• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pullback attractors for lattice FitzHugh-Nagumo systems with fast-varying delays

    2021-07-15 09:09:06-

    -

    (School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China)

    Abstract: We investigate the dynamical behavior of lattice FitzHugh-Nagumo equations with fast-varying delays and prove the existence and uniqueness of pullback attractor for the equations. Generally,studying the attractors of time-varying delay equations require that the derivative of the delay term is less than 1 (slow-varying delay). In this paper, by using some differential inequality techniques, we remove this constraint. Thus our method can be used to deal with equations with fast-varying delays.

    Keywords: Global attractor; Lattice; FitzHugh-Nagumo system; Fast-varying delay

    1 Introduction

    Lattice differential equations have many applications where the spatial structure has a discrete character.Wangetal.[1]used the idea of ‘tail ends’ estimates on solutions and obtained a result concerning the existence of a global attractor for a class of reaction-diffusion lattice systems. Later on, their results were extended to various problems, see for instance,Refs.[2-11]. The FitzHugh-Nagumo system arises as a model describing the signal transmission across axons in neurobiology[12]. The asymptotic behavior of a FitzHugh-Nagumo system was investigated in Refs.[13-15]. The results were extended to stochastic, see for instance Refs.[16-17]. Since time-delays are frequently encountered in many practical systems, which may induce instability, oscillation and poor performance of systems, delay lattice systems then arise naturally while these delays are taken into account. Recently, attractors of delay lattice systems have been considered in Refs.[18-24]. The existing results of studying attractors for time-varying delay equations require that the derivative of the delay term be less than 1(slow-varying delay). By using differential inequality technique, our results remove the constraints on the delay derivative.So we can deal with the lattice FitzHugh-Nagumo systems with fast-varying delays (without any constraints on the delay derivative).

    Motivated by the discussions above, we study the dynamical behavior of the following lattice FitzHugh-Nagumo system with fast-varying delays: forτ∈Randi∈Z,

    hi(ui(t-ρ0(t)))-αvi+fi(t),t>τ

    (1)

    (2)

    with the initial condition

    ui(τ+s)=φi(s),vi(τ)=φi,s∈[-ρ, 0]

    (3)

    This paper is organized as follows. In Section 2, we prove that the lattice system (1)-(3) generates a non-autonomous dynamical system. In Section 3, we derive a priori estimates on the solutions to (1)-(3). In Section 4, we proof the existence and uniqueness of pull-back attractor for the lattice systems.

    2 Priori estimates

    In this section,we establish the existence of a continuous non-autonomous dynamical system generated by System (1)-(3) and derive some priori estimates which will be needed for proofing the existence of a global attractor. We formulate System (1)-(3) as an abstract ordinary differential equation. To this end, we denote byl2the Hilbert space defined by

    (Bu)i=ui+1-ui,

    (B*u)i=ui-1-ui,

    (Au)i=-ui-1+2ui-ui+1,

    for eachi∈Z. Then

    A=BB*=B*B,

    (B*u,v)=(u,Bv),u,v∈l2.

    Denote

    φ(s)={φi(s)}i∈Z,s∈[-ρ,0]

    andφ={φi}i∈Z.Denote byutthe function defined on [-ρ,0] according to the relation

    ut(s)=(uit(s))i∈Z=(ui(t+s))i∈Z=

    u(t+s),s∈[-ρ,0],

    and letCρ=C([-ρ,0],l2) with the maximum norm

    Then System(1)-(3) can be rewritten as

    t>τ

    (4)

    (5)

    with the initial condition

    u(τ+s)=φ(s),v(τ)=φ,s∈[-ρ,0]

    (6)

    whereu=(ui)i∈z,

    h(u(t-ρ0(t)))=hi(ui(t-ρ0(t)))i∈z,

    f(t)=(fi(t))i∈z,g(t)=(gi(t))i∈z,

    φ=(φi)i∈zandφ=(φi)i∈z. We make the following assumptions onhi,i∈Z. For eachi∈Z,hiis a nonlinear function satisfying the following assumption:

    (H)hi(0)=0 andhiis Lipschitz continuous uniformly with respect toi, that is, there is a positive constantL, independent ofi, such that for alls1,s2∈R,

    |hi(s1)-hi(s2)|≤L|s1-s2|.

    In fact, by (H) we find that

    ‖h(u)-h(v)‖≤L‖u-v‖,u,v∈l2.

