• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鎳基金屬有機框架衍生的雙功能電催化劑用于析氫和析氧反應(yīng)

    2021-07-10 10:07:12閆大強張林陳祖鵬肖衛(wèi)平楊小飛
    物理化學(xué)學(xué)報 2021年7期
    關(guān)鍵詞:張林理學(xué)院林業(yè)大學(xué)

    閆大強,張林,陳祖鵬,肖衛(wèi)平,*,楊小飛,*

    1南京林業(yè)大學(xué)理學(xué)院,材料物理與化學(xué)研究所,南京 210037

    2南京林業(yè)大學(xué)化學(xué)工程學(xué)院,南京 210037

    1 Introduction

    The rapid consumption of non-renewable resources has caused serious energy and environmental crisis, hence, the researchers are exploring alternative energy systems1–3.Electrocatalytic water splitting involved a cathode hydrogen evolution reaction (HER) to produce hydrogen gas and an anode oxygen evolution reaction (OER) to produce oxygen gas receives significant attention. The process is clean,environmental-friendly and the generated oxygen/hydrogen gas could be converted into electricity in a fuel cell4,5. The main concern lies in the higher activation energy barrier existed in both HER and OER sides, which require electrocatalysts to achieve high-efficiency HER and OER performance6,7.Nowadays, precious metals as Pt8and RuO29have been reported to present excellent HER and OER performance, respectively,but their practical employment is limited by the scarcity and high price. Hence, the research on substituting catalysts to achieve comparable bifunctional catalytic activity with Pt and RuO2is of great significance10–13.

    Nowadays, the 3dtransition metals have the potential to be alternatives for Pt-group electrocatalysts due to their low-cost and high-efficient HER/OER performance14–18. In particular,Ni-based materials which are stable in alkaline solution, have attracted extensive efforts as a substitutive HER catalyst since Ni-based materials show near zero ΔGH*19, as well as the OER catalyst since it can activate oxygen species20. The activities of Ni-based catalysts are closely related to the number of active sites and the structure of the carbon supports21,22. Particularly,metal-organic-frameworks (MOFs) possess modular nature with metal-based units and special organic ligands23,24. After annealed, metal atoms could be converted into unsaturated metal-based active sites and the organic ligands could be carbonized retaining the frame structure of the MOFs precursor,which could provide sufficient active sites and certain pore structure25,26. This could accelerate the charge transfer efficiency and be beneficial to achieve excellent HER and OER performance.

    Here, Ni-MOFs precursor was synthesizedviaa liquid phase coordination reaction by using Ni2+and benzene-1,3,5-tricarboxylic acid27. After high-temperature annealing treatment, Ni nanoparticles werein situgrown on the rod-shaped carbon substrate forming Ni/C catalysts. The composite material obtained under the optimal conditions exhibits an overpotential of 120 mV for HER and 350 mV for OER in 1.0 mol·L?1KOH electrolyte at a current density of 10 mA·cm?2. Presumably, good structural, the abundant surface area of carbon substrate elevated HER/OER activity owing to their synergistic advantages of accessible active sites and enhanced electronic conductivity.

    2 Experimental

    2.1 Materials

    Nickel chloride hexahydrate (NiCl2·6H2O, A.R., 99.9%metals basis, China), benzene-1,3,5-tricarboxylic acid(C6H3(CO2H)3, 98%, China) were purchased from Aladdin.Ethanol (A.R., ≥ 99.7%, China), potassium hydroxide (KOH,A.R. China) and sodium hydroxide (NaOH, A.R. China) were acquired from Sinopharm Chemical Reagent Co., Ltd., no additional treatment was required.

