王繼卿,郝志云,沈繼源,柯娜,黃兆春,梁維煒,羅玉柱,胡江,劉秀,李少斌
小尾寒羊泌乳性狀重要lncRNAs的篩選、鑒定及功能分析
王繼卿,郝志云,沈繼源,柯娜,黃兆春,梁維煒,羅玉柱,胡江,劉秀,李少斌
甘肅農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院/甘肅省草食動(dòng)物生物技術(shù)重點(diǎn)實(shí)驗(yàn)室/甘肅省牛羊基因改良工程實(shí)驗(yàn)室,蘭州 730070
【】長(zhǎng)鏈非編碼RNA(long non-coding RNAs,lncRNAs)是一類長(zhǎng)度大于200nt的非編碼RNA分子,它對(duì)奶牛和奶山羊的乳腺發(fā)育和泌乳過程發(fā)揮了重要調(diào)控作用,然而在綿羊上研究甚少。為此開展lncRNAs對(duì)綿羊泌乳性能的調(diào)控作用研究,為解析綿羊泌乳性能的分子機(jī)理提供理論基礎(chǔ)。選取高泌乳性能(高泌乳量、高乳脂率)和低泌乳性能(低泌乳量、低乳脂率)小尾寒羊各3只,采集泌乳期乳腺組織,用RNA-Seq構(gòu)建lncRNAs表達(dá)譜,研究差異表達(dá)lncRNAs靶基因的GO和KEGG富集通路,最后用實(shí)時(shí)熒光定量PCR(reverse transcription-quantitative PCR, RT-qPCR)對(duì)16個(gè)差異表達(dá)lncRNAs進(jìn)行驗(yàn)證。在小尾寒羊乳腺組織中共鑒定出7 239個(gè)表達(dá)的lncRNAs,包括2 262個(gè)已知lncRNAs和4 977個(gè)新的lncRNAs,大部分lncRNAs呈低豐度表達(dá)。在兩組小尾寒羊中發(fā)現(xiàn)120個(gè)差異表達(dá)lncRNAs,其中68個(gè)lncRNAs在高泌乳性能小尾寒羊中上調(diào)表達(dá),52個(gè)lncRNAs下調(diào)表達(dá)。差異表達(dá)lncRNAs的靶基因顯著富集在硫化物代謝過程、硫酯生物合成過程、酰基輔酶A生物合成過程、Rap1信號(hào)通路、粘附連接等通路上。LncRNA-miRNA網(wǎng)絡(luò)分析發(fā)現(xiàn),MSTRG.125242.6、MSTRG.59580.8等6個(gè)最顯著差異表達(dá)lncRNAs的靶向miRNAs海綿體在家畜乳腺發(fā)育和泌乳過程中發(fā)揮了重要作用。RT-qPCR結(jié)果表明,16個(gè)lncRNAs的表達(dá)趨勢(shì)與RNA-Seq結(jié)果完全吻合,證實(shí)了RNA-Seq測(cè)序結(jié)果的準(zhǔn)確性和真實(shí)性。篩選的差異表達(dá)lncRNAs參與了綿羊乳腺發(fā)育及泌乳性能的調(diào)控,該結(jié)果將為解析綿羊泌乳性狀的分子遺傳機(jī)制提供理論參考。
綿羊;乳腺;長(zhǎng)鏈非編碼RNA(lncRNA);泌乳期
【研究意義】小尾寒羊是我國(guó)為數(shù)不多的高繁殖力綿羊品種之一(平均產(chǎn)羔率為270%),通過多年引種,已廣泛分布于我國(guó)北方和中部農(nóng)區(qū)。但小尾寒羊也存在飼料轉(zhuǎn)化率不高、肉用性能不足、肉質(zhì)一般等缺點(diǎn)[1]。因此,多羔成活率成為決定小尾寒羊養(yǎng)殖效益的主要因素之一。研究發(fā)現(xiàn),母羊泌乳量主要決定了多羔的成活率[2],也顯著影響了羔羊的哺乳期生長(zhǎng)速度和發(fā)育。母羊的產(chǎn)奶量和乳成分受到乳腺發(fā)育程度的直接調(diào)控[3],若能解析調(diào)控乳腺發(fā)育的分子機(jī)理,則能為泌乳性狀的遺傳改良提供理論指導(dǎo)?!厩叭搜芯窟M(jìn)展】長(zhǎng)鏈非編碼RNA(long noncoding RNAs, LncRNAs)的長(zhǎng)度大于200 nt,在細(xì)胞內(nèi)的表達(dá)量通常低于線性mRNA,具有組織特異性和時(shí)空特異性的表達(dá)特點(diǎn)[4]。雖然哺乳動(dòng)物基因組轉(zhuǎn)錄產(chǎn)生了較少的lncRNAs分子(僅占4%—9%)[5],但它們卻在細(xì)胞增殖、分化、凋亡、衰老等活動(dòng)中發(fā)揮了重要作用,還參與了表觀遺傳調(diào)控、劑量補(bǔ)償效應(yīng)、基因組印跡、X染色體失活、生長(zhǎng)發(fā)育和疾病等生物學(xué)過程[6-7],因此lncRNAs已成為解析動(dòng)物復(fù)雜性狀遺傳機(jī)理的熱點(diǎn)方向之一[8]。LncRNAs可通過多種途徑調(diào)控功能基因的表達(dá)。首先,lncRNAs通過順式作用調(diào)控了鄰近功能基因的表達(dá)量[9]。其次,一些lncRNAs可以作為“海綿體”,與小RNAs(microRNAs, miRNAs)結(jié)合,從而減輕miRNAs對(duì)功能基因的抑制作用,最終提高功能基因的表達(dá)量[9]。最后,lncRNAs也可以與核糖核酸蛋白結(jié)合形成lncRNAs核糖核酸蛋白復(fù)合物,從而調(diào)控靶基因的表達(dá)[10]。乳腺是母畜特有的外分泌腺,具有分泌乳汁的功能,一生經(jīng)歷了多次周期性的增殖、分化和退化等過程。研究已證實(shí),lncRNAs在哺乳動(dòng)物的乳腺發(fā)育和乳汁生成過程中發(fā)揮了重要作用[11-13]。