    Then it follows from the standard theory of ordinary differential equations that there exists a unique local solution (u,v) for System (4)-(6). The following estimates imply that the local solution is actually defined globally.In the sequence, we assume that

    (7)

    Lemma2.1Assume that (H) and (7) hold. Then for everyτ∈R,T>0,φ∈Cρandφ∈l2, there exists a positive constantc=c(τ,T,φ,φ) such that the solution (u,v) of Problem (4)-(6) satisfies

    (8)

    ProofTaking the inner product of (4) withβuinl2, we find that

    β(h(u(t-ρ0(t))),u)-βα(u,v)+β(u,f(t))

    (9)

    Taking the inner product of(5) withανinl2,we get that

    α(v,g(t))

    (10)

    Summing up (9) and (10), we get

    βλ‖u‖2+αδ‖v‖2=β(h(u(t-ρ0(t))),

    u)+β(u,f(t))+α(v,g(t))

    (11)

    We now estimate the right-hand side of (11). The first term is bounded by

    |β(h(u(t-ρ0(t))),u)|≤

    β‖h(u(t-ρ0(t))‖‖u‖≤

    (12)

    For the left two term on the right-hand side of (11), we have

    (13)

    By (11)-(13) we obtain

    (14)

    Letσ=min{λ,δ}. Then it follows from (14) that

    -σ(β‖u‖2+α‖v‖2)+

    (15)

    By Gronwall inequality, that fort≥τ, we have

    β‖u(t)‖2+α‖v(t)‖2≤

    e-σ(t-τ)(β‖φ(0)‖2+α‖φ‖2)+

    (16)

    From the condition (7), by using continuity, we obtain that there exist positive constantsμ<σandNsuch that ‖φ‖ρ+‖φ‖≤Nand

    (17)

    hold. Then we prove that fort≥τ

    β‖u(t)‖2+α‖v(t)‖2≤

    dNe-μ(t-τ)+(1-η)-1I(t)

    (18)

    where

    To this end, we first prove for anyd>1,

    β‖u(t)‖2+α‖v(t)‖2<

    dNe-μ(t-τ)+(1-η)-1I(t),t≥τ

    (19)

    If (19) is not true, then, from ‖φ‖ρ+‖φ‖≤Nand‖u(t)‖ and ‖v(t)‖ are continuous, there must be at*>τsuch that

    β‖u(t*)‖2+α‖v(t*)‖2≥

    dNe-μ(t*-τ)+(1-η)-1I(t*)

    (20)

    and

    β‖u(t)‖<

    dNe-μ(t-τ)+(1-η)-1I(t),τ-ρ≤t

    (21)

    Hence, it follows from (16) (17) (20) and (21) that

    β‖u(t*)‖2+α‖v(t*)‖2≤

    e-σ(t*-τ)(β‖φ(0)‖2+α‖φ‖2)+

    e-μ(t*-τ)(β‖φ(0)‖2+α‖φ‖2)+

    (1-η)-1I(t*))ds+

    e-μ(t*-τ)(β‖φ(0)‖2+α‖φ‖2)+

    η(1-η)-1I(t*)+I(t*)≤

    dNe-μ(t*-τ)+(1-η)-1I(t*)

    (22)

    which contradicts inequality(20). So inequality (19) holds for allt≥τ. Lettingd→1 in inequality (19), we have inequality (18).The proof is complete.

    Lemma 2.1 implies that the solutionuis defined in any interval of [τ,T+τ) for anyT>0. It means that this local solution is, in fact, a global one.

    Givent∈R, define a translationθtonRby

    θt(τ)=τ+t,τ∈R

    (23)

    Then {θt}t∈Ris a group acting onR.

    We now define amapping Φ:R+×R×Xρ→Xρ,for Problem (4)-(6), whereXρ=Cρ×l2. Givent∈R+,τ∈Rand Ψτ=(uτ,vτ)∈Xρ, let

    Φ(t,τ,Ψτ)=(ut+τ(·,τ,uτ),

    v(t+τ,τ,vτ))

    (24)

    whereut+τ(s,τ,uτ)=u(t+τ+s,τ,uτ),s∈[-ρ,0].By the uniqueness of solutions, we find that for everyt,s∈R+andτ∈Rand Ψτ∈Xρ,

    Φ(t+s,τ,Ψτ)=Φ(t,s+τ, (Φ(s,τ,Ψτ))).

    Then we see that Φ is a continuous non-autonomous dynamical system onXρ.

    In the following two sections, we will investigate the existence of a pullback attractor for Φ. To this end, we need to define an appropriate collection of families of subsets ofXρ.LetBρ={Bρ(τ):τ∈R}be a family of nonempty subsets ofXρ.ThenBρis called tempered (or subexponentially growing) if for everyc>0, the following holds:

    wherex=(φ,φ).In the sequel, we denote byDρthe collection of all families of tempered nonempty subsets ofXρ, i.e.,

    Dρ={Bρ={Bρ(τ):τ∈R}:Bρis tempered}.

