• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hinokiflavone and Related C-O-C-Type Biflavonoids as Anti-cancer Compounds:Properties and Mechanism of Action

    2021-08-10 03:07:42JeanFranoisGoossensLaurenceGoossensChristianBailly
    Natural Products and Bioprospecting 2021年4期

    Jean-Fran?ois Goossens·Laurence Goossens·Christian Bailly

    1 Univ.Lille,CHU Lille,EA 7365-GRITA-Groupe de Recherche sur les Formes Injectables et les Technologies Associées,59000 Lille,France

    2 OncoWitan,59290 Lille(Wasquehal),France

    Abstract Biflavonoids are divided in two classes:C-C type compounds represented by the dimeric compound amentoflavone and C-O-C-type compounds typified by hinokiflavone(HNK)with an ether linkage between the two connected apigenin units.This later sub-group of bisflavonyl ethers includes HNK,ochnaflavone,delicaflavone and a few other dimeric compounds,found in a variety of plants,notably Selaginella species.A comprehensive review of the anticancer properties and mechanism of action of HNK is provided,to highlight the anti-proliferative and anti-metastatic activities of HNK and derivatives,and HNK-containing plant extracts.The anticancer eff ects rely on the capacity of HNK to interfere with the ERK1-2/p38/NFκB signaling pathway and the regulation of the expression of the matrix metalloproteinases MMP-2 and MMP-9(with a potential direct binding to MMP-9).In addition,HNK was found to function as a potent modulator of pre-mRNA splicing,inhibiting the SUMO-specific protease SENP1.As such,HNK represents a rare SENP1 inhibitor of natural origin and a scaff old to design synthetic compounds.Oral formulations of HNK have been elaborated to enhance its solubility,to facilitate the compound delivery and to enhance its anticancer efficacy.The review shed light on the anticancer potential of C-O-C-type biflavonoids and specifically on the pharmacological profile of HNK.This compound deserves further attention as a regulator of pre-mRNA splicing,useful to treat cancers(in particular hepatocellular carcinoma)and other human pathologies.

    Keywords Hinokiflavone·Biflavonoid·Cancer therapy·Mechanism of action·Natural product

    Abbreviations

    HNK Hinokiflavone

    MMP Matrix metalloproteinase

    SUMO Small ubiquitin-like modifier

    1 Introduction:Biflavonoids

    Dimeric flavonoids,usually called biflavonoids,form a specific group of natural products encountered in a large variety of plant species.They are composed of two phenyl-chromenone units,linked via a C-C or C-O-C bond between the chromenone moiety or the appended phenyl ring.The first biflavonoid,ginkgentin was discovered fromGinkgo bilobaL.in 1929 and,almost one century later,the family includes more than 200 members with a large structural diversity[1].

    A motif frequently encountered within biflavonoids corresponds to the dimerization of the apigenin unit(or 4′,5,7-trihydroxy-flavone).There are multiple possible combinations.For example,the linkage of two apigenin motifs via an 8 → 3′ connector affords amentoflavone whereas the connection via an 8 → 6 linker aff ords agathisflavone.Other combinations are represented in Fig.1 a.The dimerization can also occur via an ether linkage,using one of the hydroxyl groups of apigenin,as shown in Fig.1 b.This is the case for compounds like hinokiflavone,ochnaflavone and a few other C-O-C-type biflavonoids(Fig.2).

    Fig.1 Linkage between two apigenin units to form a C-C-type or b C-O-C-type biflavonoids

    Hinokiflavone(HNK)is a bis-apigenyl ether(Fig.2)discovered in 1958 in Japan.It was first isolated from the dried leaves of the plantChamaecyparis obtusaEndlicher(also known as Hinoki cypress,Japanese false cypress)[2,3].Its structure was fully elucidated one year later[4].Over the past sixty years,the compound has been isolated from numerous plants(primarily in gymnosperms),such asToxicodendron succedaneum,Isophysis tasmanica,Juniperus rigida,J.phoenicea,Platycladi cacumen,Rhus succedanea,Selaginella tamariscina,S.bryopteris,Metasequoia glyptostroboidesand many other plants[5-11].It can be obtained also by total synthesis[12-15].This apigenin dimer presents an extended V-shaped configuration,similar to that of ochnaflavone,also a C-O-C-type biflavonoid composed of an apigenin and a luteolin subunit(Fig.2).

    Fig.2 Structures of selected C-O-C-type biflavonoids.They all present an ether linkage between the two apigenin units(or methylated apigenin in some cases)

    Biflavonoids display a large range of biological properties.Some compounds present marked antiviral activities,such as robustaflavone which potently inhibits hepatitis B virus replication[16].Other compounds display antibacterial properties,like amentoflavone which efficiently kills cyanobacteria[17].Some compounds also present marked antiproliferative activity,like agasthisflavone[18].These three natural products-robustaflavone,amentoflavone and agasthisflavone-are C-C-type biflavonoids,which have been previously reviewed[19,20].Here,we mainly focused on C-O-C-type biflavonoids and in particular the leading compound in the series,HNK.A review of the antitumor activity and mechanism of action of HNK is off ered.

    2 Pharmacological Profile of HNK

    HNK displays multiple pharmacological activities,including anti-inflammatory,antioxidant,antiprotozoal and antitumor activity(Fig.3).Due to its antioxidant capacity[21],HNK presents a hepato-protective action,enhanced in the presence of glycyrrhizin[22].In addition,an in silico study has predicted that HNK can bind to and inhibit prostaglandin D2 synthase,thereby being potentially useful to limit hair loss[23]but,as far as we know,the computer prediction has not been validated experimentally.The anti-inflammatory action of biflavonoids is well documented(reviewed in[24]),although there are not many studies of the anti-inflammatory potential with HNK itself.Nevertheless,HNK was found to suppress the production of inflammatory mediators like nitric oxide(NO)and interleukins IL-6 and IL-8[25].The combined antioxidant and anti-inflammatory actions have led to the proposal of using biflavonoids for the treatment of Alzheimer’s disease,considering that biflavonoids have a greater capacity to reduce the toxicity of amyloid-β peptide oligomers than the corresponding monoflavonoids[26,27].And indeed,amentoflavone is now emerging as a potential regulator of amyloid β40 neurotoxicity in Alzheimer’s disease[28-30].But a recent structure-activity study demonstrated that HNK-type biflavonoids are less eff ective than the amentoflavonone-type biflavonoids at reducing Aβ40 aggregation[31].

    Fig.3 Tridimensional representation of hinokiflavone(HNK,C30H18O10,PubChem CID:5281627)and its diverse pharmacological activities.The anticancer properties are highlighted here

    Antiviral eff ects have been reported.A weak inhibition of HIV reverse transcriptase activity has been described with HNK[32,33],as well as an activity against influenza virus sialidase,but also very limited[34].The activity of HNK against diff erent Herpes viruses is modest,with a minimal margin between the active dose and the cytotoxic dose[35].Nevertheless,it was shown that HNK can inhibit the dengue 2 virus RNA-dependent RNA polymerase(DV-NS5 RdRp),with a submicromolar efficacy,but other biflavonoids such as amentoflavone and robustaflavone are considered more promising inhibitors[36,37].Finally,HNK has also revealed antiprotozoal activities,with a marked capacity to inhibit the growth of both parasitesLeishmania donovaniandPlasmodium falciparum,at least in vitro(IC50=2.9 and 2.3 μM,respectively)[8].

    3 Anticancer Activity of HNK-Containing Plant Extracts

    An ethanol extract of the plantSelaginella tamariscinaused in traditional medicines in Asia was found to display a marked anti-proliferative activity in vitro,against osteosarcoma cell lines.The extract,which contains HNK and other flavonoids,weakly inhibited cell proliferation but markedly reduced cell migration and invasion in a dose-dependent manner.The eff ect was attributed to a marked down-regulation and inhibition of the matrix metalloproteinases MMP-2 and MMP-9,coupled to an inhibition of the phosphorylation of p38 and Akt signaling molecules[38].A similar anti-metastatic eff ect with inhibition of MMP-9 was also reported using human nasopharyngeal carcinoma HONE-1 cells[39].In general,these biflavonoids including HNK are only mild cytotoxic agents,inhibiting cancer cell growth with IC50in the range 15-40 μM[40].The anti-metastatic activity of this plant extract has been evidenced in diff erent studies,using leukemia,gastric and lung cancer cells in vitro[41-44]and,also in vivo[45].The eff ect has been partially attributed to the presence of amentoflavone,although the extract is known to contain multiple biflavonoids,including HNK but also others,such as pulvinatabiflavone and neocryptomerin[40].The major characteristic of the extract is to restrict cell migration and invasion(Fig.4).

    Fig.4 Proposed signaling pathways activated by Selaginella extracts and HNK leading to the observed anticancer eff ect.Down-regulation of matrix metalloproteases MMP-2 and MMP-9 by HNK is a central event largely implicated in the drug-induced reduction of cell migration and invasion,which contributes to inhibition of metastasis

    Recently,a noticeable anticancer eff ect was reported using a purified extract of anotherSelaginellaspecie,namelySelaginella moellendorffiiHieron which was found to contain mainly six biflavonoids including HNK[46].The extract suppressed the migration of laryngeal cancer cells,via an induction of apoptosis and inhibition of STAT3 and the Akt/NFκB signaling pathway.Importantly,the extract showed a dose-dependent activity in vivo,reducing the subcutaneous growth of Hep-2 tumor in mice[46].HNK is one of the many active compounds that can be found in this type of extract[47].Both amentoflavone and HNK can be found in variousSelaginellasp.,such asS.doederleiniiandS.sinensis[48-50].Anticancer eff ects have been characterized with diff erent types ofSelaginellaextracts,in particular with an ethyl acetate extract ofS.doederleiniicapable of markedly reducing the microvascular density and A549 tumor growth in mice[48,51].