例如,敲除lncRNA Neat1后,造成小鼠乳腺異常發(fā)育,導(dǎo)致泌乳能力顯著下降[11]。小鼠敲除LncRNA PINC1.0后,乳腺上皮細(xì)胞凋亡數(shù)量顯著增加。相反,lncRNA PINC1.6的敲除,誘導(dǎo)了乳腺上皮細(xì)胞的增殖[12]。在轉(zhuǎn)基因小鼠的乳腺上皮細(xì)胞中過表達(dá)lncRNA SRA后,顯著增強(qiáng)了乳腺上皮細(xì)胞的增殖和分化能力,增大了乳腺的側(cè)向分支,這表明該lncRNA對(duì)小鼠乳腺分化有正向調(diào)控作用[13]。隨著RNA-Seq技術(shù)在動(dòng)物遺傳育種領(lǐng)域的廣泛應(yīng)用,人們已在動(dòng)物乳腺中鑒定出越來越多的lncRNAs,并研究了它們的生物學(xué)功能。例如,YANG[14]以泌乳期和干乳期中國(guó)荷斯坦奶牛為研究對(duì)象,在乳腺中發(fā)現(xiàn)了23 495個(gè)lncRNAs,其中3 746個(gè)lncRNAs在兩個(gè)時(shí)期差異表達(dá),這些差異表達(dá)lncRNAs的靶基因主要富集在細(xì)胞循環(huán)、JAK-STAT等與泌乳相關(guān)的信號(hào)通路上。ZHENG[15]在泌乳高峰期和泌乳后期荷斯坦奶牛的乳腺組織中發(fā)現(xiàn)了117個(gè)差異表達(dá)lncRNAs,其中72個(gè)差異表達(dá)lncRNAs與蛋白編碼基因共表達(dá),靶基因顯著富集在PPAR、AMPK等脂類和葡萄糖代謝有關(guān)的信號(hào)通路上?!颈狙芯壳腥朦c(diǎn)】lncRNAs廣泛參與了奶牛[14-15]、奶山羊[16-17]和母豬[18]的乳腺發(fā)育和泌乳過程調(diào)控。然而,目前綿羊乳腺組織中的lncRNAs功能研究甚少,只有CHEN[19]和HAO[20]分別研究了不同發(fā)育時(shí)期和不同品種間綿羊乳腺的lncRNAs表達(dá)特征?!緮M解決的關(guān)鍵問題】本研究選擇3只高泌乳性能小尾寒羊和3只低泌乳性能小尾寒羊,采集泌乳期乳腺組織,采用RNA-Seq技術(shù),研究lncRNAs表達(dá)譜,篩選出兩組小尾寒羊中的差異表達(dá)lncRNAs,分析靶基因的富集通路,旨在為解析綿羊泌乳性能的分子機(jī)理提供理論基礎(chǔ)。
2019年3—6月,在甘肅省天祝縣金子河綿羊繁育公司相同的飼養(yǎng)管理?xiàng)l件下,應(yīng)用羔羊自由哺乳前后體重差法[21],測(cè)定小尾寒羊母羊的泌乳量,并采集乳汁樣本,測(cè)定乳脂率等乳成分。根據(jù)測(cè)定的表型數(shù)據(jù),選擇高泌乳性能(高泌乳量、高乳脂率)和低泌乳量性能(低泌乳量、低乳脂率)小尾寒羊各3只,要求所有羊只健康、3歲、產(chǎn)雙羔、第4胎。這些高泌乳性能和低泌乳性能母羊產(chǎn)后30d的平均泌乳量為1 456和830 g·d-1,它們的乳脂率分別為7.36%和5.72%。參照韋科龍等[22]描述的方法,活體采集相同部位的乳腺實(shí)質(zhì)部分后,迅速放入液氮中儲(chǔ)存。
用Trizol試劑(Invitrogen, CA, USA)提取乳腺組織中的總RNA,分別用Bioanalyzer 2100和Nanodrop 2000儀器測(cè)定RNA的完整性(RNA integrity number, RIN)和純度。挑選3.0 μg、RIN>7的RNA樣本,用Epicentre Ribo-zero? rRNA去除里面的核糖體RNA,然后用NEB Next? Ultra? Directional RNA Library Prep Kit RNA構(gòu)建6個(gè)樣品的RNA文庫。
用Illumina? HiSeqPE Cluster Kit在cBot簇生成系統(tǒng)上進(jìn)行樣品聚類,隨后在上海派森諾生物科技有限公司的Illumina Hiseq 3000平臺(tái)上進(jìn)行2×150 bp雙末端測(cè)序。RNA-Seq獲得的原始數(shù)據(jù)經(jīng)FastQC v0.10.1質(zhì)控后,過濾去除質(zhì)量分?jǐn)?shù)低于Q20的序列和接頭序列,得到高質(zhì)量的Clean reads。用Bowite v2、HISAT v2和Stringtie v1.2.4軟件,建立參考基因組索引,將Clean Reads比對(duì)到綿羊參考基因組Oar_rambouillet_v1.0上,鑒定出已注釋的綿羊lncRNAs。最后,按照HAO等[20]描述的方法,識(shí)別綿羊基因組中未注釋的lncRNAs。
用Stringtie v1.2.4統(tǒng)計(jì)每千個(gè)堿基的轉(zhuǎn)錄每百萬映射讀取的片段(Fragments per kilobase of transcript Per million reads mapped, FPKM),對(duì)表達(dá)量進(jìn)行均一化后獲得lncRNAs的表達(dá)量。在每組3個(gè)樣本中,當(dāng)某一lncRNA在其中2個(gè)樣本中的FPKM值大于0.01時(shí),定義該lncRNA是表達(dá)的。