    From the condition (7), by using continuity, we obtain that there exists a positive constantμ<σsuch that

    (25)

    holds. The following condition will be needed when deriving uniform estimates of solutions:

    ∞,?τ∈R

    (26)

    3 Uniform estimates of the solutions

    In this section, we derive uniform estimates of solutions of Problem(4)~(6) which are needed for proving the existence and uniqueness of pullback attractor for Problem (4)~(6).

    The estimates of solutions of Problem (4)~(6) inXρare provided below.The symbolcis a positive constant which may change its value from line to line.

    Lemma3.1Assume that (H), (7) and (26) hold. Then for everyτ∈RandDρ={Dρ(τ):τ∈R}∈Dρ, there existsT=T(τ,Dρ)>ρsuch that for allt≥Tand (φ,φ)∈Dρ(τ-t), the solution (u,v) of (4)-(6) satisfies

    (27)

    whereχ=min{α,β}.

    ProofReplacingtandτin (15) by ? andτ-t, respectively, we have for ?>τ-t,

    α‖v(?,τ-t,φ)‖2)≤

    -σ(β‖u(?,τ-t,φ)‖2+

    α‖v(?,τ-t,φ)‖2)+

    (28)

    For simplicity, we denoteu(?)=u(?,τ-t,φ)andv(?)=v(?,τ-t,φ). Then, let us define functions

    V(?)=eμ?(β‖u(?)‖2+α‖v(?)‖2),

    ?≥τ-t-ρ,

    wherev(?)=0, ?∈[τ-t-ρ,τ-t), and

    Now, we claim that

    V(?)≤U(?), ?≥τ-t

    (29)

    If inequality (29) is not true, from the fact thatV(?) andU(?) are continuous, then there must be a ?*>τ-tsuch that

    V(?)

    (30)

    V(?*)=U(?*)

    (31)

    where

    ?*?inf{?>τ-t|V(?)>U(?)},

    and there is a sufficiently small positive constantΔ? such that

    V(?)>U(?), ?∈(?*, ?*+Δ?)

    (32)

    Calculating the upper right-hand Dini derivative ofV(?) at ? and considering (31) and (32), we obtain

    (33)

    On the other hand, it follows from (28), we have

    D+V(?*)=μeμ?*(β‖u(?*)‖2+

    α‖v(?*)‖2)+eμ?*D+(β‖u(?*)‖2+

    α‖v(?*)‖2)≤(μ-σ)eμ?*(β‖u(?*)‖2+

    (34)

    Noticing thatU(?) is monotone nondecreasing on [τ-t-ρ, +∞), this, together with (30) and (31), yields

    V(?*-ρ0(?*))<

    U(?*-ρ0(?*))

    (35)

    which implies

    β‖u(?*-ρ0(?*))‖2≤

    eμρ(β‖u(?*)‖2+α‖v(?*)‖2)

    (36)

    It follows from (25) (34) and (36) that

    which contradicts (33). Until now, (29) has been proven to be true. Thus we get fort>ρand -ρ≤ξ≤0,

    β‖u(τ+ξ,τ-t,φ)‖2+

    α‖v(τ,τ-t,φ)‖2≤

    Since (φ,φ)∈Dρ(τ-t)∈Dρ, we find that for everyτ∈RandDρ∈Dρ, there existsT=T(τ,Dρ)>ρsuch that for allt≥Tand -ρ≤ξ≤0,

    β‖u(τ+ξ,τ-t,φ)‖2+

    α‖v(τ,τ-t,φ)‖2≤

    This completes the proof.

    Lemma3.2Assume that (H),(7) and (26) hold. Then for everyτ∈R,Dρ={Dρ(τ):τ∈R}∈Dρandε>0, there existT=T(τ,Dρ,ε)>ρandN=N(τ,Dρ,ε) such that for allt≥Tand (φ,φ)∈Dρ(τ-t), the solution (u,v) of (4)~(6) satisfies

    |vi(τ, τ-t, φ)|2)≤ε

    (37)

    (38)

    (39)

    Summing up (38) and (39), we get

    (40)

    We now estimate the terms in (40) as follows. First, we have

    By the property of the functionθ, we have

    which implies that

    (41)

    We now estimate the right-hand side of (40). The first term is bounded by

    (42)

    For the left two term on the right-hand side of(40), we have

    (43)

    By (40)~(43) we obtain

    (44)

    Letσ=min{λ,δ}. It follows that

    (45)