    2.2 Synthesis

    The Ni/C nanomaterials were synthesizedviaa liquid phase coordination reaction followed by an annealing process. The detailed composition steps are as follows: First, 1307.3 mg NiCl2·6H2O was dissolved in the solution mixed with 25 mL deionized water and 50 mL absolute ethanol; 840.56 mg benzene-1,3,5-tricarboxylic acid were dissolved into 50 mL 0.24 mol·L?1NaOH solution. Then, the benzene-1,3,5-tricarboxylic acid solution was slowly added to the nickel solution under magnetic stirring, and the mixture was stirred for 10 min and then stayed at room temperature for 24 h. The green product was washed repeatedly with ethanol and deionized water, and finally dried under vacuum at 60 °C. Finally, the sample obtained under H2thermal annealing of Ni-MOFs at 600 °C, 700 °C, 800 °C for 4 h with a ramping rate of 5 °C·min?1, named Ni/C-H2-600,Ni/C-H2-700, and Ni/C-H2-800, respectively. Ni/C-Ar-700 was obtained from thermal annealing of Ni-MOFs under Ar at 700 °C for 4 h with a ramping rate of 5 °C·min?1.

    2.3 Materials characterization

    The powder X-ray diffraction data is obtained by irradiating CuKα(λ= 0.15418 nm) using the multifunctional horizontal Xray diffractometer manufactured at 10 (°)·min?1(XRD, Ultima IV, Japan Rigaku, Japan); Laser Raman data was tested on Raman spectrometer (Raman, DXR-532, USA Thermo,Madison, WI, USA); X-ray photoelectron spectroscopy data was obtained by irradiating AlKαmonochromatic ray (XPS, AXIS UltraDLD, Japan Shimadzu Corporation, Japan); Scanning electron microscope images of the samples were obtained with a scanning voltage of 12 kV using a field emission scanning electron microscope model (SEM, JSM-7600F, Japan Electronics Corporation, Japan); Transmission electron microscopy image of the sample was obtained at a transmission voltage of 300 kV (TEM, JEM-1400, Japan Electronics Corporation).

    2.4 Electrochemical measurements

    The electrochemical measurement was performed in 1.0 mol·L?1KOH solutionviaa three-electrode system on electrochemical workstation (CHI 760E, Shanghai Chenhua,China). The graphite rod and reversible hydrogen electrodes(RHE) were used as counter electrodes and reference electrodes,respectively. 2.0 mg catalyst and 1 mg Vulcan XC-72 were added to 0.20 mL Nafion/isopropyl alcohol (1‰) to prepare the catalyst ink. 30 μL ink was distributed evenly on a glassy carbon rotating electrode with a diameter of 5.0 mm, where the loading amount of the catalyst was 1.53 mg·cm?2. The prepared electrode was activated by cyclic voltammetry (CV) scan in the potential range of 0.05–1.0 V to remove impurities on the surface. The corresponding linear sweep voltammetry (LSV) curve of hydrogen evolution reaction and oxygen evolution reaction were obtained at a scan rate of 5 mV·s?1in the potential range of ?0.5?0.2 V and 1.0–1.7 V (95% iR compensation) under rotation of 1600 rpm. The double-layer capacitance (Cdl) values were derived by linear fitting the curves of (ja?jc)/2 plotted against the scan rate. Electrochemical impedance spectroscopy was tested at 0 V (vs. RHE) potential with a frequency range of 100 kHz–1 Hz. The stability measurement was using a carbon fiber paper loaded catalyst (loading amount, 1.53 mg·cm?2) as the working electrode and tested under the potential at a current density of 10 mA·cm?2for 10 h.

    3 Results and disscussion

    Fig. 1 Scheme illustration of the synthetic process of Ni/C.

    The strategy to synthesize Ni/C is illustrated in Fig. 1. Ni-MOFs was synthesized by coordination of Ni2+ion-containing compound and carbonic acid-containing benzene-1,3,5-tricarboxylic acid. Then, the Ni-MOFs was used as the precursor for annealing treatment from 600 °C to 800 °C. In detail, the MOFs were firstly annealed in argon for 3 h to remove impurities and achieve efficient carbonization of MOFs, generating rich pore structure and potential attachment sites for metal atoms.After that, the as-prepared materials were remained in hydrogen for 1 h to reduce Ni nanoparticles. Consequently, the rod-shaped porous carbon skeleton was obtained, while Ni nanoparticles were located on the carbon support to form the Ni/C catalyst.

