• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The relation between the radii and the densities of magnetic skyrmions

    2021-08-10 02:01:08YuJiaoBoWenWenLiYuChenGuoandJiChongYang
    Communications in Theoretical Physics 2021年7期

    Yu-Jiao Bo,Wen-Wen Li,Yu-Chen Guo and Ji-Chong Yang

    Department of Physics,Liaoning Normal University,Dalian 116029,China

    Abstract Compared with the traditional magnetic bubble,a skyrmion has a smaller size,and better stability and therefore is considered as a very promising candidate for future memory devices.When skyrmions are manipulated,erased and created,the density of skyrmions can be varied,however the relationship between the radii and the densities of skyrmions needs more exploration.In this paper,we study this problem both theoretically and by using the lattice simulation.The average radius of skyrmions as a function of material parameters,the strength of the external magnetic field and the density of skyrmions is obtained and verified.With this explicit function,the skyrmion radius can be easily predicted,which is helpful for the future study of skyrmion memory devices.

    Keywords:radius of a skyrmion,shape of a skyrmion,lattice simulation

    1.Introduction

    Skyrmion is a topological soliton originally proposed to describe the baryons[1].In condensed matter,a particle-like object known as magnetic skyrmion was introduced theoretically in 1989[2].It was observed for the first time in 2D magnetic systems[3–6]involving Dzyaloshinskii-Moriya interactions(DMI)[7,8].Compared with the traditional magnetic bubble,the skyrmion is smaller,more stable and needs lower power to manipulate,therefore,it has been proposed that the skyrmion is a promising candidate for high density,high stability,high speed,high storage and low energy consumption memory devices[9–11].As a result,the magnetic skyrmions have drawn a lot of attention and been studied intensively recently[11–15].

    A prerequisite for the use of skyrmions in devices is the knowledge of the relationship between the size of a skyrmion and parameters such as exchange strength,DMI strength and the strength of external magnetic field.Such a relationship can be investigated by solving the Euler–Lagrange equation of a skyrmion,for example numerically[16]or by using an ansatz[9],or by using the harmonic oscillation expansion[17],or by an asymptotic matching[18].It has been noticed that the radius of a skyrmion in the skyrmion phase is much smaller than that of an isolated skyrmion[17].Both the radii of an isolated skyrmion and the skyrmions in the skyrmion lattice were studied quantitatively in[19].In particular,numerical results were obtained for the equilibrium radii of skyrmion lattices.

    However,as a potential candidate for storage,the skyrmion is meant to be manipulated,erased and created.In this case,the number of skyrmions can vary from only just one to filling the entire skyrmion lattice.The transformation of a skyrmion lattice to the saturated state is continuous,in this process,the skyrmion lattice gradually decomposes into isolated skyrmions in the saturated state[15].In this paper,we study the average radius of skyrmions with the density of skyrmions in the range between a single isolated skyrmion and the skyrmion lattice.While the results have been obtained for a single isolated skyrmion,and for skyrmion lattices,up to our knowledge,the radius of a skyrmion when the density of the skyrmions is between the skyrmion lattice and the single isolated skyrmion is poorly understood at a quantitative level.

    The rest of the paper is organized as the following.The analytical and numerical results based on circular cell approximation are established in section 2.In section 3,we introduce the lattice simulation of Landau–Lifshitz-Gilbert(LLG)equation.We compare the theoretical results with the results of lattice simulation in section 4.A summary is made in section 5.

    2.Circular cell approximation

    The local magnetic moment of a skyrmion can be parameterized as

    where r,φ,z are coordinates in a cylindrical coordinate,γ is the helicity angle,m=1 for a skyrmion and m=-1 for an anti-skyrmion,g=±1.The skyrmion number is Q=-mg.In the following,we only consider the skyrmion with Q=1(m=1,g=-1).

    By using the circular cell approximation,the skyrmions are viewed as sitting in circular cells with radius R,which means the boundary condition θ(0)=π and θ(R)=0[19].In principle,θ(r)can be expanded using any Hilbert space.Since the wave-function of the ground state of the harmonic oscillator and the numerical solution of the Euler–Lagrange equation of a skyrmion are close in shape[17],we use the Hilbert space of harmonic oscillator to expand θ(r).We do not requireθ′(r)=0as in[17]becauseθ′(r)≠0is allowed by the Euler–Lagrange equation,therefore the eigen-functions of odd energy levels are also included.To impose the boundary conditions θ(0)=π and θ(R)=0,θ(r)to the next-to-next-to leading order can be written as

    where φnare eigen-functions of harmonic oscillator,ω and c are parameters to be determined.By assuming the coefficients of the higher order terms are small,the power counting yields c~1/R2and 1/R?1.