    Futher,

    (46)

    By the similar argument as in Lemma 3.1, we get from (46) for anyt>ρand -ρ≤ξ≤0,

    α|vi(τ, τ-t, φ)|2)≤

    (47)

    It follows from Lemma 3.1 that for anyτ∈R, (φ,φ)∈Dρ,ε>0 there existT=T(τ,Dρ,ε)>ρandK1=K1(τ,Dρ,ε)such that fork≥K1,t≥Tand -ρ≤ξ≤0

    (48)

    which, together with (47), implies

    α|vi(τ,τ-t,φ)|2)≤

    (49)

    We have from (φ,φ)∈Dρ(τ-t) that there existsT1=T1(τ,Dρ,ε)>0 such that for allt≥T1and -ρ≤ξ≤0,

    (50)

    We have from (26) that there is aN1=N1(τ,ε)>0 such that for allk≥N1,

    (51)

    Note that

    α|vi(τ,τ-t,φ)|2)≤

    α|vi(τ,τ-t,φ)|2),

    which along with (49)~(51) we conclude the proof.

    4 Existence of pullback attractors

    In this section, we establish the existence ofDρ-pullback attractor for the non-autonomous dynamical system Φ associated with the problem (4)~(6).

    Lemma4.1Assume that (H) (7) and (26) hold. Then for everyτ∈RandDρ={Dρ(τ):τ∈R}∈Dρ, there existsT=T(τ,Dρ)>ρsuch thatusatisfies thatuτ(·,τ-t,φ) is equicontinuous inl2.

    ProofDenote byPku=(u1,u2,...,uk,0, 0,...), foru∈l2andk∈N. By Lemma 3.2, forε>0, there existsT=T(τ,ε)>ρand large enough integerN=N(τ,ε) such that for allt≥T,

    (52)

    Letu1=PNu. By Lemma 3.1, it follows from (4) and the equivalence of norm in finite dimensional space that there existsT=T(τ)>ρsuch that for allt≥T,

    (53)

    wherec=c(τ) is a positive number. Without loss of generality, we assume thats1,s2∈[-ρ, 0] with 0

    ‖u1(τ+s1,τ-t,φ)-u1(τ+s2,τ-t,φ)‖≤

    (54)

    which implies that there exits a constantζ=ζ(ε)>0 such that if |s1-s2|<ζ, then

    ‖u(τ+s2,τ-t,φ)-

    which along with (52) implies that for allt≥T,

    ‖u(τ+s2,τ-t,φ)-u(τ+s1,τ-t,φ)‖≤

    ‖PNu(τ+s2,τ-t,φ)-

    PNu(τ+s1,τ-t,φ)‖+

    ‖(I-PN)u(τ+s2,τ-t,φ)‖+

    ‖(I-PN)u(τ+s1,τ-t,φ)‖≤ε.

    This completes the proof.

    As for the compactness inl2in Ref.[16] one can easily verify the the following compactness criteria inCρ=C([-ρ, 0],l2) by means of uniform tail estimates.

    Theorem4.3Assume that (H), (7) and (26) hold. Then, the non-autonomous dynamical system Φ has a uniqueDρ-pullback attractorAρ={Aρ(τ):τ∈R}∈Xρ.

    ProofForτ∈R, denote by

    M(τ)},

    where

    Firstly, we know from Lemma 3.1 that Φ has aDρ-pullback absorbing setK(τ).Secondly, since Lemma 3.1, 3.2 and 4.1 coincide with all the conditions of Lemma 4.2, Φ isDρ-pullback asymptotically compact inXρ. Hence the existence of a uniqueDρ-pullback attractor for the non-autonomous dynamical system Φ follows from Proposition 2.7 in Ref.[18] immediately.

