周喆,卞書迅,張恒濤,張瑞萍,高啟明,劉珍珍,閻振立
蘋果果實(shí)大小相關(guān)的ARF-Aux/IAA互作組合篩選
周喆,卞書迅,張恒濤,張瑞萍,高啟明,劉珍珍,閻振立
中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所,鄭州 459000
【】通過轉(zhuǎn)錄組學(xué)和生物信息學(xué),在蘋果全基因組中對可能互作的MdARF和MdIAA進(jìn)行鑒定,為明確相關(guān)基因功能和解析生長素調(diào)控蘋果果實(shí)大小的分子機(jī)理奠定基礎(chǔ)。對野生大果型‘皇家嘎啦’和過表達(dá)的轉(zhuǎn)基因小果型‘皇家嘎啦’進(jìn)行不同發(fā)育時期和不同組織材料的轉(zhuǎn)錄組測序,對測序結(jié)果進(jìn)行基因的功能注釋及差異表達(dá)分析。利用轉(zhuǎn)基因小果和野生型大果的轉(zhuǎn)錄組數(shù)據(jù),篩選在果實(shí)發(fā)育中表達(dá)的蘋果MdARFs和MdIAAs基因家族成員,通過逐一在兩個家族間計算基因時空表達(dá)的相關(guān)系數(shù),篩選可能互作的MdARF-MdIAA組合,將從擬南芥基因組中下載的23個ARFs和34個Aux/IAAs、番茄基因組中下載的21個ARFs和25個Aux/IAAs,分別與互作候選MdARFs和MdIAAs進(jìn)行比對,并進(jìn)一步構(gòu)建系統(tǒng)發(fā)育樹。使用MEME和TBtools對蘋果候選互作對中的MdARFs和MdIAAs蛋白進(jìn)行Motif分析。利用STRING蛋白互作預(yù)測數(shù)據(jù)庫進(jìn)行同源映射,構(gòu)建蘋果中的蛋白-蛋白互作網(wǎng)絡(luò),進(jìn)一步的確認(rèn)候選互作對,最終得到蘋果中通過互作參與果實(shí)發(fā)育可能性最高的MdARF-MdIAA組合。分別對野生型‘皇家嘎啦’和miR172OX轉(zhuǎn)基因‘皇家嘎啦’盛花期后兩周的全果和盛花期后4周的果皮、果肉和果核進(jìn)行轉(zhuǎn)錄組測序,共生成178.19 Gb的數(shù)據(jù)量,各項(xiàng)指標(biāo)均表明,3個生物學(xué)重復(fù)在所有組織類型上均具有高度一致性。在轉(zhuǎn)錄組數(shù)據(jù)中,共鑒定到38個和27個在至少一個文庫中的FPKM值大于2,在蘋果果實(shí)發(fā)育時期表達(dá)。通過計算Pearson相關(guān)系數(shù)對表達(dá)的MdARFs和MdIAAs兩兩進(jìn)行相關(guān)性分析,其中8對MdARF-MdIAA的相關(guān)系數(shù)大于0.9或小于-0.9,作為初步篩選的候選互作組合。將8對組合中的MdARFs和MdIAAs分別與擬南芥和番茄中的ARFs和IAAs進(jìn)行序列比對并構(gòu)建系統(tǒng)進(jìn)化樹后發(fā)現(xiàn),MdARF6和MdARF19與起轉(zhuǎn)錄激活作用的AtARFs同屬一個分支。而MdARF2、MdARF4和MdARF9則與起轉(zhuǎn)錄抑制作用的AtARFs具有較近的親緣關(guān)系。Motif分析結(jié)果顯示,候選MdARF、MdIAA蛋白中均包含Motif 2和Motif 5。Motif 2和Motif 5分別對應(yīng)IAA蛋白中的保守結(jié)構(gòu)域Motif IV和Motif III?;プ鞯鞍自跀M南芥中進(jìn)行同源映射校驗(yàn)后,最終得到兩對MdARF-MdIAA組合可用于進(jìn)一步的功能驗(yàn)證。蘋果MdARF和MdIAA家族成員,在果實(shí)發(fā)育時期,有8對組合在表達(dá)量上存在顯著的相關(guān)性,進(jìn)一步同源映射確認(rèn)互作后,最終確定MdARF4-MdIAA17和MdARF4-MdIAA19兩對互作組合,極有可能通過互作傳遞生長素信號參與調(diào)控蘋果果實(shí)發(fā)育。
蘋果;ARF;Aux/IAA;互作篩選