    We concentrate on the case when the anisotropy is absent,the energy to be minimized iswith the energy density

    where d≡D/J and b≡B/J,J is the strength of local ferromagnetic exchange,D is the strength of DMI,B is the strength of the external magnetic field which is assumed to be parallel to the z-axis.For simplicity,we consider dimensionless parameters,the matching is discussed in section 4.4.

    Denoting s≡1/R,F can be expanded aswith

    where γEis the Euler constant,Ci and Si are cosine and sine integral functions,andfm,n,nc,nsare constant numbers defined as

    This seemingly lengthy expression ofnothing more than a polynomial ofand c.To achieve a higher precision,in principle,both the expansions of θ(r)and F can be worked out for higher orders.

    For d=0.4,b=0.1,R=20,in the region that ω~0.15 and c~-0.01,we compare F within figure 1.can approximate F well in the region concerned.Especially,the positions where F andare minimized fit each other very well.To minimize F,we use variational method,so that there are two equations?F/?ω=0 and?F/?c=0,by which ω and c can be solved.

    By setting a threshold h such that the sites with nz

    Figure 1.Compare F withat d=0.4,b=0.1,R=20.The left panel is F andat ω=0.15 as functions of c,the right panel is F andat c=-0.012 as functions of ω.

    It has been found that,by using the leading order ansatz θLO,to minimize F yields ω=w0b2/d2where w0=0.768548 is a constant[17].By using equation(6),the average radius rscan be written as

    Figure 2.Compared with

    For a skyrmion,nzvaries from-1 to 1 from the center to the edge,and the radius is determined by the number of sites with nz<1.But nzonly approaches 1,so we need to set a threshold slightly smaller than 1.If the approximate expression for θ(r)is sufficiently precise,the radius of the skyrmion is consistent as long as we choose a same h for theoretical predictions,lattice simulations and experimental measurements,and the verification of the theory is independent of the specific value of h taken.In this paper we choose 0.9 which is close to 1,other choices would lead to small differences,but would not change the conclusion.Then≈2.247 44,usingto approximate

    In[19],the equilibrium R is numerically solved by minimize the energy density.Note that R in this case is independent of the density of the skyrmions.In our case,R is a quantity between the case of skyrmion lattice and the case of a single isolated skyrmion,and is determined by the density of the skyrmions,one can calculate rsafter R is given.

    3.Lattice simulation

    The lattice simulation is based on the LLG equation,denoting nras the local magnetic momentum at site r,the LLG can be written as[20–23]

    where nris the local magnetic moment,α is the Gilbert damping constant and the effective magnetic field Beffis

    with the discretized version of Hamiltonian defined as[24,25]

    where δirefers to each neighbor.On a square lattice,one has δi=ei,therefore

    The simulation was carried out on the GPU[20]which has a great advantage over CPUs because of the ability of parallel computing of the GPU.Equation(1)is numerically integrated by using the fourth-order Runge-Kutta method.

    4.Numerical results

    We run the simulation on a 512×512 square lattice.In the simulation,we use dimensionless homogeneous J,D and B.J=1 is used as the definition of the energy unit[25–27],the results are presented with d and b.In the previous works,the Gilbert constant was chose to be α=0.01 to 1[21,23,26–35].In this work,we use α=0.04 which is in the region of commonly used α.The time step is denoted asΔt.We use Δt=0.01 time unit,and the configurations typically become stable after about 106-107steps starting with a randomized initial state.The average radius of the skyrmions is measured as rs=As/NA where Asis the total area of the skyrmions which is determined by the number of sites in the isoheight nz=h with h=0.9,A=5122and N is the number of skyrmions.The standard errors of the radii of skyrmions are also measured.

    To investigate the relationship between r,d and b,we simulate with d in the range of 0.2-0.6,and with growing b for each fixed d.We focus on those configurations that are in the skyrmion phase when stable.The phase diagram is shown in figure 3.

    Figure 3.The phase diagram obtained by lattice simulation of LLG with randomized initial states.