    成年av动漫网址| 久久精品国产亚洲av香蕉五月| 一级二级三级毛片免费看| 国内精品宾馆在线| 亚洲av成人精品一区久久| h日本视频在线播放| 国产极品天堂在线| 听说在线观看完整版免费高清| 国产真实乱freesex| 蜜桃久久精品国产亚洲av| 中国美白少妇内射xxxbb| 成人毛片a级毛片在线播放| 亚洲一级一片aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 亚洲国产精品国产精品| 老女人水多毛片| 看免费成人av毛片| 亚洲欧洲国产日韩| 日日干狠狠操夜夜爽| 日本黄色片子视频| 伊人久久精品亚洲午夜| 在线观看一区二区三区| 午夜福利在线观看吧| 亚洲久久久久久中文字幕| 国产精品99久久久久久久久| 国产精品无大码| 中文字幕熟女人妻在线| 又爽又黄无遮挡网站| 在线播放无遮挡| 91午夜精品亚洲一区二区三区| 哪里可以看免费的av片| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| 欧美三级亚洲精品| 天堂√8在线中文| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| .国产精品久久| 久久这里只有精品中国| 男插女下体视频免费在线播放| 国产精品永久免费网站| 一个人看的www免费观看视频| 婷婷色综合大香蕉| 亚洲五月天丁香| 免费黄网站久久成人精品| 黄色一级大片看看| 高清日韩中文字幕在线| 最近手机中文字幕大全| 99热这里只有是精品50| .国产精品久久| 精品一区二区免费观看| 国产精华一区二区三区| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 欧美一区二区国产精品久久精品| 欧美3d第一页| 波野结衣二区三区在线| 国产精品av视频在线免费观看| 99国产精品一区二区蜜桃av| 中文字幕人妻熟人妻熟丝袜美| 在线a可以看的网站| 久久99热这里只有精品18| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 欧美bdsm另类| 91久久精品国产一区二区成人| 亚洲一区高清亚洲精品| 亚洲av二区三区四区| 久久精品国产亚洲av香蕉五月| 午夜福利在线观看吧| 又爽又黄a免费视频| 在线观看66精品国产| 美女国产视频在线观看| 男插女下体视频免费在线播放| 国产成人a区在线观看| 国产午夜福利久久久久久| 亚洲国产欧美在线一区| 秋霞在线观看毛片| 婷婷亚洲欧美| 我的女老师完整版在线观看| 亚洲国产精品成人久久小说 | 91av网一区二区| 欧美日韩乱码在线| 亚洲av不卡在线观看| 午夜免费男女啪啪视频观看| 国产高清不卡午夜福利| 网址你懂的国产日韩在线| 国产亚洲精品久久久com| 欧美成人精品欧美一级黄| 日韩大尺度精品在线看网址| 九草在线视频观看| 久久精品人妻少妇| 丰满的人妻完整版| 久久6这里有精品| 国产视频内射| 中文字幕人妻熟人妻熟丝袜美| 免费看光身美女| 国产高潮美女av| 亚洲国产欧洲综合997久久,| 综合色丁香网| 麻豆成人午夜福利视频| 观看免费一级毛片| 亚洲,欧美,日韩| 一个人看的www免费观看视频| 高清午夜精品一区二区三区 | 国产一区二区三区在线臀色熟女| 成年女人永久免费观看视频| 99久久精品热视频| 深夜a级毛片| 久久久久久久久久黄片| 欧美性感艳星| 国产成人影院久久av| 性欧美人与动物交配| 久久久精品大字幕| 国产伦理片在线播放av一区 | 国产乱人视频| avwww免费| 免费电影在线观看免费观看| 深夜精品福利| 国国产精品蜜臀av免费| 能在线免费看毛片的网站| 乱系列少妇在线播放| 久久久国产成人精品二区| av在线老鸭窝| 亚洲色图av天堂| 最好的美女福利视频网| 国产一区二区在线观看日韩| 日韩欧美一区二区三区在线观看| 有码 亚洲区| 精品久久久久久久末码| 99在线视频只有这里精品首页| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 内射极品少妇av片p| 搞女人的毛片| 在线a可以看的网站| 久久久午夜欧美精品| 丰满人妻一区二区三区视频av| 久久久久久久午夜电影| 99国产精品一区二区蜜桃av| 秋霞在线观看毛片| 观看免费一级毛片| 久久精品国产亚洲av涩爱 | 国模一区二区三区四区视频| 午夜激情欧美在线| 久久精品国产鲁丝片午夜精品| 91精品一卡2卡3卡4卡| 国产午夜福利久久久久久| 成人国产麻豆网| av在线天堂中文字幕| 亚洲欧美中文字幕日韩二区| 国产大屁股一区二区在线视频| 国产精品99久久久久久久久| 五月伊人婷婷丁香| 国产黄色小视频在线观看| a级毛色黄片| 欧美变态另类bdsm刘玥| 搞女人的毛片| 岛国在线免费视频观看| 国产亚洲欧美98| 91狼人影院| 亚洲真实伦在线观看| av在线天堂中文字幕| 国产亚洲欧美98| 午夜免费男女啪啪视频观看| 三级国产精品欧美在线观看| 在线观看一区二区三区| 久久精品综合一区二区三区| 国产精华一区二区三区| 亚洲av电影不卡..