根據(jù)|fold change|>2且-value<0.05這一條件,用DESeq v1.18.0軟件篩選兩組小尾寒羊中的差異表達(dá)lncRNAs。根據(jù)lncRNAs靶基因的預(yù)測(cè)規(guī)則,本研究搜尋了差異表達(dá)lncRNA上下游100 kb范圍以內(nèi)的結(jié)構(gòu)基因,將其作為lncRNA的順式調(diào)控靶基因[4]。用基因本體論(gene ontology, GO)和KEGG(kyoto encyclopedia of genes and genomes, KEGG)數(shù)據(jù)庫,分別分析靶基因的生物學(xué)功能和參與的生物學(xué)通路。
用miRnada預(yù)測(cè)lncRNAs的靶向miRNA海綿體,然后用Cytoscape 3.0進(jìn)行可視化處理,最后用Starbase v2.0構(gòu)建lncRNA-miRNA調(diào)控網(wǎng)絡(luò)。
在高泌乳性能小尾寒羊中,挑選8個(gè)上調(diào)lncRNAs和8個(gè)下調(diào)lncRNAs,把作為管家基因[23],進(jìn)行實(shí)時(shí)熒光定量PCR(reverse transcription-quantitative PCR, RT-qPCR),驗(yàn)證RNA-Seq測(cè)序數(shù)據(jù)的質(zhì)量。所選lncRNAs和內(nèi)參基因的引物信息見表1。
將原始RNA樣本進(jìn)行反轉(zhuǎn)錄之后得到cDNA,用SYBR Green I染料法進(jìn)行RT-qPCR,然后用2-ΔΔCt法計(jì)算lncRNAs在乳腺組織中的相對(duì)表達(dá)量,最后用Log2FoldChange進(jìn)行標(biāo)準(zhǔn)化處理。
在高泌乳性能和低泌乳性能小尾寒羊乳腺組織中分別得到19.48G和19.71G的原始測(cè)序數(shù)據(jù),兩組測(cè)序數(shù)據(jù)的平均Q30值分別為90.0%%和90.9%。進(jìn)一步對(duì)原始測(cè)序數(shù)據(jù)進(jìn)行質(zhì)控后,在兩組中分別得到16.5G和16.9G的Clean data,其中90.8%和91.2%的Clean data能夠比對(duì)到綿羊參考基因組Oar_ rambouillet_v1.0的唯一位置上。
在乳腺組織中共檢測(cè)到75 303個(gè)轉(zhuǎn)錄本,經(jīng)與綿羊參考基因組中的已知lncRNAs庫比對(duì),發(fā)現(xiàn)了3 943個(gè)已知的lncRNAs。經(jīng)CPC、CNCI和PFAM 3種軟件同時(shí)預(yù)測(cè),發(fā)現(xiàn)了5 214個(gè)新的lncRNAs(圖1-A)。
根據(jù)lncRNAs的表達(dá)定義,在綿羊乳腺組織中發(fā)現(xiàn)了7 239個(gè)可表達(dá)的lncRNAs,其中包括2 262個(gè)已知lncRNAs和4 977個(gè)新lncRNAs。在所有表達(dá)lncRNAs中,6 068個(gè)lncRNAs在兩組中共表達(dá),554個(gè)lncRNAs僅在高泌乳性能小尾寒羊乳腺組織中特異性表達(dá),617個(gè)lncRNAs僅在低泌乳性能小尾寒羊乳腺組織中特異性表達(dá)(圖1-B)。
表1 RT-qPCR引物信息
HM:高泌乳性能小尾寒羊乳腺組織;LM:低泌乳性能小尾寒羊乳腺組織。下同
對(duì)所有l(wèi)ncRNAs的FPKM值統(tǒng)計(jì)后發(fā)現(xiàn),在高、低泌乳性能組中,分別有82.2%和81.9%的lncRNAs的FPKM值低于1(圖2-A),說明lncRNAs在綿羊乳腺組織中呈中低豐度表達(dá)。在所有鑒定到的lncRNAs中,MSTRG.114625.1的表達(dá)量最高。
在兩組小尾寒羊中共篩選出120個(gè)差異表達(dá)lncRNAs,其中68個(gè)lncRNAs的表達(dá)量在高泌乳性能小尾寒羊中顯著上調(diào),最顯著上調(diào)的3個(gè)lncRNAs分別是MSTRG.59580.8、MSTRG.38680.1和MSTRG. 124434.2;52個(gè)lncRNAs的表達(dá)量顯著下調(diào)(圖2-B),最顯著下調(diào)的3個(gè)lncRNAs是MSTRG.125242.6、MSTRG.119809.14和MSTRG.59580.14。
GO數(shù)據(jù)庫注釋發(fā)現(xiàn),在生物學(xué)過程中,差異表達(dá)lncRNAs的靶基因主要富集到硫化物代謝過程、硫酯生物合成過程和?;o酶A的生物合成過程等條目上;在細(xì)胞組分中,靶基因主要富集在微絨毛、基于肌動(dòng)蛋白細(xì)胞投影和血小板α顆粒膜等條目上;在分子功能中,靶基因組主要富集在tau蛋白結(jié)合、類二十烷酸結(jié)合和二十碳四烯酸結(jié)合等條目上(圖3)。
KEGG數(shù)據(jù)庫注釋發(fā)現(xiàn),靶基因顯著富集到Rap1信號(hào)通路(=0.001)、粘附連接(=0.002)、RNA降解(=0.003)等信號(hào)通路中(圖4)。
選擇在高泌乳性能小尾寒羊乳腺組織中最顯著上調(diào)的3個(gè)lncRNAs(MSTRG.59580.8、MSTRG.38680.1和MSTRG.124434.2)和最顯著下調(diào)的3個(gè)lncRNAs(MSTRG.125242.6、MSTRG.119809.14和MSTRG. 59580.14),用miRnada預(yù)測(cè)了它們的靶基因,從中選擇分值較高的miRNAs,構(gòu)建了lncRNA-miRNA互作網(wǎng)絡(luò)圖。結(jié)果表明,這些lncRNAs的部分靶向miRNAs在動(dòng)物乳腺發(fā)育及泌乳過程中發(fā)揮了重要作用,例如miR-148a、miR-181a和miR-221等(圖5)。