    4 Anticancer Properties of HNK

    HNK directly aff ects the proliferation of cancer cells.Early studies showed that HNK inhibited the growth of KB nasopharyngeal cancer cells in vitro,with an ED50of 4 μg/mL,whereas amentoflavone,robustaflavone,and agathisfiavone were inactive against this cell line.However,HNK is a mild cytotoxic agent,being 16-times less potent than the reference drug etoposide against this cell line[52].Other in vitro studies have reported a modest cytotoxic potential for HNK against various cancer cell lines,with IC50of 19.0,29.8 and 39.3 μg/mL,against HeLa(cervix),U251(glioma)and MCF-7(breast)cancer cells,respectively[40].Whatever the cell line considered,HNK is almost always more potent than amentoflavone but much less cytotoxic than a conventional cytotoxic drug like cisplatin or etoposide.HNK is active against a variety of cancer cell types,including colorectal cancer cells such as the HT29,HCT116 and CT26 colon cancer cell lines which are roughly equally sensitive to HNK[53].The cell growth inhibitory action is both time-and drug concentration-dependent,with an inhibitory action on both cell growth and colony formation.

    HNK markedly induces apoptosis of colon cancer cells,with an up-regulation of the protein Bax and down-regulation of Bcl-2 and a drug-induced loss of mitochondrial potential.When given daily at 25-50 mg/kg/day,HNK reduced the growth of colon CT26 subcutaneous tumor in mice,without apparent toxicity.The growth inhibitory action in vivo was accompanied with an induction of apoptosis(caspase-3 activation,mitochondrial alterations)and a down-regulation of matrix metalloprotease-9(MMP-9)[53].But the eff ect is not specific to colon cancer cells because much the same activity was reported using A375 and B16 melanoma cells,with an inhibition of cell proliferation,induction of caspase-dependent apoptosis and inhibition of cell migration due to inhibition of MMP-2 and MMP-9[54].Inhibition of MMPs is a key element of the mechanism of action of HNK(see below).

    The drug-induced modulation of the Bax/Bcl-2 expression ratio(up-regulation of Bax,down-regulation of Bcl-2),associated with a release of cytochrome c and caspases activation has been clearly evidenced using colon[53],hepatocellular[55]and breast[56]cancer cells.In addition,in the case of hepatocellular carcinoma(HCC),HNK was found to inhibit the activation of NFκB(nuclear factor kappa B)signaling,thereby suppressing the expression of several NFκB-target anti-apoptotic genes,and thus reinforcing the direct proapoptotic eff ect of the compound via upregulation of phospho-JNK[55].In the study using a breast cancer model(MDA-MB-231),the authors pointed out the induction of apoptosis as well as a marked anti-metastatic eff ect.HNK inhibited migration and invasion of breast cancer cells via a modulation of the epithelial-to-mesenchymal transition(EMT),specifically through an up-regulation of the expression level of E-cadherin and down-regulation of N-cadherin[56].HNK thus displays both antiproliferative and anti-metastatic properties.

    It is interesting to compare the level of in vivo activities of HNK in the three independent studies using colon,breast and hepatocellular tumors.In all three cases,the drug significantly slowed down the tumor growth but did not stopp the growth.The eff ect was relatively modest with the MDAMB-231 breast cancer model,with a reduction of the tumor volume by 30-40% when HNK was given(intraperitoneal injection)at 20-40 mg/kg[56].A slightly better eff ect was obtained when using the CT26 colon cancer model,with a reduction of the tumor volume reaching about 50% when the drug was used at 50 mg/kg[53].But in the case of HCC,the antitumor eff ect in vivo was much more pronounced,with a reduction of the volume of SMMC-7721 subcutaneous tumor by 50-70% when the drug was given(ip)at the dose of 4 and 8 mg/kg only.This HCC tumor model seems to be much more sensitive to HNK than the breast and colon cancer models.It should be noted that amentoflavone can also inhibit the growth of HCC tumor cells in mice,but the observed eff ect was relatively weak,even when the drug was given orally at 100 mg/kg[57].HNK seems to be much more potent than amentoflavone at inhibiting HCC growth.It would be useful to investigate the combination of HNK with other drugs,such as sorafenib approved to treat advanced HCC.

    Whether HNK can also interfere indirectly with cancer cells,via an immune-regulatory action,is not known at present.But this hypothesis is plausible because the related product ochnaflavone presents a T cell immunoregulatory activity,resulting in the production of IL-4 and IL-10 cytokines and suppression of IFN-γ and IL-2 cytokines in a mouse model of fungal(Candida)arthritis[58].Amentoflavone has also been shown to elevate the production of IL-2 and IFN-γ in carcinoma-bearing animals and to enhance natural killer cell activity and lymphocyte proliferation[59].It would be interesting and timely to determine if HNK also can modulate the immune response and reduce antitumor immunity.The molecular mechanism leading to the anticancer eff ects of HNK is not precisely known,but at leasttwo categories of protein targets have been evoked.They are discussed below.

    5 Potential Binding to and Inhibition of Metalloproteases

    Matrix metalloproteinases(MMPs)form a class of zincdependent peptidase able to remodel the extracellular matrix by favoring tumor invasive processes[60,61].Notably,MMP-9 is essential for tumor invasion,metastasis and angiogenesis,and considered as a valid biomarker for cancers[62].These enzymes are the targets of many natural and synthetic products[63,64].

    Several studies have evidenced the capacity of diverse biflavonoids to inhibit the expression of MMPs,in particular MMP-2 and MMP-9,and this eff ect is directly implicated in their antitumor action.For example,the C-C type biflavonoids ginkgetin and isoginkgetin both have the capacity to regulate MMPs,reducing the mRNA and protein expression of MMP-2 and MMP-9 and these eff ects contribute to their anticancer potential[65-67].Similarly,amentoflavone was found to inhibit metastasis down-regulation of MMP-2 and-9[68]and to block glioblastoma and osteosarcoma tumor progression through via suppression of the ERK/NFκB signaling pathway,with a down-regulation of MMP-2 and-9[69,70].We can also mention the case of the C-O-C type biflavone ochnaflavone which inhibits MMP-9 secretion in human aortic smooth muscle cells through the transcription factors NFκB and AP-1[71]or a derivative of agathisflavone which suppresses MMP-2 expression and reduces metastasis of melanoma cells[72].Other biflavonoids aff ecting MMPs expressions could be cited[73,74].But in general,the biflavonoid-induced down-regulation of MMP-2 and/or-9 is essentially a consequence of an inhibition of the NFκB activity or an upstream signal such as an inhibition of the phosphorylation of extracellular-regulated kinases(pERK-1/2)(Fig.4).This is the case for HNK which down-regulates the expression of MMP-2 and-9 in A375 and B16 melanoma cells,so as to reduce the invasion/migration capacities of these tumor cells[54].A down-regulation of MMP-2 was also observed in HNK-treated breast cancer cells[56].The downregulation of MMPs by HNK can be explained by the modulation of the ERK/NFκB signaling pathway[25].

    In parallel,a direct interaction of HNK with MMP-9 has been advanced.A pharmacophore model of MMP-9 has been constructed and potential ligands were screened.HNK turned out to be a suitable binder of MMP-9,forming stable complexes via interaction with the catalytic active site of the protein[75].In the proposed HNK/MMP-9 model,multiple van der Waals contacts and H-bonds stabilize the biflavone bound to the S1 active site of the protein,as represented in Fig.5.Each part of the tetracyclic structure of HNK participates in the interaction with MMP-9.Preliminary experimental validation of this in silico hypothesis was provided by the authors who showed that HNK can inhibit MMP-9 activity in cells,with a limited efficacy(IC50=53 μM)[75].This is a modest affinity,compared to other known products with submicro-molar affinities[76,77].

    Fig.5 Illustration of the proposed binding of HNK to MMP-9.The structure of MMP-9 is presented(PDB code:1GKC),with a detailed view of the hinge region which delimits the catalytic active site.Molecular modeling has predicted that HNK can bind deeply into the active site cavity,engaging multiple interactions with the protein,notably through 3 hydrogen bonds with the NH groups of Gly-215,Tyr-423 and C=O group of Glu-402(arrows),plus hydrophobic contacts with several amino acids(italicized,dashed lines),as represented(adapted from[75])

    It is worth to note that the formation of a stable biflavonoid/MMP-9 complex has been also proposed with the C-C-type compound amentoflavone[78].Moreover,MMP-2 and MMP-9 may not be the only metalloproteinases targeted by HNK and other biflavonoids.Recently,it has been proposed,based on an in silico docking study,that lanaroflavone,podocarpusflavone and amentoflavone can bind to the surface metalloprotease leishmanolysin(glycoprotein 63),implicated in the pathogenesis ofLeishmania[79].

    6 HNK:A SENP1 Protease Inhibitor Modulating pre-mRNA Splicing

    SUMOylation is a post-translational modification whereby members of the Small Ubiquitin-like MOdifier(SUMO)family of proteins are conjugated to lysine residues in target proteins.The SUMOylation process plays a key role in numerous aspects of cell physiology,including cell cycle regulation,protein stability,and DNA-damage repair.SUMO actively regulates transcription,negatively or positively[80].The deSUMOylation process,carried out by SUMO-specific proteases(SENPs),is equally important and considered as a potential therapeutic target in the treatment of cancers.Small molecules modulators of deSUMOylation are actively searched[81,82].Potent SENP-selective inhibitors are now emerging[83]as well as efficient SUMOylation inhibitors,like the anticancer trihydroxyflavone derivative 2-D08[84-86].A deregulation of the SUMO pathway has been observed in diff erent cancers,such as breast cancer[87]and hepatocellular carcinoma[88].