在线观看| 亚洲,欧美,日韩| 亚洲精品日韩在线中文字幕 | 国产精品久久久久久久久免| 波多野结衣巨乳人妻| 三级国产精品欧美在线观看| 在线免费观看的www视频| 夜夜爽天天搞| 国产精品伦人一区二区| 18+在线观看网站| 两个人的视频大全免费| 国产一区亚洲一区在线观看| 亚洲va在线va天堂va国产| 波多野结衣巨乳人妻| 日韩精品有码人妻一区| 国产真实乱freesex| 天天一区二区日本电影三级| АⅤ资源中文在线天堂| 老司机福利观看| av在线蜜桃| 我要搜黄色片| 国产伦精品一区二区三区四那| 日本色播在线视频| 少妇人妻精品综合一区二区 | 偷拍熟女少妇极品色| 亚洲国产精品国产精品| 97人妻精品一区二区三区麻豆| 亚洲婷婷狠狠爱综合网| 亚洲性久久影院| 97超视频在线观看视频| 人妻久久中文字幕网| 两个人的视频大全免费| 午夜老司机福利剧场| 亚洲精华国产精华液的使用体验 | 午夜视频国产福利| 在线免费观看的www视频| 国产69精品久久久久777片| 免费av不卡在线播放| 久久久久久国产a免费观看| 精品久久久久久成人av| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 国产精品99久久久久久久久| 国产一区二区激情短视频| 亚洲av不卡在线观看| 欧美一区二区精品小视频在线| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦韩国在线观看视频| 欧美bdsm另类| 成人鲁丝片一二三区免费| 日本-黄色视频高清免费观看| 超碰av人人做人人爽久久| 观看免费一级毛片| 久久这里只有精品中国| 嘟嘟电影网在线观看| 寂寞人妻少妇视频99o| 校园人妻丝袜中文字幕| 欧美变态另类bdsm刘玥| 亚洲av成人av| 乱码一卡2卡4卡精品| 国产av在哪里看| 日本一二三区视频观看| 婷婷精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 日本在线视频免费播放| 久久人人精品亚洲av| 99久国产av精品国产电影| 国产精品乱码一区二三区的特点| 久久精品综合一区二区三区| 成人综合一区亚洲| 精品国产三级普通话版| 欧美成人精品欧美一级黄| 国产爱豆传媒在线观看| 欧美成人一区二区免费高清观看| 九草在线视频观看| 观看美女的网站| 啦啦啦韩国在线观看视频| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 精品一区二区三区人妻视频| 午夜免费激情av| 精品少妇黑人巨大在线播放 | 最近的中文字幕免费完整| 欧美日韩综合久久久久久| 免费观看人在逋| 欧美最黄视频在线播放免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色哟哟哟哟哟哟| 男女视频在线观看网站免费| 伊人久久精品亚洲午夜| 我要搜黄色片| 小蜜桃在线观看免费完整版高清| 久久久久久久久久黄片| 乱码一卡2卡4卡精品| 精品久久久久久久久亚洲| 中文字幕精品亚洲无线码一区| 高清午夜精品一区二区三区 | 身体一侧抽搐| 最近手机中文字幕大全| 日本成人三级电影网站| 午夜亚洲福利在线播放| 91精品一卡2卡3卡4卡| 国产成人精品婷婷| 久久久久久久久久久丰满| 免费看a级黄色片| 日韩亚洲欧美综合| 国产精品久久久久久久电影| 最后的刺客免费高清国语| 人妻制服诱惑在线中文字幕| 成年av动漫网址| 国产三级中文精品| 国产精品久久久久久精品电影小说 | 99久久精品一区二区三区| 免费电影在线观看免费观看| 亚洲国产精品国产精品| 亚洲精品成人久久久久久| 精品人妻熟女av久视频| 国内精品美女久久久久久| 亚洲婷婷狠狠爱综合网| 少妇熟女aⅴ在线视频| 国产视频首页在线观看| 久久久精品大字幕| 国产高清视频在线观看网站| 国产高清三级在线| 在线免费观看的www视频| 亚洲美女搞黄在线观看| 久久久午夜欧美精品| 亚洲欧美日韩高清专用| 寂寞人妻少妇视频99o| 国模一区二区三区四区视频| 三级男女做爰猛烈吃奶摸视频| 精品免费久久久久久久清纯| 日韩国内少妇激情av| 中文字幕熟女人妻在线| 免费av观看视频| 国产国拍精品亚洲av在线观看| 