RT-qPCR結(jié)果表明,lncRNAs MSTRG.59580.8、MSTRG.59580.9、MSTRG.59580.10、MSTRG.38680.1、MSTRG.47064.1、MSTRG.137650.1、MSTRG.59580.12和MSTRG.80056.21在高泌乳性能組小尾寒羊中的表達(dá)量高于低泌乳性能組,而lncRNAs MSTRG.125242.6、MSTRG.119809.14、MSTRG.59580.14、MSTRG.59580. 11、MSTRG.114625.4、MSTRG.59580.3、MSTRG. 106261.2和rna-XR_003586216.1在高泌乳性能組中的表達(dá)量低于低泌乳性能組(圖6)。這表明16個(gè)lncRNAs的RT-qPCR結(jié)果與RNA-Seq測(cè)序結(jié)果完全一致,進(jìn)一步證實(shí)了RNA-Seq測(cè)序結(jié)果的可靠性。
圖B中,紅色表示在高泌乳性能小尾寒羊乳腺組織中上調(diào)表達(dá)的lncRNAs,綠色表示下調(diào)表達(dá)的lncRNAs,黑色表示兩組中表達(dá)量沒有差異的lncRNAs (P>0.05)
圖3 差異表達(dá)lncRNAs靶基因的GO功能富集注釋
泌乳性狀是受微效多基因控制的重要經(jīng)濟(jì)性狀[24]。除了編碼蛋白質(zhì)的功能基因以外,它還受到非編碼RNA的調(diào)控?,F(xiàn)已發(fā)現(xiàn),lncRNAs在奶牛、奶山羊和小鼠的乳腺發(fā)育、乳汁合成以及乳品質(zhì)調(diào)控方面發(fā)揮了重要作用,但是它在綿羊乳腺中的生物學(xué)作用鮮有報(bào)道。
本研究以高泌乳性能和低泌乳性能小尾寒羊?yàn)檠芯繉?duì)象,用RNA-Seq技術(shù)發(fā)現(xiàn),554個(gè)lncRNAs僅在高泌乳性能小尾寒羊乳腺組織中表達(dá),617個(gè)lncRNAs僅在低泌乳性能乳腺組織中表達(dá),表明這些特異性表達(dá)的lncRNAs在調(diào)控小尾寒羊泌乳量和乳脂率方面發(fā)揮了重要作用。本研究中,80%以上lncRNAs的FPKM值小于1(圖2-A),說明lncRNAs在綿羊乳腺組織中呈中低豐度表達(dá),這與前人研究結(jié)果相一致。IBEAGHA- AWEMU等[7]在奶牛乳腺組織中鑒定出4 955個(gè)lncRNAs,其中表達(dá)量最高的lncRNA的FPKM值僅為11.93,絕大部分lncRNAs呈低豐度表達(dá)。
圖4 差異表達(dá)lncRNAs靶基因的KEGG通路注釋
紅色和綠色三角分別表示在高泌乳性能小尾寒羊中上調(diào)和下調(diào)表達(dá)的lncRNAs
本研究得到的大多數(shù)lncRNAs呈低豐度表達(dá),它是通過何種途徑調(diào)控綿羊的乳腺發(fā)育和泌乳性能呢?一種解釋是,這些lncRNAs能與對(duì)乳腺發(fā)育和泌乳性能有重要作用的功能基因發(fā)揮交互作用,從而間接影響上述性能。在非編碼的環(huán)狀RNA中已發(fā)現(xiàn),低表達(dá)量的環(huán)狀RNA可以完全實(shí)現(xiàn)對(duì)靶基因的順式調(diào)控[25]。在本研究鑒定的lncRNAs中,MSTRG.114625.1的表達(dá)量最高。該lncRNA位于綿羊第20號(hào)染色體上,經(jīng)靶向關(guān)系預(yù)測(cè),它能調(diào)控腸細(xì)胞激酶(intestinal cell kinase, ICK)、F盒蛋白9(F-box protein 9, FBXO9)、谷胱甘肽S-轉(zhuǎn)移酶α1(glutathione S-transferase Alpha 1, GSTA1)和膠質(zhì)細(xì)胞缺失轉(zhuǎn)錄因子1(glial cells missing transcription factor 1, GCM1)基因的表達(dá)。研究發(fā)現(xiàn),參與了細(xì)胞周期轉(zhuǎn)換過程中催化結(jié)構(gòu)域和相關(guān)激酶活性的調(diào)控,進(jìn)而影響了哺乳動(dòng)物的細(xì)胞周期和細(xì)胞凋亡[26]。VERARDO等[27]采用GWAS方法在345頭母豬中發(fā)現(xiàn),與乳頭數(shù)量相關(guān)的19個(gè)SNPs顯著富集到13個(gè)功能基因上,其中就包括,該基因受到核受體亞家族3 C組成員1(nuclear receptor subfamily 3 group C member 1, NR3C1)和核因子白介素3(nuclear factor interleukin 3, NFIL3)這兩個(gè)轉(zhuǎn)錄因子的共同調(diào)控。研究發(fā)現(xiàn),NR3C1和NFIL3調(diào)控了小鼠乳腺上皮細(xì)胞的增殖和凋亡[28-29]。GSTA1對(duì)清除奶牛乳腺上皮細(xì)胞中的代謝毒素有重要作用[30]。此外,降低的表達(dá)量將提高乳腺癌的患病風(fēng)險(xiǎn)[31]。因此,表達(dá)量最高的MSTRG.114625.1可能通過調(diào)控它的靶基因的表達(dá),從而參與綿羊乳腺發(fā)育和泌乳過程。