    The synthesized samples were characterized by scanning electron micrograph (SEM) as shown in Fig. 2. The prepared Ni-MOFs exhibited a rod-shaped structure with a diameter of 1.2–1.5 μm and a length of about 4 μm, which provided sufficient interface during annealing treatment for the attachment of Nibased nanoparticles (Fig. 2a). After annealing under argon at 700 °C, Ni/C-Ar-700 showed a coral-reefs-like morphology where the Ni nanoparticles were accumulated on the carbon rods(Fig. 2b). In contrast, porous rods of Ni/C-H2-700 with a large number of Ni nanoparticles on the surface were obtained after reduction under H2at 700 °C, leading to a good exposure of the active centers (Fig. 2c). The SEM image and corresponding EDS-mappings of Ni/C-H2-700 confirmed the co-existence of Ni, O, and C in the entire sample (Fig. 2d–g). EDX spectra of Ni/C-H2-700 provided further evidence for the presence of Ni,O, and C (Fig. 2h).

    Transmission electron microscopy (TEM) was employed to observe the distribution of Ni nanoparticles on the carbon matrix. TEM images of Ni/C-H2-700 (Fig. 3a,b) displayed that the carbon matrix retained the rod-shaped morphology, Ni nanoparticles with a diameter of about 20–80 nm were dispersed on the porous carbon rod. The plane spacing in the HRTEM image (Fig. 3c) was calculated to be 0.201 nm, corresponding to the Ni (111) crystal plane. The HAADF-STEM image and EDSmappings of Ni/C-H2-700 further confirmed that the rod-shaped transparent schema and black nanoparticles corresponded to the carbon support and Ni nanoparticles (Fig. 3d–g).

    Fig. 2 Scanning electron microscopy (SEM) images of (a) precursor of Ni-MOFs, (b) Ni/C-Ar-700 and (c) Ni/C-H2-700. (d–g) SEM image and corresponding EDS-mappings of Ni/C-H2-700. (h) EDX spectra of the content of C, O, Ni element in Ni/C-H2-700.

    Fig. 3 (a, b) Transmission electron microscopy (TEM) and(c) high-resolution transmission electron microscopy (HRTEM)images of Ni/C-H2-700. (d–g) HAADF-STEM image and mapping analysis of C, O, Ni in Ni/C-H2-700.

    Fig. 4a compared the X-ray diffraction (XRD) patterns of Ni/C-H2-600, Ni/C-H2-700, Ni/C-H2-800, Ni/C-Ar-700 samples. The characteristic peaks located at 44.5°, 51.8°, and 76.5° could be considered as the cubic Ni phase (PDF card # 04-0850), while the remaining special peaks corresponded to the NiO phase (PDF card # 44-1159). Hence, the Ni-MOFs annealed under argon atmospheres could acquire the mixture of Ni and NiO, however, only the Ni phase could be seen obviously under hydrogen conditions. Fig. 4b illustrated the Raman spectrum of each sample, there are two distinct characteristic peaks at 1306.7 and 1587.8 cm?1, corresponding to the D-band and G-band of the carbon matrix28, respectively. The X-ray photoelectron spectroscopy (XPS) further verified the coexistence of Ni, O,and C on the surface of Ni/C-H2-700 (Fig. 4c). The XPS spectra of Ni 2p3/2shown in Fig. 4d could be divided into three peaks located at 854.3, 856.4, and 852.9 eV, attributing to Ni2+2p3/2,Nix+2p3/2, and Ni02p3/2, respectively29. Compared with the standard value, the Ni2+2p3/2peak in Ni/C-H2-700 shifted to a higher oxidation state and increased the binding energy, which may be due to synergistic effects between Ni particles and carbon support. Besides, the peak area of Ni0is much higher than that of Ni2+, verifying that the content of Ni is relatively higher than NiO. The fine peaks of the C 1sspectrum were at 284.8,285.6, and 289.3 eV, belonging to C―C, C―O, and C=O (Fig.4e). Interestingly, the spectrum of O in Ni/C-H2-700 is fitted from the component peaks of 529.8 and 531.9 eV. The characteristic peak of 531.9 eV could be attributed to the absorbed oxygen, while the characteristic peak of 529.8 eV belongs to Ni―O, which could be due to the oxidation of Ni exposed to air (Fig. 4f).