    Interestingly,Pawellek and co-workers[89]have discovered that HNK functions as an inhibitor of SENP1 in vitro and increased the levels of SUMO2 modification in cells.A treatment with HNK led to a major increase(up to 20-fold)of SUMO1 and SUMO2/3 modification of diff erent proteins in cells,notably a few protein components of the U2 small nuclear ribonucleoprotein(snRNP)spliceosome complex(Fig.6).The drug was found to block spliceosome assembly and therefore to inhibit mRNA splicing in vitro.The blockade of SENPs by HNK leads to the accumulation of SUMOylated proteins,also observed when using HeLa nuclear extracts[89].This landmark study provides key information to better comprehend the pharmacological eff ects of HNK,including its anticancer eff ects.Indeed,considering that SUMO1 is directly involved in HCC by promoting p65 nuclear translocation and regulating NFκB activity[90],the alteration of the sumoylation/desumoylation machinery by HNK could well be responsible for the observed anticancer eff ect of the compound in HCC.It is known that SENP1 regulates the migration and epithelialmesenchymal transition(EMT)of hepatocellular carcinoma[91].Therefore,inhibition of SNEPs by HNK could explain the observed eff ects mentioned above,such as the druginduced modulation of the EMT and reduction of metastasis[56].

    Fig.6 HNK functions as an inhibitor of sentrin-specific protease 1(SENP1),an essential enzyme for deSUMOylating proteins.The noncovalent structure of SENP1 in complex with SUMO2 is shown(PDB:6NNQ)[135].Inhibition of SENP1 by HNK leads to an increased level of six major proteins component(Sm proteins)of the U2 snRNP complex in cells.By this process,HNK induces SUMOylation of splicing factors,thus preventing the correct assembly of the spliceosome and modulating pre-mRNA splicing[89]

    Diff erent flavonoids are known to modulate or inhibit mRNA splicing,such as apigenin and luteolin[92-94]and the biflavonoid isoginkgetin was also shown to function as an inhibitor of pre-mRNA splicing[95,96].Although this compound is a C-C type biflavonoid structurally distinct from HNK,isoginkgetin appears similar to HNK in terms of mechanism of action,because like HNK,it inhibits tumor cell invasion by regulating MMP-9 expression[65]and interferes with spliceosome assembly,aff ecting multiple phases of the cell cycle[97].For example,isoginkgetin efficiently inhibits the splicing of SMN2(survival of motor neuron 2)mRNA[98].However,isoginkgetin exerts multiple cellular eff ects,being also a proteasome inhibitor[99]and a transcription modulator,modifying RNA polymerase elongation rates[100].In contrast,HNK has no major eff ect on transcription and is a more potent biflavonoid modulator of splicing than isoginkgetin(and amentoflavone did not alter splicing in vitro)[89].

    7 Anticancer Activities and Mechanism of Action of HNK Analogues

    A semisynthetic derivative of HNK has been reported in two Chinese patents recently.The lead compound,designated WG020(Fig.7),is a 4′-phenolic ester,prepared by reaction of HNK with succinic acid and amino-glucose.The long polar side chain was incorporated to increase the water solubility and bioavailability of the compound.WG020 displays marked antiproliferative activity,at least in vitro.The compound dose-and time-dependently inhibits the proliferation of breast cancer cells MDA-MB-231,4T1 and MCF-7.WG020 induces cell apoptosis,characterized by a down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax and activation of pro-caspase-3 to complete apoptosis.The compound also inhibits invasion and migration of 4T1 and MDA-MB-231 cells in vitro[101].Similarly,WG020 inhibits proliferation of human melanoma cells A375 and CHL-1,and murine melanoma cells B16-F10,with IC50in the range 7-11 μM after 72 h and the compound is less toxic toward non-tumoral cells such as VERO and LO2 cells(IC50=25 μM).WG020 also induces apoptosis of the melanoma cells,again with a marked impact on the expression of Bax and Bcl-2 and with a marked druginduced decrease of the mitochondrial membrane potential and variations of the production of reactive oxygen species.WG020 reduces migration and invasion of A375 cells[102].This compound represents a developable form of HNK.After administration,the pro-drug WG020 will be cleaved by internal esterases to release the HNK active unit.Its pharmacokinetic properties have not yet been reported.A prenyl analogue of HNK,made by enzymatic linkage of a geranyl group to the 3’’position,has been described recently[103]but its bioactivity has not been presented.

    Fig.7 Structure of WG020[101,102]

    With more than 200 biflavonoids identified to date,it is not possible to summarize the biological properties of all compounds but,to complete the review,it is useful to refer to the anticancer properties of selected HNK-like compounds with a C-O-C linkage.Lanaroflavone B is an anti-inflammatory biflavonoid and the formation of stable complexes with human neutrophil elastase has been proposed,based on molecular modeling[104],in addition to the aforementioned binding to leishmanolysin[79].Ochnaflavone is also an antiinflammatory agent with a dual cyclooxygenase-2/5-lipoxygenase inhibitory activity[105]but it can also inhibit other enzymes such as phospholipase A2[106]and suppresses lymphocyte proliferation[107].But in the context of our review,the most interesting HNK analog is delicaflavone(Fig.2),isolated fromSelaginella doederleinii,which has revealed marked anticancer activities in vitro and in vivo,via an inhibition of PI3K/AKT/mTOR and MAPK signaling cascade[108-110].However,its molecular targets have not been identified yet.

    Other biflavonoids have revealed interesting anticancer properties recently,such as robustaflavone[111],isoginkgetin[99],japoflavone D[112],sumaflavone[113]and cupressuflavone[113,114],but these C-C-type biflavonoids will not be further discussed here.

    8 Stability,Metabolism and Formulation of HNK

    The metabolism of HNK has been investigated recently[115].More than 40 metabolites have been identified in vitro and in vivo(in rats).The main phase I biotransformation refers to the rupture of the connective C-O-C bond between the two apigenin units,as well and mono-and bi-hydrogenation and hydrolysis of the parent compound.The main phase II metabolism concerns amino acid conjugation(with glutamine,glycine or cysteine),acetylation,and glucuronidation reactions.The metabolites identified are extremely diversified(49 and 41 metabolites identified in vitro and in vivo,respectively),including 25 metabolites only observed in vitro and 24 metabolites found both in vitro and in vivo[115].Thus,the natural product is largely metabolized but,nevertheless,the elimination of the natural product is not excessively rapid.A pharmacokinetic study in rat indicated that the half-life of HNK elimination(t1/2)was 6.1 h and the area under the plasma concentration-time curve value(AUC0-∞)was about 2500 h×ng/mL[116].

    Oral delivery formulations of HNK have been developed to improve the solubility,dissolution rate,and oral bioavailability of the product(Fig.8).A mixed micelle formulation of HNK comprising Soluplus?,the lipophilic cation dequalinium,and the nonionic surfactant D-α-tocopherol acid polyethylene glycol 1000 succinate(TPGS,a derivative of vitamin E)has been successfully prepared via a thin-film hydration method,to entrap HNK and to facilitate the drug delivery.The micellar formulation has revealed increased pro-apoptotic and anticancer activities,both in vitro and in vivo compared to the free HNK product.At the dose of 80 mg/kg,the antitumor efficacy of encapsulated HNK was significantly superior to that a free HNK against lung cancer A549-xenografted nude mice[117].The use of such mixed micelles,characterized by a CMC(critical micelle concentration)value of 5.5×10-4mg/mL and an average particle size of 65.6 nm,can be extremely useful to facilitate the oral delivery of the product and enhance its anticancer efficacy,without causing additional toxicity.Other formulations have been developed,such as those applied to promote the effi-cacy of a biflavonoid extract fromSelaginella doederleinii(containing both C-C-type and C-O-C-type biflavones)[118,119].For example,the use of proliposomes made of a bile salt and a protective hydrophilic isomalto-oligosaccharides coating,has permitted to increase the anticancer efficacy of a biflavonoid extract(containing amentoflavone,robustaflavone,delicaflavone)against a HT29 colon cancer xenograft model[118].The solubility of the compounds can be vastly improved:for example,the solubility of delicaflavone(C-O-C biflavone)increased from 9.6 μg/mL in water to 188 μg/mL when using a polymer-based formulation prepared by amorphous solid dispersion.The biflavonoid solubility was improved,as well as the dissolution rate of the ingredients and the stability was preserved[119].These diff erent studies indicate that the encapsulation of HNK or an analog is feasible and recommended to facilitate the handling of the compound and its anticancer efficacy(Fig.8).