圖6 16個(gè)差異表達(dá)lncRNAs的RT-qPCR驗(yàn)證
本研究在兩組小尾寒羊乳腺組織中鑒定出120個(gè)差異表達(dá)lncRNAs,其中在高泌乳性能小尾寒羊中上調(diào)表達(dá)的有68個(gè),下調(diào)表達(dá)的有52個(gè)。MSTRG. 59580.8是最顯著上調(diào)表達(dá)的lncRNA(<0.01)。該lncRNA位于綿羊第7號(hào)染色體上,調(diào)控了出核調(diào)節(jié)因子(nuclear export mediator factor, NEMF)基因的表達(dá)。研究發(fā)現(xiàn),不僅調(diào)控了蛋白酶體的降解過程[32],它還在細(xì)胞核內(nèi)物質(zhì)的出入中發(fā)揮了重要作用[33]。另外,MSTRG.59580.8可以作為miR-133和miR-370- 5p的海綿體(圖5)。雖然目前尚未研究miR-133對(duì)乳腺上皮細(xì)胞的作用,但它可以靶向LIM和SH3蛋白1(LIM and SH3 protein 1,)的編碼基因,來促進(jìn)腎小球系膜細(xì)胞的凋亡[34]。根據(jù)海綿體作用原理,MSTRG.59580.8能抑制miR-133對(duì)腎小球系膜細(xì)胞凋亡的促進(jìn)作用,從而起到抗細(xì)胞凋亡作用。因此推測(cè),MSTRG.59580.8也能抑制綿羊乳腺上皮細(xì)胞的凋亡,從而提高母羊的泌乳量[24]。然而,這還需要進(jìn)一步研究加以證實(shí)。
在高泌乳性能小尾寒羊中,MSTRG.125242.6的表達(dá)量最顯著下調(diào)(<0.01)。該lncRNA來自于鈣電壓門控通道亞基α H(calcium voltage-gated channel subunit Alpha1 H, CACNA1H)基因的編碼區(qū)域。靶基因預(yù)測(cè)發(fā)現(xiàn),它能順式調(diào)控的表達(dá)。研究已表明,的堿基突變改變了細(xì)胞膜通透性,進(jìn)而增加了Ca2+的活性[35]。Ca2+對(duì)于細(xì)胞穩(wěn)態(tài)具有重要調(diào)控作用,它能維持乳腺中酪蛋白的合成[36]。因此,MSTRG.125242.6通過調(diào)控的表達(dá)量,進(jìn)而影響羊奶中酪蛋白的合成量和泌乳量。MSTRG.125242.6還能作為miR-148a的海綿體(圖5),來調(diào)控綿羊乳腺發(fā)育過程和泌乳性能。研究發(fā)現(xiàn),在奶山羊乳腺上皮細(xì)胞中過表達(dá)miR-148a后,可以下調(diào)的表達(dá)量,從而促進(jìn)甘油三酯的合成[37]。這表明MSTRG.125242.6的表達(dá)量與乳汁中的乳脂含量呈負(fù)相關(guān),即:MSTRG.125242.6通過吸附miR-148a的含量,抑制了甘油三酯的合成,最終降低了綿羊乳汁中的乳脂含量和比例。這與MSTRG.125242.6在乳脂含量較低的低泌乳性能小尾寒羊中呈上調(diào)表達(dá)的事實(shí)相一致。
差異表達(dá)lncRNAs的靶基因顯著富集到硫化物代謝過程、硫酯生物合成過程和?;o酶A的生物合成等GO條目中。硫酯是ATP合成和分解過程中的中間代謝產(chǎn)物,它能為乳汁合成提供能量[38]。KEGG注釋結(jié)果表明,差異表達(dá)lncRNAs的靶基因也顯著富集到Rap1信號(hào)通路、粘附連接、RNA降解等信號(hào)通路中(圖4)。HOU等[39]在奶牛中發(fā)現(xiàn),向乳腺上皮細(xì)胞中添加蛋氨酸,能顯著促進(jìn)乳汁中酪蛋白的合成量,此過程中的功能基因顯著富集到Rap1信號(hào)通路上,這表明Rap1信號(hào)通路與乳蛋白合成相關(guān)。細(xì)胞粘附連接能促進(jìn)TGF-β3信號(hào)通路下游基因的吞噬作用,從而清除了小鼠乳腺上皮細(xì)胞中的凋亡細(xì)胞,最終提高了小鼠的泌乳量[40]。
相比于同為非編碼RNA的miRNAs,lncRNA研究起步較晚,研究相對(duì)滯后,對(duì)其發(fā)揮生物學(xué)作用的途徑還未完全研究清楚。目前,人們的研究更多的局限于用RNA-Seq技術(shù)鑒定特定組織中的lncRNAs,研究它們?cè)诓煌瑫r(shí)間或不同遺傳背景中的差異表達(dá)情況,進(jìn)而分析差異表達(dá)lncRNAs靶基因的GO和KEGG通路,來最終解析lncRNAs的生物學(xué)功能。本研究也遵循了這一經(jīng)典方法,在篩選出的120個(gè)差異表達(dá)lncRNAs中,挑選了16個(gè)差異表達(dá)lncRNAs,用RT-qPCR方法證實(shí)了RNA-Seq結(jié)果的準(zhǔn)確性和可靠性。但這并不能完全排除假陽性的概率,將來需要對(duì)更多的差異表達(dá)lncRNAs進(jìn)行RT-qPCR驗(yàn)證。同時(shí),對(duì)于本研究篩選出的最顯著差異表達(dá)lncRNAs,以及僅在一組中特異性表達(dá)的lncRNAs,需要在綿羊乳腺上皮細(xì)胞中,通過過表達(dá)和沉默等方法,來進(jìn)一步闡釋它們的生物學(xué)功能和發(fā)揮功能的途徑。