    Fig. 4 (a) X-ray diffraction (XRD) patterns and (b) Raman spectra of all samples Ni/C-H2-600, Ni/C-H2-700, Ni/C-H2-800, Ni/C-Ar-700,respectively; (c) XPS survey spectrum and high-resolution XPS spectra of (d) Ni 2p, (e) C 1s, (f) O 1s of Ni/C-H2-700 sample.

    Fig. 5 (a) CV and (b) LSV curves of Ni/C-H2-600, Ni/C-H2-700, Ni/C-H2-800, Ni/C-Ar-700. (c) The corresponding Tafel plots of samples.(d) The double-layer capacitance (Cdl) calculated by liner fitting of the capacitive currents of different catalysts versus scan rate from 10 mV?s?1 to 160 mV?s?1. (e) EIS plots (0 V vs. RHE). (f) The (i–t) curve of HER durability of Ni/C-H2-700 tested at a constant potential at 10 mA·cm?2.

    The electrocatalytic HER performances of Ni/C-H2-600,Ni/C-H2-700, Ni/C-H2-800, and Ni/C-Ar-700 catalysts were tested and compared. Fig. 5a displayed CV curves of different samples at a scan rate of 50 mV·s?1and Ni/C-H2-700 showed the highest capacitance. It could be seen from LSV curves shown in Fig. 5b that the overpotential of Ni/C-H2-700 is 120 mV at the current density of 10 mA·cm?2, which is much lower than that of Ni/C-H2-600 (250 mV) and Ni/C-H2-800 (348 mV), Ni/C-Ar-700 (275 mV). Compared with Ni/C-H2-700 sample, the Ni/CH2-600 might have a low carbonization degree and the Ni/C-H2-800 might lose the good frame structure, which resulted in the much lower HER activity. Tafel curve calculated according to the Tafel equation (η=a+blog|j|) was used to further analyze the catalytic kinetics. The Ni/C-H2-700 exhibited a lower Tafel slope of 121 mV·dec?1and a faster kinetic rate relative to Ni/CH2-600 (131 mV·dec?1), Ni/C-H2-800 (200 mV·dec?1), and Ni/C-Ar-700 (176 mV·dec?1) (Fig. 5c). The double-layer capacitance (Cdl) of the sample was calculated based on the cyclic voltammetry curves in the non-faraday region (0.3–0.5 V)(Fig. 5d). TheCdlof Ni/C-H2700 is 2.85 mF·cm?2, much higher than that of other catalysts, indicating a higher electrochemical active surface area (ECSA) since it is supposed to be proportionable toCdl. Furthermore, the electrode dynamics were further analyzed by electrochemical impedance spectroscopy(EIS) at 0 V (vs. RHE) (Fig. 5e). Ni/C-H2-700 showed the lowest resistance during the catalytic reaction system, which is conducive to promote electron transfer. Based on the above results and analysis, pore structure, large ECSA and high electronic conductivity contribute majorly to the high efficiency of HER catalytic efficiency on Ni/C-H2-700. Furthermore, the HER durability of Ni/C-H2-700 was tested by the potentiostatic method. The current density was almost no attenuation after 10 hours durable test and showed an ideal performance (Fig. 5f).

    Fig. 6 (a) The OER polarization curves of Ni/C-H2-600, Ni/C-H2-700, Ni/C-H2-800 and Ni/C-Ar-700. (b) Long-term electrochemical OER durability tested at a constant potential at 10 mA?cm?2 of Ni/C-H2-700. (c) Polarization curves and XRD patterns of Ni/C-H2-700 before and after OER durability tests. (d) Polarization curve of Ni/C-H2-700 for overall water-splitting in 1.0 mol·L?1 KOH solution. The inset shows O2 and H2 evolution at the anode and cathode electrode.