【研究意義】蘋果(×)是世界范圍內(nèi)栽培最為廣泛的果樹之一。蘋果果實(shí)的大小是衡量其品質(zhì)和商品價值的重要指標(biāo)。果實(shí)的最終大小,主要由果實(shí)內(nèi)細(xì)胞數(shù)量和細(xì)胞大小共同決定[1-2]。植物激素作為協(xié)調(diào)細(xì)胞增殖和細(xì)胞膨大的關(guān)鍵因子,對蘋果果實(shí)生長有著至關(guān)重要的影響[3-5]。在眾多參與調(diào)節(jié)果實(shí)大小的植物激素中,生長素(auxin)起著非常關(guān)鍵的作用[6]。在果實(shí)發(fā)育時期,其內(nèi)部生長素信號的傳遞,主要是通過生長素響應(yīng)因子(auxin response factor,ARF)和生長素/吲哚乙酸蛋白(Auxin/Indole-3-Acetic Acid,Aux/IAA)之間的相互作用完成[7-8]。目前,相關(guān)的ARF和Aux/IAA互作鑒定主要集中在模式植物中,且ARF和Aux/IAA互作關(guān)系在調(diào)控果實(shí)發(fā)育中的研究鮮有報道。【前人研究進(jìn)展】生長素在植物中廣泛存在,參與植物器官發(fā)育、脅迫響應(yīng)、果實(shí)成熟等各類生物學(xué)過程[9]。對植物施用外源生長素,極短的時間內(nèi)即可觀察到、(Gretchen Hagen3)、(Small Auxin Up RNA)等一系列生長素相關(guān)基因的表達(dá)水平發(fā)生改變[3,10-11]。ARF和Aux/IAA作為兩個功能上相關(guān)的基因家族,是感應(yīng)植物體內(nèi)生長素濃度變化的核心元件[12]。兩者通過互作形成復(fù)合體,將接收到的信號以促進(jìn)或抑制上下游相關(guān)基因表達(dá)的形式釋放,最終引起植物形態(tài)發(fā)育上的差異[13]。ARF與Aux/IAA調(diào)控生長素信號轉(zhuǎn)導(dǎo)的模式為,當(dāng)植物體內(nèi)的生長素濃度處于較低水平時,Aux/IAA蛋白與ARF蛋白結(jié)合,阻止ARF激活生長素相關(guān)基因的轉(zhuǎn)錄;當(dāng)生長素濃度上升時,Aux/IAA與生長素受體TIR結(jié)合并被降解,釋放ARF來調(diào)控相關(guān)生長素響應(yīng)基因的表達(dá)[13-14]。ARF家族蛋白在結(jié)構(gòu)上主要包含一個N端B3型DNA綁定結(jié)構(gòu)域(DNA binding domain,DBD)、一個C端的二聚綁定下游生長素響應(yīng)基因的結(jié)構(gòu)域(dimerization domain,CTD)和一個非保守的中間區(qū)域(middle region,MR)。Aux/IAA家族蛋白包含I、II、III、IV四個保守結(jié)構(gòu)域,其中結(jié)構(gòu)域I是一個起阻遏作用的富亮氨酸重復(fù)結(jié)構(gòu)域(LxLxL),結(jié)構(gòu)域II可以與生長素受體TIR1(Transport Inhibitor Resistant 1)結(jié)合引起Aux/IAA的泛素化降解,結(jié)構(gòu)域III、IV是與ARF的CTD同源的結(jié)構(gòu)域,參與Aux/IAA與ARF的二聚化[15-19]。Aux/IAA和ARF蛋白都是在轉(zhuǎn)錄水平對下游基因進(jìn)行調(diào)控。Aux/IAA家族成員通常對下游生長素相關(guān)基因的表達(dá)起抑制作用,而ARF蛋白主要通過DBD結(jié)構(gòu)域識別下游基因啟動子區(qū)域的生長素響應(yīng)元件(AuxREs)來調(diào)控其表達(dá),調(diào)控作用取決于其MR的氨基酸序列[14]。起轉(zhuǎn)錄激活作用的ARF,其MR富含谷氨酰胺、亮氨酸和絲氨酸殘基,例如擬南芥的ARF5、6、7、8、19[12];而阻遏轉(zhuǎn)錄活性的ARF,其MR則富含谷氨酸、亮氨酸、絲氨酸和脯氨酸殘基,例如擬南芥AtARF1、2、4、9[20]。到目前為止,已有15種植物的ARF基因家族(包括蘋果)和30種植物的Aux/IAA基因家族通過全基因組分析得到了鑒定。而全基因組范圍內(nèi)對兩個基因家族間互作可能性的鑒定主要集中在擬南芥、番茄和水稻中[20]。其中擬南芥中共鑒定到213對可能的互作關(guān)系,在番茄的21個ARF和24個Aux/IAA之間進(jìn)行了互作篩選,水稻中的8個ARF和15個Aux/IAA之間可能存在相互作用[8,21-22]。擬南芥中的ARF-Aux/ IAA互作復(fù)合體主要在子葉下胚軸和根部發(fā)育中起作用;番茄中的SlARF5-SlIAA3、SlARF7A-SlIAA8和SlARF4-SlIAA15可能通過互作調(diào)控果實(shí)發(fā)育[22-25]。在蘋果中,MdARF13可以與MdIAA121互作,生長素可以通過MdARF13- MdIAA121介導(dǎo)的信號路徑調(diào)控花青苷合成[26]?!颈狙芯壳腥朦c(diǎn)】蘋果中全基因組范圍內(nèi)ARF和Aux/IAA互作篩選尚未開展,且ARF和Aux/IAA的互作在果實(shí)發(fā)育中扮演的角色尚未可知。