中文在线观看免费www的网站| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 此物有八面人人有两片| 99热全是精品| 自拍偷自拍亚洲精品老妇| 最近的中文字幕免费完整| 悠悠久久av| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 99久久精品国产国产毛片| 一级黄色大片毛片| 性色avwww在线观看| 欧美激情久久久久久爽电影| 丝袜美腿在线中文| h日本视频在线播放| 亚洲av熟女| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 91精品一卡2卡3卡4卡| 久久久精品94久久精品| 18+在线观看网站| 国产一区二区亚洲精品在线观看| 麻豆一二三区av精品| АⅤ资源中文在线天堂| 美女被艹到高潮喷水动态| 国产成人精品婷婷| 日韩一区二区视频免费看| АⅤ资源中文在线天堂| a级一级毛片免费在线观看| 99在线人妻在线中文字幕| 真实男女啪啪啪动态图| 黑人高潮一二区| 久久人妻av系列| 色吧在线观看| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 别揉我奶头 嗯啊视频| 久久精品久久久久久噜噜老黄 | 岛国毛片在线播放| 夜夜爽天天搞| 美女脱内裤让男人舔精品视频 | 亚洲国产精品合色在线| 久久韩国三级中文字幕| 小说图片视频综合网站| 禁无遮挡网站| 少妇高潮的动态图| 毛片一级片免费看久久久久| 欧美日韩综合久久久久久| 中国美女看黄片| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 人妻制服诱惑在线中文字幕| 国产精品久久久久久av不卡| 在线观看免费视频日本深夜| 亚洲av免费高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 最后的刺客免费高清国语| 在线a可以看的网站| 能在线免费看毛片的网站| 女同久久另类99精品国产91| 国产亚洲av嫩草精品影院| 成年女人看的毛片在线观看| 成人av在线播放网站| 久久热精品热| 日韩一区二区三区影片| 精品人妻视频免费看| 成人二区视频| 少妇被粗大猛烈的视频| 99久久成人亚洲精品观看| 美女国产视频在线观看| 天堂网av新在线| 欧美精品国产亚洲| 午夜免费男女啪啪视频观看| 少妇裸体淫交视频免费看高清| 欧美人与善性xxx| 一夜夜www| 欧美激情久久久久久爽电影| 97热精品久久久久久| 全区人妻精品视频| av女优亚洲男人天堂| 国内少妇人妻偷人精品xxx网站| 乱系列少妇在线播放| 亚洲精品自拍成人| 久久精品久久久久久久性| 日本与韩国留学比较| 一级av片app| 日韩中字成人| 尤物成人国产欧美一区二区三区| 国产一区亚洲一区在线观看| a级一级毛片免费在线观看| 国产视频首页在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产黄色小视频在线观看| 九草在线视频观看| 在线观看午夜福利视频| 悠悠久久av| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说 | 内地一区二区视频在线| 我的女老师完整版在线观看| 可以在线观看毛片的网站| 成人特级av手机在线观看| 欧美高清成人免费视频www| 淫秽高清视频在线观看| 少妇熟女aⅴ在线视频| 夜夜爽天天搞| 亚洲欧美精品自产自拍| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 亚洲不卡免费看| 久久久成人免费电影| 又爽又黄a免费视频| 亚洲自偷自拍三级| 人人妻人人看人人澡| 黄色视频,在线免费观看| 少妇熟女aⅴ在线视频| 亚洲婷婷狠狠爱综合网| 国产免费一级a男人的天堂| 简卡轻食公司| 中文欧美无线码| 中文字幕免费在线视频6| 菩萨蛮人人尽说江南好唐韦庄 | 欧美+日韩+精品| 两个人视频免费观看高清| 波野结衣二区三区在线| 欧美色视频一区免费| 久久久午夜欧美精品| 99久国产av精品| 国产蜜桃级精品一区二区三区| 99热这里只有是精品50| 亚洲最大成人av| 少妇熟女aⅴ在线视频| videossex国产| av在线蜜桃| 秋霞在线观看毛片| avwww免费| av在线老鸭窝| 亚洲最大成人av| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 麻豆久久精品国产亚洲av| 51国产日韩欧美| 美女大奶头视频| 尤物成人国产欧美一区二区三区| 床上黄色一级片| av在线亚洲专区| 