    4.1.The relationship between the average radius and densit y

    In this subsection,we use the configurations at d=0.2,b=0.025,d=0.35,b=0.1,d=0.4,b=0.1,d=0.4,b=0.2,d=0.45,b=0.15 and d=0.6,b=0.15 to investigate the relationship between the average radius and density.Firstly we calculate the number of skyrmions in each configuration.By repeatedly and randomly erasing about 10%of the total number of skyrmions at a time and performing the simulation sequentially,we obtain the configurations at different N.Taking the case of d=0.4,b=0.1 as an example,the resulting configurations are shown in figure 4.

    Because the size of the lattice is 512×512,The ratios of the average radii of skyrmions at different N to the radius of an isolated skyrmion are measured and denoted as.We compareandin figure 5.It can be seen that the theocratical resultsandcan approximately predictcorrectly,the deviations betweenandare generally within about 10%.Besides,for larger skyrmions,the theocratical results are generally better.Especially,for d=0.4,b=0.1,can fitvery well.For the cases where the sizes of skyrmions are relatively smaller,there are several possible reasons for the deviation.On one hand,when the skyrmions are smaller,they are not homogenously aligned,the distances between the skyrmions become larger,consequently the actual s is smaller for,so the points ofare biased towards a larger s.Secondly,the lattice simulation is more coarse for smaller skyrmions,which can also lead to differences with the theoretical results.Similarly,if the skyrmions are small and occupy only hundreds of sites,the θ(r)can no longer be treated as a continuous function.

    Figure 4.The configurations corresponding to different N.

    Figure 5.Comparewithand

    Figure 6.Comparewithfor d=0.6,b=0.15.

    Figure 7.Comparewithfor d=0.4,b=0.2.

    Figure 8.rs at different d and b(marked as‘+’)and the fitted rs(d,b),i.e.Equation(10).

    Figure 9.rs calculated with equation(9)(marked as‘+’)compared with equation(14)(the curved surface).

    There are also cases that theare not fitted very well by the theocratical predictions.In the case of d=0.6,b=0.15,after erasing some skyrmions,the configuration began to enter the helical phase as shown in figure 6(a).In this case,when an isolated skyrmion is created,it is not stable and will grow into stripes.If we choose the average radius near the phase transition as a baseline,that is,we choose thenear the phase transition as 1,the results are shown in figure 6(b).It can be seen that theapproaches.

    Another case is when d=0.4,b=0.2 as shown in figure 7.This is an example that when the skyrmions are rs=4.7003±0.0054,for N=103,rs=4.7005±0.0043,which are larger than the case of a signle isolated skyrmion rs=4.6865.One can see thathas a similar behavior.

    4.2.A formula for the average radius in the skyrmion phase

    Since we start from the randomized initial state,the obtained configurations are the skyrmion lattices.In this case,the relationship between rs,d and b are fitted by a rational function,the result is

    small,they are no longer homogenously aligned.It can been found from figure 3 that the configuration is also near the phase transition from the skyrmion phase to the ferromagnetic phase.It is interesting that,the average radius is not always decreasing with s especially when s is small.For N=51,rsand fitted rs(d,b)(equation(10))are shown in figure 8.One can see that the rational function is consistent with the numerical results.

    Figure 10.The shapes of isolated skyrmions in the saturated state.

    We compare equation(9)with equation(14)in figure 9.Since the ρ for each configuration is different,the results of rs(b,d,ρ)are depicted as points in figure 9.Note that we remove the points correspond to the cases that the single isolated skyrmions are not stable such as d=0.6,b=0.15.It can be seen that rs(b,d,ρ)can match the results very well.rs(d,b,ρ)can be used to predict the average radius of the skyrmions when d,b and the density are given.

    4.3.The shape of the skyrmion in the skyrmion phase

    The function θ(r)is often used to describe the shape of a skyrmion[17].It has been assumed that the higher order corrections to θ(r)are small,which in fact requires that the shape of a skyrmion is not changed significantly in the skyrmion phase.Choosing the configurations at d=0.2,b=0.025,d=0.35,b=0.1,d=0.4,b=0.1 and d=0.45,b=0.15 as examples,we measure the average θ(r)with θ in the rangecos-1(0.9)≤θ≤cos-1(-0.9).The results are compared with θLO(r)with r rescaled according tofor example,in the case of d=0.4,b=0.1,one has s≈0.116 165 and θ(r,ρ)=θLO(r/0.783516).The results are shown in figure 10.