【擬解決的關(guān)鍵問題】課題組前期通過在‘皇家嘎啦’中過表達(dá)miRNA172p獲得了果實(shí)顯著變小的轉(zhuǎn)基因蘋果(miR172OX)[27]。通過對miR172OX和野生型的‘皇家嘎啦’(WT)不同發(fā)育時期的果實(shí)和組織進(jìn)行轉(zhuǎn)錄組測序,發(fā)現(xiàn)ARF和Aux/IAA家族的基因表達(dá)量變化差異顯著且存在相關(guān)關(guān)系。本研究擬通過對轉(zhuǎn)錄組中鑒定到的ARF和Aux/IAA進(jìn)行成對表達(dá)分析,篩選到可能存在的果實(shí)發(fā)育過程中的互作組合。
試驗(yàn)于2019—2020年于中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所進(jìn)行。
本試驗(yàn)選擇野生型‘皇家嘎啦’(WT)和:轉(zhuǎn)基因‘皇家嘎啦’(miR172OX)兩個基因型的蘋果進(jìn)行轉(zhuǎn)錄組測序。兩個基因型的蘋果均定植在新西蘭植物和食品研究所。分別選取盛花后2周的全果(WF)和盛花后3周果實(shí)的果皮(FS)、果肉(FF)和果核(FC),每個樣品3個重復(fù),共24個樣品。取樣后液氮速凍并于-80℃保存。
參照Zhou等[28]的方法提取樣品總RNA。得到總RNA后,進(jìn)行瓊脂糖凝膠電泳檢測樣品RNA的完整性及是否存在DNA污染。使用NEBNext? UltraTM RNA Library Prep Kit for Illumina?試劑盒對總量大于1 μg的總RNA進(jìn)行文庫構(gòu)建。通過Illumina Hiseq測序平臺對制備的文庫進(jìn)行測序,并產(chǎn)生150 bp配對末端讀數(shù)。測序的原始數(shù)據(jù)已上傳到NCBI,SRA登錄號為PRJNA649660。
以GDDH13 v1.1為蘋果參考基因組(×)[29],使用HISAT2 v2.0.5構(gòu)建參考基因組的索引。使用DESeq2R(1.16.1)軟件進(jìn)行兩個基因型之間的差異表達(dá)分析,如果基因的adj值<0.05,則被認(rèn)定為差異表達(dá)[30]。校正后的值以及|log2foldchange|作為顯著差異表達(dá)的閾值。差異表達(dá)基因在至少一個文庫的FPKM值要大于2以消除低表達(dá)的基因。
根據(jù)從轉(zhuǎn)錄組數(shù)據(jù)中鑒定到的和的FPKM值,兩兩基因之間計算表達(dá)量的Pearson相關(guān)系數(shù)。以|PCC|(pearson correlation ecoefficiency)的值大于0.9為篩選標(biāo)準(zhǔn),得到候選互作基因。從擬南芥數(shù)據(jù)庫TAIR(http://www.arabiodpsis.org)中下載擬南芥基因組中23個ARFs和34個Aux/IAAs的氨基酸序列,從NCBI上下載番茄基因組中21個ARFs和25個Aux/IAAs,分別與互作候選MdARFs和MdIAAs進(jìn)行比對并構(gòu)建系統(tǒng)發(fā)育樹。使用MEME和TBtools對蘋果候選互作對中的MdARFs和MdIAAs蛋白進(jìn)行motif分析。
利用擬南芥STRING數(shù)據(jù)庫進(jìn)行蛋白-蛋白互作預(yù)測,提取其中包含候選MdARFs和MdIAAs的節(jié)點(diǎn),選擇互作分?jǐn)?shù)大于700的互作蛋白構(gòu)建蘋果中的互作網(wǎng)絡(luò)。
在前期研究中,獲得了miRNA172p過表達(dá)的轉(zhuǎn)基因‘皇家嘎啦’。其果實(shí)與野生型果實(shí)相比,果個顯著變小[27](圖1)。選取依賴細(xì)胞分裂進(jìn)行果實(shí)增大的盛花期后2周的全果和依賴細(xì)胞擴(kuò)張進(jìn)行果實(shí)膨大的盛花期后4周的果皮、果肉和果核進(jìn)行轉(zhuǎn)錄組測序分析。通過Illumina Hiseq 2500 platform,24個庫一共生成178.19 Gb數(shù)據(jù)量。Q20和Q30的值分別大于97.28%和92.37%。Pearson相關(guān)分析(2=0.88—0.98)表明,3個生物學(xué)重復(fù)在所有組織類型上均具有高度一致性。
根據(jù)基因注釋,從轉(zhuǎn)錄組數(shù)據(jù)中一共鑒定到38個和27個在果實(shí)中表達(dá)(圖2-A)。其中分別有17個和14個在WT和miR172OX中的表達(dá)量存在差異,為差異表達(dá)基因(圖2-B)。在差異表達(dá)的17個中,有3個為下調(diào)基因,14個為上調(diào)基因。而14個差異表達(dá)的均為下調(diào)基因。