    Fig.8 Stable formulations of HNK increase the antitumor eff ect.Diff erent biodegradable formulations have been proposed to protect the compound,to increase its solubility in aqueous media and its bioavailability.Mixed micelles,proliposomes and amorphous solid dispersion of the polymerstabilized compounds have been reported.These formulations significantly promote the anticancer activity of HNK or derivatives[107-109]

    9 Discussion

    HNK is the leading product of the C-O-C-type sub-group of biflavonoids which also includes lanoroflavone,lophirone L,ochnaflavone and delicaflavone,and a few other compounds such as the methyl esters of HNK,designated cryptomerin A and B[120]and isocryptomerin[121](Fig.2).The latter compound is rather an antibacterial and antifungal agent[122,123]whereas HNK is essentially an anticancer product,like delicaflavone.However,these biflavonoids exhibit a relatively large spectrum of bioactivities,as observed for the C-C-type biflavonoids.Recently,a potential binding of robustaflavone to the protease Mproof SARS-CoV-2 virus has even been postulated[124]and 17 other potential protein targets have been proposed for this compound[20].Similarly,amentoflavone has revealed multiple targets and pharmacological activities[19],as it is the case with many mono-flavonoids as well.A limited(or obscure)target specificity often restricts the therapeutic applications of these compounds in the clinic[125].

    HNK can be found in many plants and contributes to the anticancer eff ects observed with certain plant extracts,in particular extracts fromSelaginellasp.It is not a highly cytototoxic agent but a natural product with a good capacity to reduce tumor cell invasion and invasion.It can certainly be easily combined with several conventional anticancer drugs primarily targeting tumor cell proliferation.The anticancer activity of HNK relies,at least in part,on its capacity to interfere with ERK/p38/NFκB signaling pathway and possibly on a direct interaction with MMP-9,but this later aspect remains to be proved experimentally.More importantly,HNK functions as a mRNA splicing modulator and displays a quasi-unique capacity to alter the correct assembly and functioning of the U2 small nuclear ribonucleoprotein(snRNP)spliceosome complex,via an inhibition of SUMO specific protease 1(SENP1)[89].Inhibition of SENP1 is very likely the primary eff ect at the origin of most of the pharmacological properties of HNK.SENP1 is a regulator of key proteins,like the tumor protein suppressor p53.It has been shown recently that SENP1 depletion synergizes with the DNA damage-inducing drug etoposide to induce p53 activation and the expression of p21[126].This is exactly the type of eff ect observed with HNK in hepatocellular carcinoma.HNK was found to inhibit the proliferation of HCC cells via G0/G1 cell cycle arrest with p21/p53 up-regulation[55].SENP1 is now considered as a valid anticancer target,overexpressed in certain cancer(like non-small cell lung[127]and pancreatic[128]cancers)and a promotor of HCC[129].Small molecules targeting SENP1 are actively searched[130-132].

    Natural products targeting SENP1 are relatively rare but at least two plant products have been reported:the pentacyclic triterpenoid momordin Ic which directly interacts with SENP1 in prostate cancer cells[133]and the triterpenoid triptolide which down-regulates SENP1 in prostate cancer cells[134].HNK is the third plant product identified as a SENP1 inhibitor,potentially useful for the treatment of cancers,in particular HCC,an essentially incurable inflammation-related cancer for which eff ective medications are still lacking.The interaction of HNK with SENP1 and the functional consequences of this interaction warrant further investigation,also because SENP1 inhibitors could be usefulto treat other human diseases,such as Alzheimer’s disease and diff erent CNS pathologies.

    In conclusion,the present review highlights the anticancer potential of a category of C-O-C-type biflavonoids,typified by the apigenin dimer hinokiflavone.These bis-apigenyl ethers represent an interesting family of anticancer/antimetastatic agents.Their mechanism of action is likely multifactorial but importantly,HNK stands as a unique regulator of pre-mRNA splicing,interfering with the SUMO-specific protease SNEP1.Oral formulations of HNK can be elaborated to facilitate the handling of the product and to enhance its anticancer efficacy.This plant natural product provides an original scaff old for the design of novel anticancer drugs targeting SNEP1.

    FundingThis research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.

    Compliance with Ethical Standards

    Conflict of interestThe authors declare no conflict of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http://creat iveco mmons.org/licen ses/by/4.0/.

    References

    1.V.S.Gontijo,M.H.Dos Santos,C.Viegas Jr.,Mini Rev.Med.Chem.17,834-862(2017)

    2.T.Kariyone,T.Sawada,Yakugaku Zasshi(J.Pharm.Soc.Japan)78,1020-1022(1958)

    3.T.Kariyone,Y.Fukui,Yakugaku Zasshi(J.Pharm.Soc.Japan)80,746-749(1958)

    4.Y.Fukui,N.Kawano,J.Am.Chem.Soc.81,6331(1959)

    5.Y.M.Lin,F.C.Chen,K.H.Lee,Planta Med.55,166-168(1989)

    6.J.A.López-Sáez,M.J.Pérez-Alonso,A.V.Negueruela,Z.Naturforsch.49c,267-270(1994)

    7.Y.Yuan,B.Wang,L.Chen,H.Luo,D.Fisher,I.A.Sutherland,Y.Wei,J.Chrom.A 1194,192-198(2008)

    8.O.Kunert,R.C.Swamy,M.Kaiser,A.Presser,S.Buzzi,A.V.N.A.Rao,W.Schühlu,Phytochem.Lett.1,171-174(2008)

    9.A.N.B.Singab,I.M.Ayoub,M.El-Shazly,M.Korinek,T.Y.Wu,Y.B.Cheng,F.R.Chang,Y.C.Wu,Indus.Crops Prod.92,308-335(2016)

    10.S.Lee,N.J.Park,S.K.Bong,J.Jegal,S.A.Park,S.N.Kim,M.H.Yang,J.Ethnopharmacol.214,160-167(2018)

    11.B.Zhuang,Z.M.Bi,Z.Y.Wang,L.Duan,C.J.Lai,E.H.Liu,J.Pharm.Biomed.Anal.154,207-215(2018)

    12.K.Nakazawa,Tetrahedron Lett.8,5223-5225(1967)

    13.K.Nakazawa,Chem.Pharm.Bull.16,2503-2511(1968)

    14.M.Rahman,M.Riaz,U.R.Desai,Chem.Biodiv.4,2495-2527(2007)

    15.G.Sagrera,A.Bertucci,A.Vazquez,G.Seoane,Bioorg.Med.Chem.19,3060-3073(2011)

    16.Y.M.Lin,H.Anderson,M.T.Flavin,Y.H.Pai,E.Mata-Greenwood,T.Pengsuparp,J.M.Pezzuto,R.F.Schinazi,S.H.Hughes,F.C.Chen,J.Nat.Prod.60,884-888(1997)

    17.J.Lee,M.Kim,S.E.Jeong,H.Y.Park,C.O.Jeon,W.Park,J.Hazard.Mater.384,121312(2020)

    18.N.A.Konan,N.Lincopan,I.E.Díaz,J.J.de Fátima,M.M.Tiba,J.G.Amarante Mendes,E.M.Bacchi,B.Spira,Exp.Toxicol.Pathol.64,435-440(2012)

    19.S.Yu,H.Yan,L.Zhang,M.Shan,P.Chen,A.Ding,S.F.Li,Molecules 22,299(2017)

    20.M.T.Islam,S.M.N.K.Zihad,M.S.Rahman,N.Sifat,M.R.Khan,S.J.Uddin,R.Rouf,IUBMB Life 71,1192-1200(2019)

    21.G.Wang,S.Yao,X.X.Zhang,H.Song,Int.J.Anal.Chem.2015,849769(2015)

    22.M.S.Abdel-Kader,A.T.Abulhamd,A.M.Hamad,A.H.Alanazi,R.Ali,S.I.Alqasoumi,Saudi Pharm.J.26,496-503(2018)

    23.P.Fong,H.H.Tong,K.H.Ng,C.K.Lao,C.I.Chong,C.M.Chao,J.Ethnopharmacol.175,470-480(2015)

    24.H.P.Kim,H.Park,K.H.Son,H.W.Chang,S.S.Kang,Arch.Pharm.Res.31,265-273(2008)

    25.S.Y.Shim,S.G.Lee,M.Lee,Molecules 23,926(2018)

    26.A.Thapa,E.R.Woo,E.Y.Chi,M.G.Sharoar,H.G.Jin,S.Y.Shin,I.S.Park,Biochemistry 50,2445-2455(2011)

    27.A.Thapa,E.Y.Chi,Adv.Exp.Med.Biol.863,55-77(2015)

    28.N.Zhao,C.Sun,M.Zheng,S.Liu,R.Shi,Life Sci.239,117043(2019)

    29.L.Sun,A.K.Sharma,B.H.Han,L.M.Mirica,ACS Chem.Neurosci.11,2741-2752(2020)

    30.M.S.Uddin,M.T.Kabir,D.Tewari,B.Mathew,L.Aleya,Sci.Total Environ.700,134836(2020)

    31.N.Sirimangkalakitti,L.D.Juliawaty,E.H.Hakim,I.Waliana,N.Saito,K.Koyama,K.Kinoshita,Bioorg.Med.Chem.Lett.29,1994-1997(2019)

    32.Y.M.Lin,E.Z.Zembower,M.T.Flavin,R.M.S.Schure,H.M.Anderson,B.E.Korba,F.C.Chen,Bioorg.Med.Chem.Lett.7,2325-2328(1997)

    33.K.C.Chinsembu,Rev.Brasil Farmaco.29,504-528(2019)

    34.K.Miki,T.Nagai,T.Nakamura,M.Tuji,K.Koyama,K.Kinoshita,K.Furuhata,H.Yamada,K.Takahoshi,Heterocycles 75,879-885(2008)

    35.Y.M.Lin,M.T.Flavin,R.Schure,F.C.Chen,R.Sidwell,D.L.Barnard,J.H.Huff man,E.R.Kearn,Planta Med.65,120-125(1999)