女人十人毛片免费观看3o分钟| 国产老妇女一区| 国产精品久久久久久精品电影小说 | 精品国产三级普通话版| 日韩视频在线欧美| 在线观看美女被高潮喷水网站| 亚洲经典国产精华液单| 精品久久久久久成人av| 22中文网久久字幕| 亚洲精品456在线播放app| 日韩欧美一区二区三区在线观看| 国产 一区 欧美 日韩| 变态另类丝袜制服| 国产色婷婷99| 亚洲18禁久久av| 青春草视频在线免费观看| 九草在线视频观看| 亚洲无线在线观看| 高清毛片免费观看视频网站| 九九在线视频观看精品| 亚洲熟妇中文字幕五十中出| 99热精品在线国产| 欧美一区二区国产精品久久精品| 欧美另类亚洲清纯唯美| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 亚洲自拍偷在线| 日本一二三区视频观看| av.在线天堂| 春色校园在线视频观看| 少妇高潮的动态图| 午夜亚洲福利在线播放| 少妇熟女aⅴ在线视频| 日韩av在线大香蕉| 人人妻人人澡人人爽人人夜夜 | 老女人水多毛片| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 国产av在哪里看| 青春草国产在线视频 | 午夜亚洲福利在线播放| 国产伦在线观看视频一区| 超碰av人人做人人爽久久| 日韩成人伦理影院| 成人漫画全彩无遮挡| 尾随美女入室| 久久精品综合一区二区三区| 天堂av国产一区二区熟女人妻| 麻豆国产97在线/欧美| 国产伦精品一区二区三区四那| 国产精品三级大全| 中文字幕av在线有码专区| 亚洲精品国产成人久久av| 日韩欧美在线乱码| 我要看日韩黄色一级片| av天堂中文字幕网| 秋霞在线观看毛片| 国产成人91sexporn| 午夜免费男女啪啪视频观看| 精品久久久久久久末码| 国产精品久久久久久亚洲av鲁大| 久久久久久久久久久丰满| 久久久久久国产a免费观看| 少妇高潮的动态图| 国产精品一区www在线观看| eeuss影院久久| 青春草视频在线免费观看| 91在线精品国自产拍蜜月| 欧美三级亚洲精品| 一级av片app| 丰满的人妻完整版| 亚洲国产日韩欧美精品在线观看| 能在线免费看毛片的网站| 2022亚洲国产成人精品| 国内久久婷婷六月综合欲色啪| 亚洲精品国产成人久久av| .国产精品久久| 精品无人区乱码1区二区| 菩萨蛮人人尽说江南好唐韦庄 | 免费av不卡在线播放| 三级毛片av免费| 热99在线观看视频| 小蜜桃在线观看免费完整版高清| videossex国产| 国产av在哪里看| 久久人妻av系列| 观看美女的网站| 三级国产精品欧美在线观看| 成熟少妇高潮喷水视频| 亚洲国产欧美人成| av天堂中文字幕网| 久久99热6这里只有精品| 国产精品,欧美在线| 色5月婷婷丁香| 一本久久精品| 亚洲国产精品sss在线观看| 欧美一级a爱片免费观看看| а√天堂www在线а√下载| 亚洲欧美精品自产自拍| 亚洲av电影不卡..在线观看| 久久精品综合一区二区三区| 亚洲成人av在线免费| 国产视频内射| 国产精品人妻久久久影院| 人妻制服诱惑在线中文字幕| 熟女人妻精品中文字幕| 热99在线观看视频| 欧美日本视频| 春色校园在线视频观看| 免费观看a级毛片全部| 欧美最黄视频在线播放免费| 毛片一级片免费看久久久久| 日本五十路高清| 男女那种视频在线观看| 亚洲av第一区精品v没综合| av在线蜜桃| 九九爱精品视频在线观看| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久电影| 国产v大片淫在线免费观看| 精品久久国产蜜桃| 精品不卡国产一区二区三区| 婷婷色av中文字幕| 国产成人精品婷婷| 婷婷精品国产亚洲av| 久久99热6这里只有精品| 国产男人的电影天堂91| 网址你懂的国产日韩在线| 国产视频内射| 亚洲熟妇中文字幕五十中出| 久久久久久久久久久免费av| 精品无人区乱码1区二区| 亚洲精品色激情综合| 国产毛片a区久久久久| 久久人人爽人人片av| 国产成年人精品一区二区| 久久鲁丝午夜福利片| 国产麻豆成人av免费视频| 国产精品国产三级国产av玫瑰| 内射极品少妇av片p| 国产成人aa在线观看| 国产精品,欧美在线| 黄色配什么色好看| 午夜激情欧美在线| 国产精品人妻久久久影院| 国产白丝娇喘喷水9色精品| 国产精品一二三区在线看| 亚洲av成人av| 一级黄色大片毛片| 久久草成人影院| 亚洲无线在线观看| 亚洲欧美精品自产自拍| 亚洲精品乱码久久久v下载方式| 欧美一区二区亚洲| 国产高潮美女av| 老师上课跳d突然被开到最大视频| 一个人免费在线观看电影| 日韩人妻高清精品专区| 老师上课跳d突然被开到最大视频| 一区二区三区四区激情视频 |