A:成熟果實(shí);B:成熟果實(shí)果肉組織切片
A:熱圖顯示蘋果ARF和IAA基因家族表達(dá)量的聚類分析;B:蘋果ARF和IAA基因家族中的差異表達(dá)基因及差異表達(dá)趨勢
ARF與Aux/IAA的特定互作組合對不同組織、發(fā)育階段和生物學(xué)過程中生長素響應(yīng)的方式起著重要的決定作用[31]。通過將上述38個和27個在不同發(fā)育時期和不同組織中的表達(dá)量逐對進(jìn)行相關(guān)性分析,共鑒定到8對相關(guān)系數(shù)大于0.9或小于-0.9的ARF-Aux/IAA候選互作組合,其中包括MdARF19(MD02G1096700)和MdIAA29(MD08G1151300)(0.912),MdARF4(MD03G1116000)和MdIAA14(MD16G1206700)(0.960),MdARF4(MD03G1116000)和MdIAA19(MD17G1198100)(0.968),MdARF16(MD04G1096900)和MdIAA22D(MD10G1193000)(-0.912),MdARF6(MD10G1257900)和MdIAA13(MD15G1169100)(-0.901),MdARF6(MD10G1257900)和MdIAA19(MD17G1198100)(-0.943),MdARF9(MD14G1131900)和MdIAA29(MD08G1151300)(0.926),MdARF2(MD14G1148500)和MdIAA22D(MD10G1193000)(-0.930)(圖3)。8對候選組合中,共包括6個和5個。候選互作對中涉及的11個基因中,除了外,其余均為差異表達(dá)基因(圖2-B)。
分別將MdARF2、MdARF4、MdARF6、MdARF9、MdARF16、MdARF19和擬南芥()中的23個AtARFs、番茄中的21個SlARFs,將MdIAA13、MdIAA14、MdIAA19、MdIAA22D、MdIAA29和擬南芥中的34個AtIAAs、番茄中的25個SlIAAs進(jìn)行序列比對后,構(gòu)建系統(tǒng)進(jìn)化樹(圖4-A)。參照與擬南芥ARF家族成員的親緣關(guān)系,MdARF6和MdARF19分別與起轉(zhuǎn)錄激活作用的AtARFs聚類到同一分支;而MdARF2、MdARF4和MdARF9則與起轉(zhuǎn)錄抑制作用的AtARFs具有較近的親緣關(guān)系。Motif分析結(jié)果顯示,候選MdARF和MdIAA蛋白中均包含Motif 2和Motif 5。Motif 2和Motif 5分別對應(yīng)IAA蛋白中的保守結(jié)構(gòu)域Motif IV和Motif III(圖4-B)。
圖3 在時空共表達(dá)的ARF和Aux/IAA間鑒定蛋白互作
A:蘋果候選ARF-Aux/IAA互作對中MdARFs和MdIAAs的系統(tǒng)發(fā)育分析;B:蘋果候選ARF-Aux/IAA互作對中MdARFs和MdIAAs的保守結(jié)構(gòu)域分析
蛋白-蛋白互作網(wǎng)絡(luò)可以預(yù)測兩個蛋白間直接的相互作用或間接的功能相關(guān)性。在構(gòu)建的蘋果蛋白-蛋白互作網(wǎng)絡(luò)中搜索上述8對候選ARF-Aux/IAA中的11個基因,共有5個基因出現(xiàn)在互作網(wǎng)絡(luò)中,包括MdARF4、MdARF19、MdIAA14、MdIAA19和MdIAA29(圖5)。其中候選的MdARF4-MdIAA17和MdARF4- MdIAA19互作對在蛋白-蛋白互作網(wǎng)絡(luò)中也顯示互作關(guān)系。
許多研究表明,ARF和IAA在植物生長和發(fā)育等多個方面起作用[32]。本研究鑒定到的和中接近一半的基因在大、小果兩個基因型中表達(dá)量存在差異。8對相關(guān)性較高的ARF-Aux/IAA 候選組合,其中MdARF19和MdIAA29、MdARF4和MdIAA14、MdARF4和MdIAA19、MdARF9 和MdIAA29呈正相關(guān),而MdARF16和MdIAA22D、MdARF6和MdIAA19、MdARF6和MdIAA13、MdARF2和MdIAA22D呈負(fù)相關(guān)(圖3)。8對組合中,除MdARF19和MdIAA13不滿足adj<0.05,為非差異表達(dá)基因外,組合中其他基因均在一個或多個時期和/或組織中顯示差異表達(dá)(圖2-B)。