    36.P.Coulerie,C.Eydoux,E.Hnawia,L.Stuhl,A.Maciuk,N.Lebouvier,B.Canard,B.Figadère,J.C.Guillemot,M.Nour,Planta Med.78,672-677(2012)

    37.P.Coulerie,M.Nour,A.Maciuk,C.Eydoux,J.C.Guillemot,N.Lebouvier,E.Hnawia,K.Leblanc,G.Lewin,B.Canard,B.Figadère,Planta Med.79,1313-1318(2013)

    38.J.S.Yang,C.W.Lin,Y.S.Hsieh,H.L.Cheng,K.H.Lue,S.F.Yang,K.H.Lu,Food Chem.Toxicol.59,801-807(2013)

    39.C.H.Hsin,B.C.Wu,C.Y.Chuang,S.F.Yang,Y.H.Hsieh,H.Y.Ho,H.P.Lin,M.K.Chen,C.W.Lin,Altern.Med.13,234(2013)

    40.G.G.Zhang,Y.Jing,H.M.Zhang,E.L.Ma,J.Guan,F.N.Xue,H.X.Liu,X.Y.Sun,Planta Med.78,390-392(2012)

    41.I.S.Lee,A.Nishikawa,F.Furukawa,K.Kasahara,S.U.Kim,Cancer Lett.144,93-99(1999)

    42.S.H.Ahn,Y.J.Mun,S.W.Lee,S.Kwak,M.K.Choi,S.K.Baik,Y.M.Kim,W.H.Woo,J.Med.Food.9,138-144(2006)

    43.S.F.Yang,S.C.Chu,S.J.Liu,Y.C.Chen,Y.Z.Chang,Y.S.Hsieh,J.Ethnopharmacol.110,483-489(2007)

    44.Y.J.Jung,E.H.Lee,C.G.Lee,K.J.Rhee,W.S.Jung,Y.Choi,C.H.Pan,K.Kang,J.Ethnopharmacol.202,78-84(2007)

    45.C.G.Lee,E.H.Lee,C.H.Pan,K.Kang,K.J.Rhee,Data Brief.13,162-165(2017)

    46.H.Huang,J.Hao,K.Pang,Y.Lv,D.Wan,C.Wu,Y.Ma,X.Yang,W.K.Zhang,J.Cell.Mol.Med.24,11922-11935(2020)

    47.Y.Cao,N.H.Tan,J.J.Chen,G.Z.Zeng,Y.B.Ma,Y.P.Wu,H.Yan,J.Yang,L.F.Lu,Q.Wang,Fitoterapia 81,253-258(2010)

    48.J.Z.Wang,J.Li,P.Zhao,W.T.Ma,X.H.Feng,K.L.Chen,Evid.Based Complement.Alternat.Med.2015,865714(2015)

    49.L.F.Liu,H.H.Sun,J.B.Tan,Q.Huang,F.Cheng,K.P.Xu,Z.X.Zou,G.S.Tan,Nat.Prod.Res.34,1-7(2019)

    50.D.Li,C.Sun,J.Yang,X.Ma,Y.Jiang,S.Qiu,G.Wang,Molecules 24,2507(2019)

    51.Y.Sui,S.Li,P.Shi,Y.Wu,Y.Li,W.Chen,L.Huang,H.Yao,X.Lin,J.Ethnopharmacol.190,261-271(2016)

    52.Y.M.Lin,F.C.Chen,K.H.Lee,Planta Med.55,166-168(1899)

    53.J.Zhou,R.Zhao,T.Ye,S.Yang,Y.Li,F.Yang,G.Wang,Y.Xie,Q.Li,J.Gastroenterol.Hepatol.34,1571-1580(2019)

    54.S.Yang,Y.Zhang,Y.Luo,B.Xu,Y.Yao,Y.Deng,F.Yang,T.Ye,G.Wang,Z.Cheng,Y.Zheng,Y.Xie,Biomed.Pharmacother.103,101-110(2018)

    55.W.Mu,X.Cheng,X.Zhang,Y.Liu,Q.Lv,G.Liu,J.Zhang,X.Li,J.Cell.Mol.Med.24,8151-8165(2020)

    56.W.Huang,C.Liu,F.Liu,Z.Liu,G.Lai,J.Yi,Cell.Biochem.Funct.38,249-256(2020)

    57.K.C.Lee,W.T.Chen,Y.C.Liu,S.S.Lin,F.T.Hsu,Vivo.32,1097-1103(2018)

    58.J.H.Lee,Arch.Pharm.Res.34,1209-1217(2011)

    59.C.Guruvayoorappan,G.Kuttan,J.Exp.Ther.Oncol.6,285-295(2007)

    60.S.Napoli,C.Scuderi,G.Gattuso,V.D.Bella,S.Candido,M.S.Basile,M.Libra,L.Falzone,Cells 9,1151(2020)

    61.G.Gonzalez-Avila,B.Sommer,A.A.García-Hernández,C.Ramos,Adv.Exp.Med.Biol.1245,97-131(2020)

    62.H.Huang,Sensors(Basel).18,3249(2018)

    63.G.B.Kumar,B.G.Nair,J.J.P.Perry,D.B.C.Martin,Medchemcomm.10,2024-2037(2019)

    64.K.Umezawa,Y.Lin,Biochim.Biophys.Acta Proteins Proteom.1868,140412(2020)

    65.S.O.Yoon,S.Shin,H.J.Lee,H.K.Chun,A.S.Chung,Mol.Cancer Ther.5,2666-2675(2006)

    66.N.Lian,J.Tong,W.Li,J.Wu,Y.Li,Biomed.Pharmacother.102,510-516(2018)

    67.W.H.Hu,G.K.Chan,R.Duan,H.Y.Wang,X.P.Kong,T.T.Dong,K.W.Tsim,Cancers(Basel)11,1828(2019)

    68.C.Guruvayoorappan,G.Kuttan,Immunopharmacol.Immunotoxicol.30,711-727(2008)

    69.Y.J.Lee,J.G.Chung,Y.T.Chien,S.S.Lin,F.T.Hsu,Anticancer Res.39,3669-3675(2019)

    70.F.T.Hsu,I.T.Chiang,Y.C.Kuo,T.C.Hsia,C.C.Lin,Y.C.Liu,J.G.Chung,Am.J.Chin.Med.47,913-931(2019)

    71.S.J.Suh,U.H.Jin,S.H.Kim,H.W.Chang,J.K.Son,S.H.Lee,K.H.Son,C.H.Kim,J.Cell.Biochem.99,1298-1307(2006)

    72.C.M.Lin,Y.L.Lin,S.Y.Ho,P.R.Chen,Y.H.Tsai,C.H.Chung,C.H.Hwang,N.M.Tsai,S.C.Tzou,C.Y.Ke,J.Chang,Y.L.Chan,Y.S.Wang,K.H.Chi,K.W.Liao,Oncotarget 8,60046-60059(2016)

    73.U.Lewandowska,K.Szewczyk,K.Owczarek,Z.Hrabec,A.Pods?dek,D.Sosnowska,E.Hrabec,Nutr.Cancer 65,1219-1231(2013)

    74.J.Cao,Q.Lu,N.Liu,Y.X.Zhang,J.Wang,M.Zhang,H.B.Wang,W.C.Sun,Int.Immunopharmacol.49,109-117(2017)

    75.S.Kalva,E.R.Azhagiya Singam,V.Rajapandian,L.M.Saleena,V.Subramanian,J.Mol.Graph.Model.49,25-37(2014)

    76.Q.Gao,Y.Wang,J.Hou,Q.Yao,J.Zhang,J.Comput.Aided Mol.Des.31,625-641(2017)

    77.J.Hou,Q.Zou,Y.Wang,Q.Gao,W.Yao,Q.Yao,J.Zhang,J.Biomol.Struct.Dyn.37,3135-3149(2019)

    78.C.G.Wang,W.N.Yao,B.Zhang,J.Hua,D.Liang,H.S.Wang,Bioorg.Med.Chem.Lett.28,2413-2417(2018)

    79.J.Mercado-Camargo,L.Cervantes-Ceballos,R.Vivas-Reyes,A.Pedretti,M.L.Serrano-García,H.Gómez-Estrada,ACS Omega 5,14741-14749(2020)

    80.P.Chymkowitch,P.A.Nguéa,J.M.Enserink,BioEssays 37,1095-1105(2015)

    81.Y.Jia,L.A.Claessens,A.C.O.Vertegaal,H.Ovaa,ACS Chem.Biol.14,2389-2395(2019)

    82.S.Chen,D.Dong,W.Xin,H.Zhou,Curr.Issues Mol.Biol.35,17-34(2020)

    83.Z.Wang,Y.Liu,J.Zhang,S.Ullah,N.Kang,Y.Zhao,H.Zhou,Eur.J.Med.Chem.204,112553(2020)

    84.Y.S.Kim,S.G.Keyser,J.S.Schneekloth Jr.,Bioorg.Med.Chem.Lett.24,1094-1097(2014)

    85.M.Lorente,A.García-Casas,N.Salvador,A.Martínez-López,E.Gabicagogeascoa,G.Velasco,L.López-Palomar,S.Castillo-Lluva,J.Cell.Sci.132,234120(2019)

    86.P.Zhou,X.Chen,M.Li,J.Tan,Y.Zhang,W.Yuan,J.Zhou,G.Wang,Biochem.Biophys.Res.Commun.513,1063-1069(2019)

    87.A.Rabellino,K.K.Khanna,Crit.Rev.Biochem.Mol.Biol.55,54-70(2020)