本研究在小尾寒羊乳腺組織中發(fā)現(xiàn)了7 239個(gè)lncRNAs,其中68個(gè)lncRNAs在高泌乳性能小尾寒羊乳腺組織中上調(diào)表達(dá),而52個(gè)lncRNAs呈下調(diào)表達(dá)。差異表達(dá)lncRNAs的靶基因主要參與了Rap1信號(hào)通路、粘附連接、RNA降解等與乳腺發(fā)育和泌乳相關(guān)的生物學(xué)過程。該結(jié)果為解析lncRNAs在綿羊乳腺發(fā)育和泌乳過程中的生物學(xué)功能提供了理論基礎(chǔ)。
[1] 中國(guó)畜禽遺傳資源志: 羊志. 第一版. 北京: 中國(guó)農(nóng)業(yè)出版社, 2011: 62-63.
Animal Genetic Resources in China: Sheep and Goats. First edition. Beijing: China Agriculture Press, 2011: 62-63. (in Chinese)
[2] HIGHT G K, JURY K E. Hill country sheep production. II. Lamb mortality and birth weights in Romney and Border Leicester × Romney flocks. New Zealand Journal of Agricultural Research, 1970, 13: 735-752.
[3] 李慶章. 奶牛乳腺發(fā)育與泌乳生物學(xué). 第一版. 北京:科學(xué)出版社, 2014: 11-24.
LI Q Z. Mammary gland development and lactation biology in dairy cows. First edition. Beijing: Science Press, 2014: 11-24. (in Chinese)
[4] GUTTMAN M, RINN J L. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385): 339-346.
[5] 于紅. 表觀遺傳學(xué):生物細(xì)胞非編碼RNA調(diào)控的研究進(jìn)展. 遺傳, 2009, 31(11): 1077-1086.
YU H. Epigenetics: Research progress in non-coding RNA regulation of biological cells. Heredity (Beijing), 2009, 31(11): 1077-1086. (In Chinese)
[6] WILUSZ J E, SUNWOO H, SPECTOR D L. Long noncoding RNAs: functional surprises from the RNA world. Genes & Development, 2009, 23(13): 1494-1504.
[7] IBEAGHA-AWEMU E M, LI R, DUDEMAINE P L, DO D N, BISSONNETTE N. Transcriptome analysis of long non-coding RNA in the bovine mammary gland following dietary supplementation with linseed oil and safflower oil. International Journal of Molecular Sciences, 2018, 19(11): 3610.
[8] KNOWLING S, MORRIS K V. Non-coding RNA and antisense RNA. Nature’s trash or treasure? Biochimie, 2011, 93(11): 1922-1927.
[9] CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2): 358-369.
[10] CAO J. The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online, 2014, 16: 11.
[11] STANDAERT L, ADRIAENS C, RADAELLI E, VAN KEYMEULEN A, BLANPAIN C, HIROSE T. The long noncoding RNA neat1 is required for mammary gland development and lactation. RNA, 2014, 20(12): 1844-1849.
[12] GINGER M R, SHORE A N, CONTRERAS A, RIJNKELS M, MILLER J, GONZALEZ-RIMBAU M F, ROSEN J M. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5781-5786.
[13] LANZ R B, CHUA S S, BARRON N, S?DER B M, DEMAYO F, O'MALLEY B W. Steroid receptor RNA activator stimulates proliferation as well as apoptosis. Molecular and Cellular Biology, 2003, 23(20): 7163-7176.