對8對候選組合內(nèi)成員進(jìn)行保守結(jié)構(gòu)域分析表明,互作組中所有和編碼的蛋白,在C端均包含同源的保守結(jié)構(gòu)域(CTD結(jié)構(gòu)域或結(jié)構(gòu)域III、IV)(圖4),進(jìn)一步在結(jié)構(gòu)上證明了8對候選組合互作的可能性。番茄中鑒定到的21個ARF因子中,在果實(shí)發(fā)育時期呈現(xiàn)高表達(dá)的包括、、、、和[33-34]。其中在番茄果實(shí)發(fā)育初期起負(fù)調(diào)控作用,而則是番茄果實(shí)膨大期重要的負(fù)調(diào)控因子[35]??梢酝ㄟ^負(fù)調(diào)控來影響果實(shí)中糖分的積累[36]。系統(tǒng)發(fā)育結(jié)果顯示,候選互作對中的MdARF2與SlARF2、MdARF4與SlARF4、MdARF6與SlARF6、MdARF16與SlARF16、MdARF9與SlARF9分別具有較近的親緣關(guān)系(圖4-A),因此,蘋果中的可能與番茄在果實(shí)發(fā)育中起相似的調(diào)控作用。
節(jié)點(diǎn)大小對應(yīng)節(jié)點(diǎn)連接數(shù)量,節(jié)點(diǎn)顏色對應(yīng)Log2(Foldchange)值,節(jié)點(diǎn)間連線顏色對應(yīng)PCC值
同源映射是一種比較成熟的預(yù)測蛋白質(zhì)間互作的方法,它主要是基于蛋白之間的互作關(guān)系伴隨著物種進(jìn)化而表現(xiàn)出的保守性。本研究最終確定了互作可能性最高的組合為MdARF4-MdIAA17和MdARF4- MdIAA19。除此之外,蛋白-蛋白互作網(wǎng)絡(luò)還顯示MdIAA19與TPR3/4(Topless-related)之間的互作關(guān)系。TPR是一類保守的植物轉(zhuǎn)錄輔抑制因子家族蛋白,能夠與Aux/IAA包含的LxLxL類型的EAR基序結(jié)合。在植物缺乏生長素刺激時,Aux/IAA蛋白可與TPR形成蛋白復(fù)合物,綁定到植物生長素相關(guān)基因的啟動子區(qū)域,從而抑制ARF轉(zhuǎn)錄因子,該機(jī)制在植物激素應(yīng)激反應(yīng)中發(fā)揮重要作用[37]。
到目前為止,關(guān)于ARF和IAA調(diào)控果實(shí)發(fā)育的研究多集中在番茄,且多以單獨(dú)的ARF或Aux/IAA家族成員功能鑒定為主。有關(guān)生長素路徑中的ARF- Aux/IAA互作單元如何調(diào)控果實(shí)大小,尤其是多年生果樹果實(shí)大小的分子機(jī)理研究非常有限。通過轉(zhuǎn)錄組測序技術(shù),可以獲得特定組織在特定時期和特定條件下所有基因的表達(dá)情況。借助生物信息學(xué)等手段,通過數(shù)據(jù)量化的方式預(yù)測功能基因之間完成生物過程的協(xié)作關(guān)系,可提高調(diào)控網(wǎng)絡(luò)解析的效率。本研究完成了蘋果全基因組范圍內(nèi)果實(shí)發(fā)育相關(guān)ARF- Aux/IAA互作對篩選,為進(jìn)一步深入解析兩個家族基因在生長素路徑中扮演的角色及調(diào)控果實(shí)發(fā)育的作用奠定了基礎(chǔ),極大地提高了今后通過分子生物學(xué)和基因工程手段進(jìn)行基因功能驗(yàn)證的效率。
本研究共鑒定到8對在表達(dá)量上存在顯著相關(guān)性的果實(shí)發(fā)育候選MdARF-MdIAA組合,進(jìn)一步同源映射確認(rèn)互作后,最終確定了MdARF4-MdIAA17和MdARF4-MdIAA19兩對互作組合,可用于進(jìn)一步的功能驗(yàn)證。
[1] SUGIMOTO-SHIRASU K, ROBERTS K. "Big it up": Endoreduplication and cell-size control in plants. Current Opinion in Plant Biology, 2003, 6: 544-553.
[2] HARADA T, KURAHASHI W, YANAI M, WAKASA Y, SATOH T. Involvement of cell proliferation and cell enlargement in increasing the fruit size ofspecies. Scientia Horticulturae, 2005, 105(4): 447-456.