    88.M.L.Tomasi,K.Ramani,Transl.Gastroenterol.Hepatol.3,20(2018)

    89.A.Pawellek,U.Ryder,T.Tammsalu,L.J.King,H.Kreinin,T.Ly,R.T.Hay,R.C.Hartley,A.I.Lamond,Elife 6,27402(2017)

    90.J.Liu,X.Tao,J.Zhang,P.Wang,M.Sha,Y.Ma,X.Geng,L.Feng,Y.Shen,Y.Yu,S.Wang,S.Fang,Y.Shen,Oncotarget 7,22206-22218(2016)

    91.W.Zhang,H.Sun,X.Shi,H.Wang,C.Cui,F.Xiao,C.Wu,X.Guo,L.Wang,Tumour Biol.37,7741-7748(2016)

    92.D.Arango,K.Morohashi,A.Yilmaz,K.Kuramochi,A.Parihar,B.Brahimaj,E.Grotewold,A.I.Doseff,Proc.Natl.Acad.Sci.USA 110,2153-2162(2013)

    93.M.Chiba,H.Ariga,H.Maita,Chem.Biol.Drug Des.87,275-282(2016)

    94.M.Kurata,N.Fujiwara,K.I.Fujita,Y.Yamanaka,S.Seno,H.Kobayashi,Y.Miyamae,N.Takahashi,Y.Shibuya,S.Masuda,iScience 22,336-352(2019)

    95.K.O’Brien,A.J.Matlin,A.M.Lowell,M.J.Moore,J.Biol.Chem.283,33147-33154(2008)

    96.K.I.Fujita,T.Ishizuka,M.Mitsukawa,M.Kurata,S.Masuda,Int.J.Mol.Sci.21,2026(2020)

    97.E.J.Vanzyl,K.R.C.Rick,A.B.Blackmore,E.M.MacFarlane,B.C.McKay,PLoS ONE 13,e0191178(2018)

    98.M.Sivaramakrishnan,K.D.McCarthy,S.Campagne,S.Huber,S.Meier,A.Augustin,T.Heckel,H.Meistermann,M.N.Hug,P.Birrer,A.Moursy,S.Khawaja,R.Schmucki,N.Berntenis,N.Giroud,S.Golling,M.Tzouros,B.Banfai,G.Duran-Pacheco,J.Lamerz,Y.Hsiu Liu,T.Luebbers,H.Ratni,M.Ebeling,A.Cléry,S.Paushkin,A.R.Krainer,F.H.Allain,F.Metzger,Nat.Commun.8,1476(2017)

    99.J.Tsalikis,M.Abdel-Nour,A.Farahvash,M.T.Sorbara,S.Poon,D.J.Philpott,S.E.Girardin,Mol.Cell.Biol.39,e00489-e518(2019)

    100.S.A.Boswell,A.Snavely,H.M.Landry,L.S.Churchman,J.M.Gray,M.Springer,Nat.Chem.Biol.13,501-507(2017)

    101.J.Yongmei,L.Xiaofei,L.Xinmin,L.Qinmei,W.Gang,Y.Jiaqiang,Chinese Patent CN108553476A(publication date:2018-09-21).

    102.L.Dan,L.Xiaofei,L.Xinmin,W.Gang,X.Wen,Y.Jiaqiang,Chinese Patent CN108299366A(publication date:2018-07-20).

    103.K.Xu,C.Yang,Y.Xu,D.Li,S.Bao,Z.Zou,F.Kang,G.Tan,S.M.Li,X.Yu,Org.Biomol.Chem.18,28-31(2020)

    104.I.M.Ayoub,M.Korinek,T.L.Hwang,B.H.Chen,F.R.Chang,M.El-Shazly,A.N.B.Singab,J.Nat.Prod.81,243-253(2018)

    105.M.J.Son,T.C.Moon,E.K.Lee,K.H.Son,H.P.Kim,S.S.Kang,J.K.Son,S.H.Lee,H.W.Chang,Arch.Pharm.Res.29,282-286(2006)

    106.T.C.Moon,H.S.Hwang,Z.Quan,K.H.Son,C.H.Kim,H.P.Kim,S.S.Kang,J.K.Son,H.W.Chang,Biol.Pharm.Bull.29,2359-2361(2006)

    107.S.J.Lee,J.H.Choi,K.H.Son,H.W.Chang,S.S.Kang,H.P.Kim,Life Sci.57,551-558(1995)

    108.Y.Sui,H.Yao,S.Li,L.Jin,P.Shi,Z.Li,G.Wang,S.Lin,Y.Wu,Y.Li,L.Huang,Q.Liu,X.Lin,J.Mol.Med.(Berl).95,311-322(2017)

    109.W.Yao,Z.Lin,G.Wang,S.Li,B.Chen,Y.Sui,J.Huang,Q.Liu,P.Shi,X.Lin,Q.Liu,H.Yao,Phytomedicine 62,152973(2019)

    110.W.Yao,Z.Lin,P.Shi,B.Chen,G.Wang,J.Huang,Y.Sui,Q.Liu,S.Li,X.Lin,Q.Liu,H.Yao,Biochem.Pharmacol.171,113680(2020)

    111.W.K.Sim,J.H.Park,K.Y.Kim,I.S.Chung,Sci.Rep.10,11070(2020)

    112.H.Wan,L.Ge,J.Li,K.Zhang,W.Wu,S.Peng,X.Zou,H.Zhou,B.Zhou,X.Zeng,Phytomedicine 57,282-291(2019)

    113.A.Al Groshi,H.A.Jasim,A.R.Evans,F.M.D.Ismail,N.M.Dempster,L.Nahar,S.D.Sarker,Phytother.Res.33,2075-2082(2019)

    114.E.Al-Sayed,H.A.Gad,M.El-Shazly,M.M.Abdel-Daim,S.A.Nasser,Drug Dev.Res.79,22-28(2018)

    115.Y.Chen,X.Feng,L.Li,X.Zhang,K.Song,X.Diao,Y.Sun,L.Zhang,J.Pharm.Biomed.Anal.169,19-29(2019)

    116.R.Yin,K.Xiong,S.Wen,Y.Wang,F.Xu,Biomed.Chromatogr.31,3821(2017)

    117.Y.Chen,X.Feng,L.Li,K.Song,L.Zhang,Drug Deliv.27,565-574(2020)

    118.B.Chen,X.Wang,D.Lin,D.Xu,S.Li,J.Huang,S.Weng,Z.Lin,Y.Zheng,H.Yao,X.Lin,Int.J.Nanomedicine.14,6691-6706(2019)

    119.B.Chen,X.Wang,Y.Zhang,K.Huang,H.Liu,D.Xu,S.Li,Q.Liu,J.Huang,H.Yao,X.Lin,Drug Deliv.27,309-322(2020)

    120.H.Miura,N.Kawano,A.C.Waiss Jr.,Chem Pharm Bull.(Tokyo)14,1408-1413(1966)

    121.H.Miura,Yakugaku Zasshi(J.Pharm.Soc.Japan 87,871-874(1967)

    122.J.Lee,Y.Choi,E.R.Woo,D.G.Lee,J.Microbiol.Biotechnol.19,204-207(2009)

    123.J.Lee,Y.Choi,E.R.Woo,D.G.Lee,Biochem.Biophys.Res.Commun.379,676-680(2009)

    124.C.Shivanika,D.S.Kuma,V.Ragunathan,P.Tiwari,A.Sumitha,B.P.Devi,J.Biomol.Struct.Dyn.(2020).https ://doi.org/10.1080/07391 102.2020.18155 84

    125.V.K.Singh,D.Arora,M.I.Ansari,P.K.Sharma,Phytother.Res.33,3064-3089(2019)

    126.K.M.Chauhan,Y.Chen,Y.Chen,A.T.Liu,X.X.Sun,M.S.Dai,J.Cell.Biochem.122,189-197(2021)

    127.K.Liu,J.Zhang,H.Wang,J.Clin.Lab.Anal.32,e22611(2018)

    128.D.M.Bouchard,M.J.Matunis,J.Gastrointest.Oncol.10,821-830(2019)

    129.Y.Tao,R.Li,C.Shen,J.Li,Q.Zhang,Z.Ma,F.Wang,Z.Wang,Aging(Albany NY)12,1563-1576(2020)

    130.Y.Chen,D.Wen,Z.Huang,M.Huang,Y.Luo,B.Liu,H.Lu,Y.Wu,Y.Peng,J.Zhang,Bioorg.Med.Chem.Lett.22,6867-6870(2012)

    131.Y.Zhao,Z.Wang,J.Zhang,H.Zhou,Eur.J.Med.Chem.122,178-184(2016)

    132.U.Lindenmann,M.Brand,F.Gall,D.Frasson,L.Hunziker,I.Kroslakova,M.Sievers,R.Riedl,ChemMedChem 15,675-679(2020)

    133.J.Wu,H.Lei,J.Zhang,X.Chen,C.Tang,W.Wang,H.Xu,W.Xiao,W.Gu,Y.Wu,Oncotarget.7,58995-59005(2016)

    134.W.Huang,T.He,C.Chai,Y.Yang,Y.Zheng,P.Zhou,X.Qiao,B.Zhang,Z.Liu,J.Wang,C.Shi,L.Lei,K.Gao,H.Li,S.Zhong,L.Yao,M.E.Huang,M.Lei,PLoS ONE 7,e37693(2012)

    135.N.D.Ambaye,Acta.Crystallogr.F Struct.Biol.Commun.75,332-339(2019)