    As shown in figure 10,the shapes of isolated skyrmions in a saturated state are similar to the shape of a single isolated skyrmion with r rescaled.This result indicates that our assumption is valid.Note that θ(r,ρ)is also the function θLO(r)with b rescaled asIt implies that the skyrmions can be seen as being experiencing an effective magnetic strengthwhen affected by other skyrmions.

    4.4.Matching

    In the calculations and lattice simulations,we use dimensionless parameters.The numerical results can be matched to the real material by using the rescaling introduced in[21,36].The rescaling factor is denoted as q andq=where λ is helical wavelength and a is the lattice spacing.The helical wavelengthes of real materials can be found in[12].For example,if we take λ≈60 nm,a=0.4 nm and D/J=0.4,then q≈6.75.Then r=6.2854 corresponds to r=6.2854×q×a≈16.97 nm.Meanwhile the time unit is rescaled aswhere J is the dimensionless exchange strength andJ′is the exchange strength of a real material.If we chooseJ′≈3 meV,the time unit ist′≈0.01 ns.The time step in the simulation isΔt=0.01t′≈1 ps.

    5.Summary

    One of the reasons that the skyrmion is proposed as a candidate for the future memory devices is because the size of a skyrmion is small.The radius of a skyrmion when the density of skyrmions is between the skyrmion lattice and the single isolated skyrmion is an important issue which is lack of exploration.In this paper,we study the average radius of skyrmions when the density is between a skyrmion lattice and a single isolated skyrmion.By using the harmonic oscillator expansion,the dependency of the average radius of skyrmions on the parameters of materials,strength of external magnetic field and the density of skyrmions is obtained theoretically.Then,a lattice simulation of LLG equation is performed to verify our results.

    The theoretical result is presented in equation(9).Our result indicates that generally the average radius of skyrmions will decrease with the growth of density even when b and d are unchanged.The average radii at different d and b are measured by using lattice simulation.We confirm that our theoretical results can fit the simulated results well.With this relation,the skyrmion radius for different materials at different densities can be easily predicted.We also find that,the shapes of the skyrmions are insensitive to the density,which implies that the interactions between skyrmions can be seen as an effective magnetic strength.

    Acknowledgments

    This work was partially supported by the National Natural Science Foundation of China under Grant No.12 047 570 and the Natural Science Foundation of the Liaoning Scientific Committee Grant No.2019-BS-154.