[14] YANG B, JIAO B, GE W, ZHANG X, WANG S, ZHAO H, WANG X. Transcriptome sequencing to detect the potential role of long non-coding RNAs in bovine mammary gland during the dry and lactation period. BMC Genomics, 2018, 19(1): 605.
[15] ZHENG X, NING C, ZHAO P, FENG W, JIN Y, ZHOU L, YU Y, LIU J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. Journal of Dairy Science, 2018, 101(12): 11061-11073.
[16] YU S, ZHAO Y, LAI F, CHU M, HAO Y, FENG Y, ZHANG H, LIU J, CHENG M, LI L, SHEN W, MIN L. LncRNA as ceRNAs may be involved in lactation process. Oncotarget, 2017, 8(58): 98014-98028.
[17] JI Z, CHAO T, LIU Z, HOU L, WANG J, WANG A, ZHOU J, XUAN R, WANG G, WANG J. Genome?wide integrated analysis demonstrates widespread functions of lncRNAs in mammary gland development and lactation in dairy goats. BMC Genomics2020, 21(1): 254.
[18] NI Y, WU F, CHEN Q, CAI J, HU J, SHEN J, ZHANG J. Long noncoding RNA and mRNA profiling of hypothalamic- pituitary-mammary gland axis in lactating sows under heat stress. Genomics, 2020, 112(5): 3668-3676.
[19] CHEN W, LV X, WANG Y, ZHANG X, WANG S, HUSSAIN Z, CHEN L, SU R, SUN W. Transcriptional profiles of long non-coding RNA and mRNA in sheep mammary gland during lactation period. Frontiers in Genetics, 2020, 11: 946.
[20] HAO Z, LUO Y, WANG J, HU J, LIU X, LI S, JIN X, KE N, ZHAO M, HU L, WU X, QIAO L. RNA-Seq reveals the expression profiles of long non-coding RNAs in lactating mammary gland from two sheep breeds with divergent milk phenotype. Animals, 2020, 10(9): 1565.
[21] 趙有璋. 中國(guó)養(yǎng)羊?qū)W. 北京: 中國(guó)農(nóng)業(yè)出版社, 2013: 666.
ZHAO Y Z. Sheep and goat production in China. Beijing: China Agriculture Press, 2013: 666. (in Chinese)
[22] 韋科龍, 譚正準(zhǔn), 黃健, 李輝, 鐘華配, 覃廣勝. 奶水牛乳腺組織手術(shù)采樣. 黑龍江畜牧獸醫(yī), 2017, 4: 97-98.
WEI K L, TAN Z Z, HUANG J, LI H, ZHONG H P, QIN G S. Surgical sampling of mammary gland tissue of milk buffalo. Heilongjiang Animal Science and Veterinary Medicine, 2017, 4: 97-98. (In Chinese)
[23] 楊兵. 奶牛乳腺差異表達(dá)長(zhǎng)鏈非編碼RNA的篩選, 鑒定及其功能研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2019.
YANG B. Screening, identification and functional studies of long non-coding RNAs differentially expressed in mammary gland of dairy cows[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[24] AKERS R M. A 100-year review: Mammary development and lactation. Journal of Dairy Science, 2017, 100(12): 10332-10352.
[25] LI Z, HUANG C, BAO C, CHEN L, LIN M, WANG X, ZHONG G, YU B, HU W, DAI L, ZHU P, CHANG Z, WU Q, ZHAO Y, JIA Y, XU P, LIU H, SHAN G. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 2015, 22(3): 256-264.
[26] LAHIRY P, WANG J, ROBINSON J F, TUROWEC J P, LITCHFIELD D W, LANKTREE M B, GLOOR G B, PUFFENBERGER E G, STRAUSS K A, MARTENS M B, RAMSAY D A, RUPAR C A, SIU V, HEGELE R A. A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. American Journal of Human Genetics, 2009, 84(2): 134-147.
[27] VERARDO L L, SILVA F F, VARONA L, RESENDE M D, BASTIAANSEN J W, LOPES P S, GUIMAR?ES S E. Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs. Journal of Applied Genetics, 2015, 56(1): 123-132.
[28] WINTERMANTEL T M, BOCK D, FLEIG V, GREINER E F, SCHüTZ G. The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Molecular Endocrinology, 2019, 19(2): 340-349.
[29] Cowell I G. E4BP4/NFIL3, a PAR-related bZIP factor with many roles. BioEssays, 2002, 24(11): 1023-1029.
[30] GHADIRI S, SPALENZA V, DELLAFIORA L, BADINO P, BARBAROSSA A, DALL'ASTA C, NEBBIA C, GIROLAMI F. Modulation of aflatoxin B1 cytotoxicity and aflatoxin M1 synthesis by natural antioxidants in a bovine mammary epithelial cell line. Toxicology in vitro, 2019, 57: 174-183.
[31] AHN J, GAMMON M D, SANTELLA R M, GAUDET M M, BRITTON J A, TEITELBAUM S L, TERRY M B, NEUGUT A I, ENG S M, ZHANG Y, GARZA C, AMBROSONE C B. Effects of glutathione S-transferase A1 (GSTA1) genotype and potentialmodifiers on breast cancer risk. Carcinogenesis, 2006, 27(9): 1876-1882.
[32] SHAO S, BROWN A, SANTHANAM B, HEGDE R S. Structure and assembly pathway of the ribosome quality control complex. Molecular Cell, 2015, 57(3): 433-444.
