| 婷婷色av中文字幕| 69精品国产乱码久久久| 欧美 日韩 精品 国产| 69精品国产乱码久久久| 久热久热在线精品观看| 五月伊人婷婷丁香| 丝袜在线中文字幕| 亚洲精品日韩av片在线观看| 麻豆精品久久久久久蜜桃| 18在线观看网站| 狂野欧美白嫩少妇大欣赏| 美女大奶头黄色视频| 丝袜脚勾引网站| 夜夜看夜夜爽夜夜摸| 精品少妇内射三级| 一个人看视频在线观看www免费| 夫妻午夜视频| 久久久精品免费免费高清| 国产片内射在线| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 国产成人一区二区在线| 人人澡人人妻人| 在线精品无人区一区二区三| 午夜免费鲁丝| 成年人免费黄色播放视频| 亚洲,一卡二卡三卡| 黄色配什么色好看| 亚洲精品av麻豆狂野| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 伦精品一区二区三区| 精品少妇久久久久久888优播| 亚洲久久久国产精品| 国产免费视频播放在线视频| 99精国产麻豆久久婷婷| 2021少妇久久久久久久久久久| 午夜福利在线观看免费完整高清在| 免费黄色在线免费观看| 亚洲欧美成人综合另类久久久| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产色婷婷电影| .国产精品久久| 少妇 在线观看| 99热网站在线观看| 尾随美女入室| 久久国内精品自在自线图片| 亚洲熟女精品中文字幕| 大又大粗又爽又黄少妇毛片口| 一级二级三级毛片免费看| 人体艺术视频欧美日本| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 亚洲精品美女久久av网站| 在线 av 中文字幕| 五月伊人婷婷丁香| 亚洲丝袜综合中文字幕| 久久 成人 亚洲| 亚洲精品乱码久久久久久按摩| 欧美成人精品欧美一级黄| 九色成人免费人妻av| 国产白丝娇喘喷水9色精品| 人妻少妇偷人精品九色| 精品国产一区二区久久| 国产精品不卡视频一区二区| 国产亚洲精品久久久com| 国产欧美日韩综合在线一区二区| 日本91视频免费播放| 黄色怎么调成土黄色| 满18在线观看网站| 中文字幕免费在线视频6| 一级a做视频免费观看| 久久国产精品大桥未久av| 超碰97精品在线观看| 久久久国产一区二区| videosex国产| 丰满饥渴人妻一区二区三| 欧美精品国产亚洲| 欧美最新免费一区二区三区| 国产精品一二三区在线看| 大码成人一级视频| av有码第一页| 三级国产精品片| xxx大片免费视频| 亚洲人成网站在线观看播放| 日韩强制内射视频| 乱人伦中国视频| 亚洲精品乱码久久久久久按摩| 亚洲欧美清纯卡通|