    中文字幕亚洲精品专区| 久久精品国产亚洲av涩爱| 国产av码专区亚洲av| 久久国产乱子免费精品| 国产精品.久久久| 亚洲精品aⅴ在线观看| 亚洲伊人久久精品综合| 丝袜美腿在线中文| 欧美极品一区二区三区四区| 亚洲在久久综合| 国产极品天堂在线| 精品久久久久久久久av| 亚洲精品第二区| 日韩电影二区| 制服丝袜香蕉在线| 日韩av免费高清视频| 亚洲欧美清纯卡通| 乱码一卡2卡4卡精品| .国产精品久久| 成人国产麻豆网| 亚洲,一卡二卡三卡| 成人二区视频| 伦理电影大哥的女人| 亚洲精品,欧美精品| 亚洲精品国产成人久久av| 国产老妇伦熟女老妇高清| 男女那种视频在线观看| 成人毛片60女人毛片免费| 日韩三级伦理在线观看| 丝袜脚勾引网站| 青春草视频在线免费观看| 国产高清不卡午夜福利| 免费不卡的大黄色大毛片视频在线观看| 六月丁香七月| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 18禁裸乳无遮挡动漫免费视频 | 免费大片黄手机在线观看| 亚洲精品,欧美精品| 中国国产av一级| 99热6这里只有精品| 国产伦精品一区二区三区四那| 亚洲av欧美aⅴ国产| 久久久国产一区二区| 色婷婷久久久亚洲欧美| 久久久精品免费免费高清| 国产女主播在线喷水免费视频网站| 亚洲自偷自拍三级| 免费黄色在线免费观看| 搞女人的毛片| 哪个播放器可以免费观看大片| 日韩强制内射视频| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 在线观看三级黄色| 一级黄片播放器| 久久久欧美国产精品| 亚洲精品自拍成人| 欧美性猛交╳xxx乱大交人| a级毛色黄片| 日日摸夜夜添夜夜添av毛片| av在线观看视频网站免费| 丰满乱子伦码专区| 亚洲精品中文字幕在线视频 | 国产精品蜜桃在线观看| 人人妻人人澡人人爽人人夜夜| 免费播放大片免费观看视频在线观看| 97热精品久久久久久| 中文字幕人妻熟人妻熟丝袜美| .国产精品久久| 亚洲av男天堂| 国产在视频线精品| 成人午夜精彩视频在线观看| freevideosex欧美| 欧美一区二区亚洲| 久热久热在线精品观看| 插逼视频在线观看| 亚洲国产欧美在线一区| 久久精品国产亚洲网站| 天天一区二区日本电影三级| 亚洲一级一片aⅴ在线观看| 2021少妇久久久久久久久久久| 男女那种视频在线观看| 汤姆久久久久久久影院中文字幕| 午夜亚洲福利在线播放| 极品少妇高潮喷水抽搐| 日本熟妇午夜| 国产精品av视频在线免费观看| 天天躁日日操中文字幕| 夜夜爽夜夜爽视频| av播播在线观看一区| 视频中文字幕在线观看| 蜜桃久久精品国产亚洲av| 一个人看的www免费观看视频| 久久久久久久久大av| 高清欧美精品videossex| 国产色婷婷99| 高清午夜精品一区二区三区| 日日撸夜夜添| 99久国产av精品国产电影| 成年免费大片在线观看| 伦理电影大哥的女人| 美女国产视频在线观看| 国产精品99久久99久久久不卡 | 精品久久久精品久久久| 99久久精品一区二区三区| 午夜福利在线在线| 王馨瑶露胸无遮挡在线观看| 男人添女人高潮全过程视频| 久久久亚洲精品成人影院| 中国国产av一级| 如何舔出高潮| 亚洲欧美精品自产自拍| 欧美另类一区| 嘟嘟电影网在线观看| 网址你懂的国产日韩在线| www.色视频.com| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 国产黄色免费在线视频| 女人十人毛片免费观看3o分钟| 久久精品国产a三级三级三级| 欧美xxⅹ黑人| 嫩草影院精品99| 91精品国产九色| 久久女婷五月综合色啪小说 | 久久精品国产a三级三级三级| 免费观看在线日韩| 青青草视频在线视频观看| 亚洲人成网站在线播| 人体艺术视频欧美日本| 久久影院123| 嘟嘟电影网在线观看| 国产男女超爽视频在线观看| 国产精品爽爽va在线观看网站| 美女视频免费永久观看网站| 日本黄大片高清| 国产一区二区亚洲精品在线观看| 成人亚洲精品一区在线观看 | 国产视频首页在线观看| 国产爽快片一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 我要看日韩黄色一级片| 亚洲av在线观看美女高潮| 精品熟女少妇av免费看| 国产精品三级大全| 免费黄网站久久成人精品| 国产有黄有色有爽视频| 欧美另类一区| 内地一区二区视频在线| 日韩一本色道免费dvd| 一级毛片久久久久久久久女| 又爽又黄a免费视频| 91久久精品电影网| 国产免费视频播放在线视频| 精品亚洲乱码少妇综合久久| 