[3] CHAPMAN E J, ESTELLE M. Mechanism of Auxin-regulated gene expression in plants. Annual Review of Genetics, 2009, 43(1): 265-285.
[4] MARIOTTI L, PICCIARELLI P, LOMBARDI L, CECCARELLI N. Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. Journal of Plant Growth Regulation, 2011, 30: 405-415.
[5] ZHAO Y. Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 2010, 61: 49-64.
[6] PEI M S, CAO S H, WU L, WANG G M, XIE Z H, GU C, LING Z S. Comparative transcriptome analyses of fruit development among pears, peaches, and strawberries provide new insights into single sigmoid patterns. BMC Plant Biology, 2020, 20(1): 108.
[7] PIYA S, SHRESTHA S K, BINDER B, NEAL STEWART JR C, HEWEZI T. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in. Frontiers in Plant Science, 2014, 5: 744.
[8] AUDRAN-DELALANDE C, BASSA C, MILA I, REGAD F, ZOUINE M, BOUZAYEN M. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant and Cell Physiology, 2012, 53(4): 659-672.
[9] HAGEN G, GUILFOYLE T. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Molecular Biology, 2002, 49(3/4): 373-385.
[10] BENJAMINS R, SCHERES B. Auxin: The looping star in plant development. Annual Review of Plant Biology, 2008, 59: 443-465.
[11] 胡曉, 侯旭, 袁雪, 管丹, 劉悅萍. ARF和Aux/IAA調(diào)控果實(shí)發(fā)育成熟機(jī)制研究進(jìn)展. 生物技術(shù)通報, 2017, 33(12): 37-44.
HU X, HOU X, YUAN X, GUAN D, LIU R P. Research progress on mechanism of ARF and Aux/IAA regulating fruit development and ripening. Biotechnology Bulletin, 2017, 33(12): 37-44. (in Chinese)
[12] LISCUM E, REED J W. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular Biology, 2002, 49(3/4): 387-400.
[13] ULMASOV T, HAGEN G, GUILFOYLE T J. Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(10): 5844-5849.
[14] GUILFOYLE T J, HAGEN G. Auxin response factors. Current Opinion in Plant Biology, 2007, 10(5): 453-460.
[15] TIWARI S B, HAGEN G, GUILFOYLE T J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004, 16(2): 533-543.
[16] SZEMENYEI H, HANNON M, LONG J A. TOPLESS mediates auxin-dependent transcriptional repression duringembryogenesis. Science, 2008, 319(5868): 1384-1386.