    亚洲中文日韩欧美视频| 啦啦啦视频在线资源免费观看| 在线观看免费高清a一片| 亚洲国产精品国产精品| a级毛片黄视频| 国产精品欧美亚洲77777| 日韩电影二区| 亚洲国产精品国产精品| 亚洲av在线观看美女高潮| av在线app专区| 蜜桃国产av成人99| 曰老女人黄片| 久久精品亚洲熟妇少妇任你| 一本综合久久免费| 女人爽到高潮嗷嗷叫在线视频| 在线观看国产h片| 一级片'在线观看视频| 日本猛色少妇xxxxx猛交久久| 精品欧美一区二区三区在线| 青草久久国产| 伊人亚洲综合成人网| 两人在一起打扑克的视频| 日日摸夜夜添夜夜爱| 天堂俺去俺来也www色官网| 欧美黑人精品巨大| 母亲3免费完整高清在线观看| 国产97色在线日韩免费| 中文字幕精品免费在线观看视频| 国产亚洲精品第一综合不卡| 天堂中文最新版在线下载| 国产成人av教育| 久久青草综合色| 亚洲精品国产区一区二| 国产亚洲欧美在线一区二区| 免费不卡黄色视频| 亚洲自偷自拍图片 自拍| 日本五十路高清| videosex国产| 国产麻豆69| 啦啦啦在线免费观看视频4| 热re99久久精品国产66热6| av视频免费观看在线观看| 精品福利永久在线观看| 日韩av免费高清视频| 老司机亚洲免费影院| 波多野结衣av一区二区av| 香蕉丝袜av| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 欧美av亚洲av综合av国产av| 99国产综合亚洲精品| 少妇人妻久久综合中文| 欧美国产精品va在线观看不卡| 亚洲成人免费av在线播放| 色网站视频免费| 亚洲国产av影院在线观看| 亚洲成人手机| 在线观看一区二区三区激情| 久久99一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 99久久综合免费| 欧美激情极品国产一区二区三区| bbb黄色大片| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品古装| 久久av网站| 成年人黄色毛片网站| 天堂8中文在线网| 美女视频免费永久观看网站| 国产一区二区激情短视频 | 国产免费福利视频在线观看| 一级毛片电影观看| 老司机靠b影院| www.999成人在线观看| 久久九九热精品免费| 国产精品一区二区免费欧美 | 亚洲,欧美精品.| 国产精品偷伦视频观看了| 人人妻人人添人人爽欧美一区卜| 精品人妻1区二区| 大香蕉久久网| 亚洲免费av在线视频| 国产精品久久久久成人av| 国产在线观看jvid| 嫁个100分男人电影在线观看 | 国产免费现黄频在线看| 中文精品一卡2卡3卡4更新| 亚洲精品日本国产第一区| 国产精品香港三级国产av潘金莲 | 免费在线观看影片大全网站 | 精品第一国产精品| 亚洲av成人不卡在线观看播放网 | 爱豆传媒免费全集在线观看| 久久国产精品影院| 日韩,欧美,国产一区二区三区| 国产国语露脸激情在线看| 丝袜美足系列| av在线老鸭窝| 一级,二级,三级黄色视频| 欧美精品av麻豆av| 妹子高潮喷水视频| 丝袜美腿诱惑在线| 久久ye,这里只有精品| 在线观看www视频免费| 成年人免费黄色播放视频| 18禁黄网站禁片午夜丰满| 王馨瑶露胸无遮挡在线观看| videos熟女内射| 中文字幕另类日韩欧美亚洲嫩草| 国产片内射在线| 亚洲精品国产区一区二| 肉色欧美久久久久久久蜜桃| av天堂久久9| 少妇粗大呻吟视频| 精品免费久久久久久久清纯 | 国产在线免费精品| 777米奇影视久久| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 十八禁人妻一区二区| 午夜免费鲁丝| 韩国精品一区二区三区| 美女大奶头黄色视频| 久久久国产一区二区| 啦啦啦在线观看免费高清www| 高清视频免费观看一区二区| 午夜福利一区二区在线看| 国产免费现黄频在线看| 汤姆久久久久久久影院中文字幕| 免费在线观看黄色视频的| 91国产中文字幕| 又大又黄又爽视频免费| 成年人黄色毛片网站| 亚洲国产欧美在线一区| 欧美另类一区| 丰满迷人的少妇在线观看| 夜夜骑夜夜射夜夜干| 久久精品亚洲熟妇少妇任你| 天堂俺去俺来也www色官网| 飞空精品影院首页| 一区福利在线观看| 肉色欧美久久久久久久蜜桃| 国产精品 欧美亚洲| 婷婷色av中文字幕| 国产福利在线免费观看视频| 免费在线观看日本一区| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 国产99久久九九免费精品| 精品人妻一区二区三区麻豆| 满18在线观看网站| 日日夜夜操网爽| av在线老鸭窝| 汤姆久久久久久久影院中文字幕| 热re99久久国产66热| 国产精品麻豆人妻色哟哟久久| 1024视频免费在线观看| 亚洲精品av麻豆狂野| 亚洲图色成人| 亚洲av电影在线进入| 又粗又硬又长又爽又黄的视频| 国产亚洲av高清不卡| 国产一区二区激情短视频 | 91老司机精品| 欧美av亚洲av综合av国产av| 一区二区三区精品91| 精品高清国产在线一区| 亚洲精品一二三| 国产欧美日韩综合在线一区二区| 曰老女人黄片| 亚洲人成77777在线视频| 91麻豆av在线| 丰满饥渴人妻一区二区三| videosex国产| 欧美精品av麻豆av| 久久久国产欧美日韩av| 久久99精品国语久久久| 久久精品亚洲熟妇少妇任你| 深夜精品福利| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 成人手机av| 色播在线永久视频| 亚洲成人国产一区在线观看 | 脱女人内裤的视频| 欧美黑人精品巨大| 一级毛片 在线播放| 少妇 在线观看| 岛国毛片在线播放| 多毛熟女@视频| 久久久久久人人人人人| 一级,二级,三级黄色视频| 99国产精品99久久久久| 亚洲,欧美精品.| 亚洲av男天堂| 国产精品久久久久久精品古装| 你懂的网址亚洲精品在线观看| 在线观看国产h片| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o | 国产福利在线免费观看视频| 大片免费播放器 马上看| 久久久精品免费免费高清| 黄色片一级片一级黄色片| 亚洲国产精品成人久久小说| 国产成人精品在线电影| 欧美久久黑人一区二区| 日韩视频在线欧美| 制服诱惑二区| 老司机影院成人| 在线精品无人区一区二区三| 欧美少妇被猛烈插入视频| 韩国精品一区二区三区| 欧美日韩成人在线一区二区| 高清欧美精品videossex| 中文字幕人妻丝袜一区二区| 大码成人一级视频| 中文字幕制服av| 天天操日日干夜夜撸| 久久国产亚洲av麻豆专区| 日韩电影二区| 18禁裸乳无遮挡动漫免费视频| 亚洲成人手机| h视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻人人添人人爽欧美一区卜| 日本欧美视频一区| 国产精品秋霞免费鲁丝片| 97人妻天天添夜夜摸| 国产成人精品在线电影| av国产精品久久久久影院| h视频一区二区三区| 国产麻豆69| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 好男人视频免费观看在线| 国产欧美日韩一区二区三 | svipshipincom国产片| 91字幕亚洲| 久久久久久久久久久久大奶| 中文字幕高清在线视频| 欧美黑人精品巨大| 自拍欧美九色日韩亚洲蝌蚪91| 午夜视频精品福利| 男女边摸边吃奶| 99久久99久久久精品蜜桃| avwww免费| 视频区图区小说| 一级a爱视频在线免费观看| 国产男女超爽视频在线观看| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 婷婷色av中文字幕| 在线观看免费日韩欧美大片| 欧美日韩精品网址| 久久人妻熟女aⅴ| 久久 成人 亚洲| 午夜福利一区二区在线看| 最新在线观看一区二区三区 | 亚洲一区二区三区欧美精品| 午夜福利影视在线免费观看| 捣出白浆h1v1| 亚洲国产中文字幕在线视频| 秋霞在线观看毛片| 亚洲男人天堂网一区| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| 老司机亚洲免费影院| 两个人免费观看高清视频| 老汉色av国产亚洲站长工具| 在线看a的网站| 免费在线观看黄色视频的| 久久影院123| 9热在线视频观看99| 成人免费观看视频高清| 中国美女看黄片| 人人妻人人澡人人看| 91精品国产国语对白视频| 热99久久久久精品小说推荐| 日韩av免费高清视频| 男女午夜视频在线观看| 久久这里只有精品19| 婷婷色av中文字幕| 国产色视频综合| 国产片特级美女逼逼视频| 久久精品人人爽人人爽视色| 久久国产亚洲av麻豆专区| 黄片小视频在线播放| 国产亚洲欧美精品永久| 亚洲第一av免费看| 一区二区av电影网| 中文字幕制服av| 大香蕉久久成人网| 韩国高清视频一区二区三区| 久久久久久久久久久久大奶| a 毛片基地| 黄频高清免费视频| 国产在视频线精品| 99精国产麻豆久久婷婷| 国产成人免费无遮挡视频| 欧美老熟妇乱子伦牲交| 在线观看国产h片| 在线观看免费视频网站a站| 欧美黄色淫秽网站| 亚洲av成人不卡在线观看播放网 | 久久久久久久精品精品| 