国产黄色免费在线视频| 六月丁香七月| av专区在线播放| 亚洲熟女精品中文字幕| 国产精品嫩草影院av在线观看| 国产在线男女| 少妇人妻 视频| 国产精品熟女久久久久浪| 欧美高清成人免费视频www| 免费观看a级毛片全部| 欧美成人一区二区免费高清观看| av专区在线播放| 日本午夜av视频| 免费观看的影片在线观看| 亚洲欧美成人精品一区二区| 免费播放大片免费观看视频在线观看| 久久久久精品性色| 欧美最新免费一区二区三区| 国产精品三级大全| 晚上一个人看的免费电影| 在线天堂最新版资源| 男女国产视频网站| 日本一本二区三区精品| 在线观看一区二区三区| 在线免费观看不下载黄p国产| 亚洲最大成人中文| 精品久久国产蜜桃| 久久精品国产亚洲av天美| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 涩涩av久久男人的天堂| 欧美亚洲 丝袜 人妻 在线| 嫩草影院入口| 日韩成人伦理影院| 国产成年人精品一区二区| 热re99久久精品国产66热6| 老司机影院毛片| 夫妻午夜视频| 伊人久久国产一区二区| 91aial.com中文字幕在线观看| 能在线免费看毛片的网站| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 在线免费观看不下载黄p国产| 网址你懂的国产日韩在线| 国产男女内射视频| 免费黄网站久久成人精品| 亚洲精品aⅴ在线观看| 久久97久久精品| 亚洲人成网站高清观看| 亚洲欧洲国产日韩| 国产精品一二三区在线看| 日韩,欧美,国产一区二区三区| 亚洲av.av天堂| 少妇熟女欧美另类| 欧美日韩一区二区视频在线观看视频在线 | 五月天丁香电影| 免费看光身美女| 777米奇影视久久| 如何舔出高潮| 国产极品天堂在线| 男插女下体视频免费在线播放| 日韩成人伦理影院| 国产黄a三级三级三级人| 中文字幕制服av| 22中文网久久字幕| 久久久久九九精品影院| 国产白丝娇喘喷水9色精品| 一边亲一边摸免费视频| 尤物成人国产欧美一区二区三区| av国产免费在线观看| 成年人午夜在线观看视频| 成人欧美大片| 自拍偷自拍亚洲精品老妇| 色播亚洲综合网| 亚洲精品乱码久久久v下载方式| 少妇高潮的动态图| 青春草亚洲视频在线观看| 99久久人妻综合| 神马国产精品三级电影在线观看| 国产精品熟女久久久久浪| 高清视频免费观看一区二区| 有码 亚洲区| 亚洲图色成人| 免费观看a级毛片全部| 久久久久精品性色| 国产男女超爽视频在线观看| 69av精品久久久久久| 80岁老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 欧美日韩亚洲高清精品| 国产黄色免费在线视频| 乱系列少妇在线播放| 三级经典国产精品| 欧美日韩视频高清一区二区三区二| 久久久久久久亚洲中文字幕| 精品国产乱码久久久久久小说| 亚洲国产精品成人久久小说| 国产熟女欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产午夜精品一二区理论片| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 午夜日本视频在线| 婷婷色综合www| 看免费成人av毛片| 国产综合精华液| 久久久久久久亚洲中文字幕| 美女国产视频在线观看| 国产久久久一区二区三区| 欧美亚洲 丝袜 人妻 在线| 色婷婷久久久亚洲欧美| 成年女人看的毛片在线观看| 丰满少妇做爰视频| 黄色日韩在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲精华国产精华液的使用体验| 免费不卡的大黄色大毛片视频在线观看| 女的被弄到高潮叫床怎么办| 国产精品偷伦视频观看了| 久久久久网色| 免费观看av网站的网址| 插阴视频在线观看视频| av天堂中文字幕网| 久久韩国三级中文字幕| 亚洲国产日韩一区二区| 69人妻影院| 18+在线观看网站| av又黄又爽大尺度在线免费看| 亚洲不卡免费看| 2021天堂中文幕一二区在线观| 成年人午夜在线观看视频| 99视频精品全部免费 在线| 久久99热这里只频精品6学生| 亚洲人成网站在线观看播放| 国产一区二区亚洲精品在线观看| 一级毛片aaaaaa免费看小| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| 亚洲成人中文字幕在线播放| 国产精品99久久99久久久不卡 | 午夜精品国产一区二区电影 | 久久久久精品性色| 两个人的视频大全免费| 日韩亚洲欧美综合| 