[17] ULMASOV T, HAGEN G, GUILFOYLE T J. ARF1, a transcription factor that binds to auxin response elements., 1997, 276(5320): 1865-1868.
[18] SHEN C J, YUE R Q, SUN T, ZHANG L, XU L Q, TIE S G, WANG H Z, YANG Y J. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula. Frontiers in Plant Science, 2015, 6: 73.
[19] 李俊男, 燕曉杰, 李樞航, 張榮沭. 植物AUX/IAA基因家族研究進(jìn)展. 中國農(nóng)學(xué)通報, 2018, 34(15): 89-92.
LI J N, YAN X J, LI S H, ZHANG R S. Plants AUX/IAA gene family: Research progress. Chinese Agricultural Science Bulletin, 2018, 34(15): 89-92. (in Chinese)
[20] VERNOUX T, BRUNOUD G, FARCOT E, MORIN V, VAN DEN DAELE H, LEGRAND J, OLIVA M, DAS P, LARRIEU A, WELLS D, GUEDON Y, ARMITAGE L, PICARD F, GUYOMARC'H S, CELLIER C, PARRY G, KOUMPROGLOU R, DOONAN J H, ESTELLE M, GODIN C, KEPINSKI S, BENNETT M, DE VEYLDER L, TRAAS J. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular Systems Biology, 2011, 7: 508.
[21] LLERES D, SWIFT S, LAMOND A I. Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM). Current Protocols in Cytometry, 2007, 42(1).
[22] SHINOZAKI Y, NICOLAS P, FERNANDEZ-POZO N, MA Q, EVANICH D J, SHI Y, XU Y, ZHENG Y, SNYDER S I, MARTIN L B B, RUIZ-MAY E, THANNHAUSER T W, CHEN K, DOMOZYCH D S, CATALA C, FEI Z, MUELLER L A, GIOVANNONI J J, ROSE J K C. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nature Communications, 2018, 9(1): 364.
[23] TATEMATSU K, KUMAGAI S, MUTO H, SATO A, WATAHIKI M K, HARPER R M, LISCUM E, YAMAMOTO K T. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in. Plant Cell, 2004, 16(2): 379-393.
[24] ARASE F, NISHITANI H, EGUSA M, NISHIMOTO N, SAKURAI S, SAKAMOTO N, KAMINAKA H. IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in. PLoS One, 2012, 7(8): e43414.
[25] SHEN C, WANG S, BAI Y, WU Y, ZHANG S, CHEN M, GUILFOYLE T J, WU P, QI Y. Functional analysis of the structural domain of ARF proteins in rice (L.). Journal of Experimental Botany, 2010, 61(14): 3971-3981.
[26] WANG Y C, WANG N, XU H F, JIANG S H, FANG H C, SU M Y, ZHANG Z Y, ZHANG T L, CHEN X S. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Horticulture Research, 2018, 5: 59.
[27] YAO J L, XU J, CORNILLE A, TOMES S, KARUNAIRETNAM S, LUO Z, BASSETT H, WHITWORTH C, REES-GEORGE J, RANATUNGA C, SNIRC A, CROWHURST R, DE SILVA N, WARREN B, DENG C, KUMAR S, CHAGNE D, BUS V G, VOLZ R K, RIKKERINK E H, GARDINER S E, GIRAUD T, MACDIARMID R, GLEAVE A P. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. Plant Journal, 2015, 84(2): 417-427.
[28] ZHOU Z, CONG P H, TIAN Y, ZHU Y M. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots. PLoS One, 2017, 12(9): e0185288.
[29] DACCORD N, CELTON J M, LINSMITH G, BECKER C, CHOISNE N, SCHIJLEN E, VAN DE GEEST H, BIANCO L, MICHELETTI D, VELASCO R, DI PIERRO E A, GOUZY J, REES D J G, GUERIF P, MURANTY H, DUREL C E, LAURENS F, LESPINASSE Y, GAILLARD S, AUBOURG S, QUESNEVILLE H, WEIGEL D, VAN DE WEG E, TROGGIO M, BUCHER E. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017, 49(7): 1099-1106.
[30] ANDERS S, HUBER W. Differential expression analysis for sequence count data. Genome Biology, 2010, 11: R106.
[31] LI S B, XIE Z Z, HU C G, ZHANG J Z. A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science, 2016, 7: 47.
[32] CHANDLER J W. Auxin response factors. Plant Cell and Environment, 2016, 39: 1014-1028.