91精品三级在线观看| 中文字幕最新亚洲高清| 亚洲精品一二三| 欧美中文综合在线视频| 久久狼人影院| 高清av免费在线| 国产野战对白在线观看| 精品一区二区三区四区五区乱码 | 亚洲精品日韩在线中文字幕| 久久国产精品影院| 天天躁夜夜躁狠狠久久av| 亚洲欧美清纯卡通| 免费观看人在逋| 亚洲成人手机| 国产av精品麻豆| 国产av国产精品国产| 亚洲成av片中文字幕在线观看| 国产人伦9x9x在线观看| 18禁国产床啪视频网站| 中文字幕最新亚洲高清| 亚洲第一青青草原| 国产视频首页在线观看| 少妇被粗大的猛进出69影院| svipshipincom国产片| 国产精品香港三级国产av潘金莲 | 亚洲男人天堂网一区| 欧美精品av麻豆av| 欧美激情 高清一区二区三区| 国产成人啪精品午夜网站| 精品一区二区三卡| 国产男人的电影天堂91| 日韩精品免费视频一区二区三区| 可以免费在线观看a视频的电影网站| 极品少妇高潮喷水抽搐| 国产成人欧美在线观看 | 久久人妻福利社区极品人妻图片 | 交换朋友夫妻互换小说| 精品福利观看| 男女边摸边吃奶| 97人妻天天添夜夜摸| 纵有疾风起免费观看全集完整版| 777久久人妻少妇嫩草av网站| 天天操日日干夜夜撸| 女性被躁到高潮视频| 香蕉丝袜av| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 日韩人妻精品一区2区三区| 手机成人av网站| 欧美在线一区亚洲| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o | 中文字幕人妻熟女乱码| 午夜精品国产一区二区电影| 黄色片一级片一级黄色片| 999久久久国产精品视频| 久9热在线精品视频| 黄色 视频免费看| 大香蕉久久成人网| 美女视频免费永久观看网站| 女警被强在线播放| 十八禁高潮呻吟视频| 久久这里只有精品19| 乱人伦中国视频| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 日韩制服骚丝袜av| 少妇精品久久久久久久| 可以免费在线观看a视频的电影网站| av线在线观看网站| e午夜精品久久久久久久| 久久精品国产a三级三级三级| 精品一区二区三区四区五区乱码 | 69精品国产乱码久久久| 男人舔女人的私密视频| 99热网站在线观看| 国产又爽黄色视频| 男女高潮啪啪啪动态图| 人妻一区二区av| 大片电影免费在线观看免费| 亚洲少妇的诱惑av| 国产成人91sexporn| 久久精品国产a三级三级三级| 汤姆久久久久久久影院中文字幕| 免费日韩欧美在线观看| av网站免费在线观看视频| 久热爱精品视频在线9| 亚洲精品久久久久久婷婷小说| 亚洲熟女毛片儿| 国产黄频视频在线观看| 亚洲精品国产av蜜桃| 亚洲av成人精品一二三区| 自线自在国产av| av片东京热男人的天堂| 亚洲国产看品久久| av一本久久久久| 国产不卡av网站在线观看| 在线观看国产h片| 亚洲成av片中文字幕在线观看| 久久青草综合色| videosex国产| av不卡在线播放| 国产成人精品久久二区二区91| 水蜜桃什么品种好| 久久99精品国语久久久| 999久久久国产精品视频| 亚洲伊人久久精品综合| 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 亚洲成人国产一区在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 老司机在亚洲福利影院| 成年人黄色毛片网站| 午夜精品国产一区二区电影| 在线av久久热| 欧美变态另类bdsm刘玥| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美在线一区二区| 无限看片的www在线观看| 欧美在线一区亚洲| 啦啦啦啦在线视频资源| 精品国产一区二区久久| 国产xxxxx性猛交| 丰满人妻熟妇乱又伦精品不卡| 熟女av电影| 一区二区三区四区激情视频| 香蕉丝袜av| 午夜激情av网站| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美| 日本wwww免费看| 国产在线观看jvid| av天堂久久9| 亚洲精品美女久久av网站| 国产免费一区二区三区四区乱码| 国产精品二区激情视频| 国产视频首页在线观看| 国产真人三级小视频在线观看| 一级,二级,三级黄色视频| 老司机影院成人| 欧美日韩亚洲综合一区二区三区_| 国产av国产精品国产| 久久久欧美国产精品| 成人三级做爰电影| 999精品在线视频| 男女免费视频国产| av国产精品久久久久影院| tube8黄色片| 日本午夜av视频| 欧美日韩av久久| 国产三级黄色录像| 成人影院久久| 在线观看一区二区三区激情| av福利片在线| 国产黄色视频一区二区在线观看| 亚洲国产精品999| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产av影院在线观看| 免费少妇av软件| 欧美大码av| 日韩熟女老妇一区二区性免费视频| 欧美人与性动交α欧美软件| 男人爽女人下面视频在线观看| 在线天堂中文资源库| 99九九在线精品视频| av网站免费在线观看视频| 国产精品久久久久久精品古装| 极品人妻少妇av视频| 国产深夜福利视频在线观看| 一边亲一边摸免费视频| 国产在线视频一区二区| 欧美 亚洲 国产 日韩一| 色精品久久人妻99蜜桃| 欧美 日韩 精品 国产| 亚洲免费av在线视频| 日韩欧美一区视频在线观看| 日日爽夜夜爽网站| 男女下面插进去视频免费观看| 久久人人爽人人片av| bbb黄色大片| 搡老岳熟女国产| 国产高清国产精品国产三级| 国产亚洲欧美在线一区二区| 男人爽女人下面视频在线观看| 国产色视频综合| 精品亚洲成a人片在线观看| 午夜久久久在线观看| 国产在线视频一区二区| 久久精品亚洲熟妇少妇任你| 久久九九热精品免费| 亚洲精品一区蜜桃| 男女高潮啪啪啪动态图| 90打野战视频偷拍视频| 狂野欧美激情性bbbbbb| 一区二区av电影网| 欧美变态另类bdsm刘玥| 中文字幕高清在线视频| 日韩一本色道免费dvd| 999久久久国产精品视频| 又粗又硬又长又爽又黄的视频| 男女床上黄色一级片免费看| 女人爽到高潮嗷嗷叫在线视频| 日韩一本色道免费dvd| 天天躁夜夜躁狠狠躁躁| 国产精品三级大全| 国产亚洲欧美在线一区二区| 精品福利观看| 国产国语露脸激情在线看| 成年动漫av网址| 国产av国产精品国产| 国产成人精品久久二区二区91| 亚洲精品中文字幕在线视频| av又黄又爽大尺度在线免费看| 深夜精品福利| 99国产精品一区二区三区| 大香蕉久久成人网| tube8黄色片| 91老司机精品| 天堂中文最新版在线下载| 妹子高潮喷水视频| 国产精品.久久久| 欧美日韩精品网址| 亚洲欧美成人综合另类久久久| 国产主播在线观看一区二区 | 亚洲国产精品一区二区三区在线| 欧美亚洲日本最大视频资源| 色综合欧美亚洲国产小说| 高清视频免费观看一区二区| 2021少妇久久久久久久久久久| 如日韩欧美国产精品一区二区三区| tube8黄色片| 黄色a级毛片大全视频| 51午夜福利影视在线观看| 婷婷成人精品国产| 大码成人一级视频| 黄色视频不卡| 欧美日韩av久久| 少妇人妻 视频| 国产精品国产av在线观看| netflix在线观看网站| 亚洲人成电影观看| 亚洲国产毛片av蜜桃av| 人人澡人人妻人| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产区一区二| 午夜激情久久久久久久| 国产一区二区激情短视频 | 国产91精品成人一区二区三区 | 国产免费视频播放在线视频| 亚洲黑人精品在线| 亚洲精品国产av蜜桃| 一级毛片电影观看| 美女脱内裤让男人舔精品视频| 黄网站色视频无遮挡免费观看| 久久久久久亚洲精品国产蜜桃av| 中文字幕人妻丝袜一区二区| 久久久久网色| 亚洲天堂av无毛| 精品一品国产午夜福利视频| 好男人视频免费观看在线| 嫁个100分男人电影在线观看 | 欧美久久黑人一区二区| 大话2 男鬼变身卡| 久久人人97超碰香蕉20202| 久久久久精品国产欧美久久久 | 亚洲一区二区三区欧美精品| 丁香六月天网| 免费在线观看日本一区| a级毛片在线看网站| 国产日韩欧美亚洲二区| 校园人妻丝袜中文字幕| 久久久久久久久久久久大奶| 精品人妻一区二区三区麻豆| 午夜免费鲁丝| 亚洲黑人精品在线| 午夜免费成人在线视频| 欧美久久黑人一区二区| 男女下面插进去视频免费观看| 日韩制服丝袜自拍偷拍| 国产精品一区二区在线不卡| 亚洲欧美精品自产自拍| 国产爽快片一区二区三区| 国产视频首页在线观看| 免费女性裸体啪啪无遮挡网站| 久久久久久久大尺度免费视频| www.熟女人妻精品国产| 亚洲九九香蕉| 欧美 日韩 精品 国产| 男女国产视频网站| 国产有黄有色有爽视频| 欧美成人精品欧美一级黄| 激情五月婷婷亚洲| 成年美女黄网站色视频大全免费| 亚洲专区中文字幕在线| 亚洲国产精品一区三区| 99国产精品一区二区蜜桃av | 夫妻午夜视频| 最近中文字幕2019免费版| 老司机靠b影院| 激情五月婷婷亚洲| 51午夜福利影视在线观看| www.自偷自拍.com| 久久热在线av| 天天操日日干夜夜撸|