最近中文字幕2019免费版| 国产高清有码在线观看视频| 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 在线播放无遮挡| 亚洲内射少妇av| 亚洲人成网站高清观看| 亚洲av免费在线观看| 国产久久久一区二区三区| 精华霜和精华液先用哪个| 久久人人爽人人片av| 两个人的视频大全免费| 久久久久精品性色| 国产永久视频网站| 热99国产精品久久久久久7| 三级男女做爰猛烈吃奶摸视频| 国精品久久久久久国模美| 美女被艹到高潮喷水动态| 成人国产av品久久久| 最新中文字幕久久久久| 国产精品蜜桃在线观看| 看非洲黑人一级黄片| 天堂俺去俺来也www色官网| av网站免费在线观看视频| 亚洲最大成人手机在线| 欧美日韩一区二区视频在线观看视频在线 | 国产精品蜜桃在线观看| 亚洲欧美精品专区久久| 性色av一级| 久久久午夜欧美精品| 下体分泌物呈黄色| 久久精品人妻少妇| 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 51国产日韩欧美| av网站免费在线观看视频| 五月天丁香电影| 日本-黄色视频高清免费观看| 97热精品久久久久久| 久久女婷五月综合色啪小说 | 国产成人一区二区在线| 中国国产av一级| 日韩在线高清观看一区二区三区| 亚洲最大成人av| 国产精品国产av在线观看| 午夜激情久久久久久久| 一级毛片aaaaaa免费看小| 大片电影免费在线观看免费| 成年女人在线观看亚洲视频 | 在线精品无人区一区二区三 | 欧美日韩亚洲高清精品| 视频区图区小说| 中文字幕亚洲精品专区| 日本wwww免费看| 久久久久久久国产电影| 国产精品秋霞免费鲁丝片| 亚洲久久久久久中文字幕| 又大又黄又爽视频免费| 97在线人人人人妻| 亚洲精品乱久久久久久| 天堂网av新在线| 精品午夜福利在线看| tube8黄色片| 成人国产av品久久久| 国国产精品蜜臀av免费| 亚洲精华国产精华液的使用体验| 久久人人爽av亚洲精品天堂 | 免费观看a级毛片全部| 一级av片app| 日本色播在线视频| 内地一区二区视频在线| 久久久久久久久大av| 亚洲天堂国产精品一区在线| 国产欧美另类精品又又久久亚洲欧美| 中文字幕久久专区| 欧美少妇被猛烈插入视频| 国产在线男女| 亚洲av一区综合| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 久久精品国产亚洲av涩爱| av在线播放精品| www.av在线官网国产| 亚洲国产精品成人综合色| 九草在线视频观看| 成人无遮挡网站| 99视频精品全部免费 在线| 久久久久九九精品影院| 国产女主播在线喷水免费视频网站| 亚洲欧美中文字幕日韩二区| 午夜日本视频在线| 三级国产精品片| 91aial.com中文字幕在线观看| 蜜桃亚洲精品一区二区三区| 日日啪夜夜撸| 春色校园在线视频观看| 午夜福利在线观看免费完整高清在| 国产精品久久久久久av不卡| 内射极品少妇av片p| 精品久久国产蜜桃| av在线亚洲专区| 久久99热这里只频精品6学生| 精品酒店卫生间| videossex国产| 夜夜看夜夜爽夜夜摸| 日韩欧美精品免费久久| 国产免费一级a男人的天堂| 国产 精品1| 久久精品人妻少妇| 又爽又黄无遮挡网站| 亚洲精品日韩av片在线观看| 丝瓜视频免费看黄片| 我的女老师完整版在线观看| 成人欧美大片| 少妇裸体淫交视频免费看高清| 日韩国内少妇激情av| 国精品久久久久久国模美| 欧美最新免费一区二区三区| 久久久色成人| 男人舔奶头视频| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看| 亚洲国产精品国产精品| 一级片'在线观看视频| 午夜视频国产福利| 日本爱情动作片www.在线观看| 成人免费观看视频高清| 一本一本综合久久| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品古装| 欧美bdsm另类| 国产一区有黄有色的免费视频| 麻豆国产97在线/欧美| 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 亚洲成人av在线免费| 热99国产精品久久久久久7| 久久久亚洲精品成人影院| 欧美丝袜亚洲另类| 少妇人妻 视频| 久久久a久久爽久久v久久| 有码 亚洲区| 人人妻人人爽人人添夜夜欢视频 | 久久久成人免费电影| 在线观看一区二区三区激情| 国产高清国产精品国产三级 | 最新中文字幕久久久久| 一级爰片在线观看| 国产视频首页在线观看| 色综合色国产| 