[33] KUMAR R, TYAGI A K, SHARMA A K. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2011, 285: 245-260.
[34] WU J, WANG F Y, CHENG L, KONG F L, PENG Z, LIU S S, YU X L, LU G. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Reports, 2011, 30(11): 2059-2073.
[35] DE JONG M, WOLTERS-ARTS M, FERON R, MARIANI C, VRIEZEN W H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant Journal, 2009, 57(1): 160-170.
[36] SAGAR M, CHERVIN C, MILA I, HAO Y, ROUSTAN J-P, BENICHOU M, GIBON Y, BIAIS B, MAURY P, LATCHE A, PECH J-C, BOUZAYEN M, ZOUINE M. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiology, 2013, 161(3): 1362-1374.
[37] CAUSIER B, ASHWORTH M, GUO W, DAVIES B. The TOPLESS interactome: A framework for gene repression in. Plant Physiology, 2012, 158(1): 423-438.
Screening of ARF-Aux/IAA Interaction Combinations Involved in Apple Fruit Size
ZHOU Zhe, BIAN ShuXun, ZHANG HengTao, ZHANG RuiPing, GAO QiMing, LIU ZhenZhen, YAN ZhenLi
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 459000
【】The transcriptomics and bioinformatics methods were used to carry out the genome-wide potential interacting MdARFs and MdIAAs pairs screening, so as to build a foundation for clarifying the function of related genes and elucidating the molecular mechanism underlying auxin-regulated apple fruit size.【】Two apple genotypes, Royal Gala (WT) andtransgenic Royal Gala (miR172OX ) were used as test materials in this study. Fruit materials from different developmental stages and tissue types were collected for both genotypes and were subjected to transcriptome sequencing. Clean reads were aligned to the reference genome and the differential expression analysis was performed. Based on the transcriptome data obtained by sequencing the transgenic small fruit and wild-type large fruit, the pairwise expression analysis was performed across MdARFs and MdIAAs families. The amino acid sequences of 23 ARFs and 34 Aux/IAAs were downloaded from Arabidopsis genome, and 21 ARFs and 25 Aux/IAAs were downloaded from tomato genome, which were further compared with candidate MdARFs and MdIAAs to construction phylogenetic trees. The MEME and TBtools were used to carry out the Motif analysis for candidate MdARFs and MdIAAs. Pairs with high interacting possibilities were further confirmed by a protein-protein interacting network constructed in apple to finalize combinations with the highest probability of involvement in fruit development. 【】The whole fruit at 2 weeks post full bloom and the fruit skin, fruit flesh and fruit core at 4 WPFB were collected from WT and miR172OX, respectively. To achieve research objectives, transcriptome sequencing was carried out. A total of 178.19 Gb paired-end reads of 125 bp/150 bp were generated. All indexes indicated that the three biological replicates had highly consistent transcriptome profiles across all tissue types. FPKM values in at least one library was over 2 were used as a standard to eliminate the low expressed genes, so a total of 38and 27were expressed. In our fruit developmental transcriptome data, eight pairs of MdARF-MdIAA were obtained through Pearson correlation analysis, whose Pearson correlation coefficient was over 0.9 or below -0.9. The systematic phylogenetic analysis showed that MdARF6 and MdARF19 belonged to the same branch with AtARFs, which played a role in transcription activation, while MdARF2, MdARF4, and MdARF9 were closely related to transcriptional inhibitory AtARFs. Motif analysis results showed that both the candidate MdARFs and MdIAAs proteins contained Motif 2 and Motif 5, which were corresponded to the conserved domains Motif IV and Motif III in the IAA protein, respectively. After homolog mapping inspection with Arabidopsis, two potential MdARF-MdIAA interacting pairs were selected for future functional identification. 【】Among apple MdARF and MdIAA family members, eight pairs of MdARF-MdIAA showed significant correlations in terms of their expression patterns during fruit development. Further homology mapping confirmed two pairs of them, including MdARF4-MdIAA17 and MdARF4-MdIAA19, were most likely to participate in the regulation of apple fruit development through mediating auxin signal transduction.
apple; ARF; Aux/IAA; interacting-pair screening
10.3864/j.issn.0578-1752.2021.14.014
2020-08-30;
2020-10-14
國家重點(diǎn)研發(fā)計劃(2018YFD1000106)
周喆,E-mail:zhouzhe@caas.cn。通信作者閻振立,E-mail:yanzhenli@caas.cn
(責(zé)任編輯 趙伶俐)