[33] BI X, JONES T, ABBASI F, LEE H, STULTZ B, HURSH D A, MORTIN MA. Drosophila caliban, a nuclear export mediator, can function as a tumor suppressor in human lung cancer cells. Oncogene, 2005, 24(56): 8229-8239.
[34] HUANG Z, PANG G, HUANG Y G, LI C. miR-133 inhibits proliferation and promotes apoptosis by targetinglupus nephritis. Experimental and Molecular Pathology, 2020, 114: 104384.
[35] GüRTLER F, JORDAN K, TEGTMEIER I, HEROLD J, STINDL J, WARTH R, BANDULIK S. Cellular pathophysiology of mutant voltage-dependent Ca2+channel CACNA1H in primary aldosteronism. Endocrinology, 2020, 161(10): 135.
[36] REINHARDT T A, HORST R L. Ca2+-ATPases and their expression in the mammary gland of pregnant and lactating rats. American Journal of Physiology, 1999, 276(4): 796-802.
[37] CHEN Z, LUO J, SUN S, CAO D, SHI H, LOOR J J. miR-148a and miR-17-5p synergistically regulate milk TAG synthesis viaandin goat mammary epithelial cells. RNA Biology, 2017, 14(3): 326-338.
[38] 黃千殷, 曹小迎, 張宇琛, 劉天罡, 徐焱成. 通過硫酯反應(yīng)檢測(cè)脂肪酸代謝中間產(chǎn)物. 武漢大學(xué)學(xué)報(bào) (醫(yī)學(xué)版), 2017, 38(5): 724-727.
HUANG Q Y, CAO X Y, ZHANG Y C, LIU T G, XU Y C. Application of a novel thioester decomposition reaction in fatty acid biosynthesis intermediates analysis. Medical Journal of Wuhan University, 2017, 38(5): 724-727. (in Chinese)
[39] HOU X, JIANG M, ZHOU J, SONG S, ZHAO F, LIN Y. Examination of methionine stimulation of gene expression in dairy cow mammary epithelial cells using RNA-sequencing. Journal of Dairy Research, 2020, 87(2): 226-231.
[40] FORNETTI J, FLANDERS K C, HENSON P M, TAN A C, BORGES V F, SCHEDIN P. Mammary epithelial cell phagocytosis downstream of TGF-β3 is characterized by adherens junction reorganization. Cell Death and Differentiation, 2016, 23(2): 185-196.
Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep
WANG JiQing, HAO ZhiYun, SHEN JiYuan, KE Na, HUANG ZhaoChun, LIANG WeiWei, LUO YuZhu, HU Jiang, LIU Xiu, Li ShaoBin
College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology/Gansu Engineering Lab of Genetic Improvement in Ruminants, Gansu Agricultural University, Lanzhou 730070
【】Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs with >200 nt in length, which have been shown to regulate mammary gland development and lactation process in dairy cows and dairy goats. However, little is known about the effect of lncRNAs on milk traits in sheep. The aim of the study was to analyze the effect of lncRNAs on milk performance and then provided a theoretical basis for elucidating molecular mechanism of lactation performance in sheep.【】Three high-lactating yield and high-milk-fat-content Small-Tailed Han sheep and three low-lactating yield and low-milk-fat-content Small-Tailed Han sheep were selected to profile the expression of lncRNAs in the mammary gland tissues during lactation using RNA-Seq. The enrichment analysis was performed using GO and KEGG databases for the target genes of differentially expressed lncRNAs between the two groups. The expression levels of 16 differentially expressed lncRNAs were verified using reverse transcription-quantitative PCR (RT-qPCR).】A total of 7 239 expressed lncRNAs were identified in the mammary gland tissues of Small-Tailed Han sheep, including 2 262 known lncRNAs and 4 977 novel lncRNAs. The most of lncRNAs were expressed at low levels. The 120 differentially expressed lncRNAs were found between the two groups of Small-Tailed Han sheep, of which 68 lncRNAs were up-regulated in high-lactating performance Small-Tailed Han sheep, while 52 lncRNAs were down-regulated. The target genes of differentially expressed lncRNAs were significantly enriched in sulfur compound metabolic process, thioester biosynthesis process, acyl-CoA biosynthetic process, Rap1 signal pathway and adhesion junction. The lncRNA- miRNA network showed that some target miRNAs of the six most differentially expressed lncRNAs including MSTRG.125242.6 and MSTRG.59580.8, play important roles in mammary gland development and lactation in domestic animals. The RT-qPCR results showed that the expression tendency of 16 lncRNAs was consistent with the RNA-Seq results, which confirmed the accuracy and authenticity of the RNA-Seq data.【】The differentially expressed lncRNAs screened were involved in the regulation of mammary gland development and milk performance in sheep and the results will provide a theoretical basis for analyzing the molecular genetic mechanism of lactation performance in sheep.
sheep; mammary gland; long non-coding RNA (lncRNA); lactation period
10.3864/j.issn.0578-1752.2021.14.016
2020-11-13;
2020-02-04
國(guó)家自然科學(xué)基金(32060746和31860635)、甘肅農(nóng)業(yè)大學(xué)“伏羲青年英才培育計(jì)劃(Gaufx-02Y02)、甘肅省基礎(chǔ)研究創(chuàng)新群體項(xiàng)目(18JR3RA190)和甘肅農(nóng)業(yè)大學(xué)自列課題(GSAU-ZL-2015-033)
王繼卿,E-mail:wangjq@gsau.edu.cn
(責(zé)任編輯 林鑒非)