国产老妇伦熟女老妇高清| 神马国产精品三级电影在线观看| 成人亚洲精品av一区二区| 亚洲综合色惰| 国产在线男女| 日日摸夜夜添夜夜爱| 精品国产露脸久久av麻豆| 在线 av 中文字幕| 亚洲成人精品中文字幕电影| 久久精品国产鲁丝片午夜精品| 国产视频首页在线观看| 久久鲁丝午夜福利片| 欧美xxxx黑人xx丫x性爽| 国内精品美女久久久久久| 亚洲精品第二区| 日韩中字成人| 亚洲人成网站在线播| 亚洲伊人久久精品综合| 久热这里只有精品99| 欧美一区二区亚洲| 99精国产麻豆久久婷婷| 熟女人妻精品中文字幕| 欧美日韩在线观看h| 日日啪夜夜爽| 亚洲国产欧美人成| 岛国毛片在线播放| 老司机影院成人| 自拍偷自拍亚洲精品老妇| 高清毛片免费看| 大码成人一级视频| 国产精品99久久久久久久久| 插阴视频在线观看视频| 亚洲精品久久久久久婷婷小说| 国产精品蜜桃在线观看| av又黄又爽大尺度在线免费看| 免费av观看视频| 男男h啪啪无遮挡| 国产免费福利视频在线观看| 干丝袜人妻中文字幕| 黄片wwwwww| 亚洲在线观看片| 舔av片在线| 黄色日韩在线| 久久久久国产精品人妻一区二区| 男女下面进入的视频免费午夜| 99热这里只有是精品50| 国产精品女同一区二区软件| 插逼视频在线观看| 麻豆精品久久久久久蜜桃| 亚洲怡红院男人天堂| 日韩欧美一区视频在线观看 | 亚洲av电影在线观看一区二区三区 | 成人特级av手机在线观看| 国产成人精品福利久久| 亚洲国产精品成人久久小说| 欧美日韩精品成人综合77777| 日本一本二区三区精品| 少妇裸体淫交视频免费看高清| 在线天堂最新版资源| 久久久久性生活片| 亚洲av.av天堂| 免费看不卡的av| 国产精品久久久久久av不卡| 日韩一本色道免费dvd| 亚洲久久久久久中文字幕| 精品久久久久久久久av| 伦理电影大哥的女人| 久久久久精品性色| 26uuu在线亚洲综合色| 在线观看一区二区三区激情| 日韩成人av中文字幕在线观看| 免费观看av网站的网址| 又爽又黄无遮挡网站| 亚洲av免费在线观看| 欧美人与善性xxx| 高清欧美精品videossex| 街头女战士在线观看网站| 97在线人人人人妻| 青春草亚洲视频在线观看| 精品国产一区二区三区久久久樱花 | 亚洲最大成人手机在线| 精品人妻视频免费看| 在线观看一区二区三区激情| 国产黄片视频在线免费观看| 制服丝袜香蕉在线| 特大巨黑吊av在线直播| 中文精品一卡2卡3卡4更新| 免费看光身美女| 精品一区二区三区视频在线| 少妇丰满av| 亚洲av中文字字幕乱码综合| 王馨瑶露胸无遮挡在线观看| 国产精品国产三级专区第一集| 国产日韩欧美亚洲二区| 欧美一区二区亚洲| 日本黄大片高清| 韩国高清视频一区二区三区| 亚洲怡红院男人天堂| 18+在线观看网站| 日韩欧美精品免费久久| 亚洲自拍偷在线| 国产精品麻豆人妻色哟哟久久| 午夜免费鲁丝| av在线蜜桃| 中文字幕亚洲精品专区| 夫妻午夜视频| 成人亚洲欧美一区二区av| 国产视频内射| 亚洲国产欧美在线一区| 99久久九九国产精品国产免费| 亚洲欧美一区二区三区国产| 国产精品久久久久久精品电影| 熟女av电影| 免费观看的影片在线观看| av免费观看日本| 99热这里只有是精品50| 欧美zozozo另类| 日韩人妻高清精品专区| 精品人妻一区二区三区麻豆| 在线观看国产h片| 欧美三级亚洲精品| 久热久热在线精品观看| 夫妻午夜视频| 精品国产一区二区三区久久久樱花 | 亚洲国产色片| 亚洲欧洲国产日韩| 在线播放无遮挡| 亚洲av免费高清在线观看| 26uuu在线亚洲综合色| 国产精品国产av在线观看| 亚洲精品国产av成人精品| 亚洲天堂av无毛| 成人欧美大片| 最后的刺客免费高清国语| 国产 一区精品| 久久这里有精品视频免费| 亚洲国产最新在线播放| 国产精品无大码| 精品视频人人做人人爽| 欧美成人一区二区免费高清观看| 91aial.com中文字幕在线观看| 成人一区二区视频在线观看| 亚洲婷婷狠狠爱综合网| 亚洲成人精品中文字幕电影| 一级毛片aaaaaa免费看小| 国模一区二区三区四区视频| 亚洲欧美日韩无卡精品| 国产伦精品一区二区三区四那| 国语对白做爰xxxⅹ性视频网站| 日本色播在线视频| 精品久久久久久久人妻蜜臀av| 亚洲精品国产av成人精品| 日韩中字成人| 国产精品不卡视频一区二区| 在现免费观看毛片| 国产伦精品一区二区三区视频9| 91精品一卡2卡3卡4卡| 五月天丁香电影| 亚洲国产精品专区欧美| 人人妻人人爽人人添夜夜欢视频 | 国产高清国产精品国产三级 | 欧美另类一区| 日本-黄色视频高清免费观看| 国产91av在线免费观看|