    Similarly, electrocatalytic OER activity of all samples was measured in 1.0 mol·L?1KOH as shown in Fig. 6a. Ni/C-H2-700 required an overpotential of 350 mV at a current density of 10 mA·cm?2, which was lower than Ni/C-H2-600 (370 mV), Ni/CH2-800 (430 mV), and Ni/C-Ar-700 (380 mV). The long-term electrochemical OER performance of Ni/C-H2-700 was obtained by maintaining overpotential at 350 mV. Compared with the initiative value, the current density was enhanced and the overpotential was reduced after long-term operation for 10 h(Fig. 6b). Fig. 6c showed the polarization curves and XRD patterns of Ni/C-H2-700 before and after OER durability test. It can be seen that the peak of NiO (PDF card # 44-1159) appeared after durable tests. The oxygen evolution performance has been improved, which could be owing to the partially oxidation of Ni during the process of oxygen evolution reaction. As displayed in Fig. 6d, Ni/C-H2-700 required a low cell voltage of 1.71 V to obtain the current density of 10 mA·cm?2when used as both the anode and cathode electrodes to driving overall water-splitting in 1.0 mol·L?1KOH solution. Based on the analysis, Ni/C-H2-700 exhibited excellent HER and OER activity and durability and could be used as a bifunctional catalyst for water splitting.

    4 Conclusion

    In summary, an effective bifunctional nickel-based electrocatalyst on porous carbon rods for HER and OER was synthesizedviaa liquid phase coordination reaction followed by an annealing process. Ni/C-H2-700 exhibited the optimized catalytic performance in 1.0 mol·L?1KOH solution. The overpotentials for HER and OER at a current density of 10 mA·cm?2were as low as 120 and 350 mV, respectively.Moreover, the Ni/C-H2-700 has also shown a much stable performance under the long-term durability test. This work verifies that it is practical to obtain bifunctional catalysts of HER and OER for water splitting by adjusting the annealing atmosphere and temperature from MOF precursors.

    猜你喜歡
    張林理學(xué)院林業(yè)大學(xué)
    張林美術(shù)作品選
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    《南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    Lie transformation on shortcut to adiabaticity in parametric driving quantum systems?
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    男人舔奶头视频| 亚洲高清免费不卡视频| 免费看av在线观看网站| 欧美潮喷喷水| 欧美xxⅹ黑人| 成人国产麻豆网| 久久综合国产亚洲精品| 国产黄色视频一区二区在线观看| 一级毛片aaaaaa免费看小| 免费av不卡在线播放| 欧美日韩在线观看h| 亚洲内射少妇av| 性色avwww在线观看| 18禁动态无遮挡网站| 赤兔流量卡办理| 我的老师免费观看完整版| 亚洲国产av新网站| 丰满少妇做爰视频| videos熟女内射| 搞女人的毛片| 日本与韩国留学比较| 亚洲欧洲日产国产| 最近2019中文字幕mv第一页| 国产色婷婷99| 麻豆久久精品国产亚洲av| 亚洲综合色惰| 嫩草影院入口| 亚洲人成网站在线播| 亚洲,欧美,日韩| 亚洲一区二区三区欧美精品 | 亚洲人成网站在线播| 欧美+日韩+精品| 亚洲精品亚洲一区二区| 激情 狠狠 欧美| 在线免费十八禁| 日本一本二区三区精品| 亚洲欧美一区二区三区黑人 | 中文字幕av成人在线电影| 亚洲av免费在线观看| 成人无遮挡网站| 国产欧美日韩一区二区三区在线 | 欧美成人a在线观看| 久热久热在线精品观看| 伦理电影大哥的女人| 免费高清在线观看视频在线观看| 少妇裸体淫交视频免费看高清| 在线免费观看不下载黄p国产| 亚洲av在线观看美女高潮| 内射极品少妇av片p| 蜜臀久久99精品久久宅男| 久久久久久久午夜电影| 三级国产精品片| 欧美日韩精品成人综合77777| 久久久精品欧美日韩精品| 狂野欧美激情性bbbbbb| 国产欧美日韩精品一区二区| 成人毛片a级毛片在线播放| 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 国产一区有黄有色的免费视频| 欧美日韩综合久久久久久| 久久99热这里只有精品18| 亚洲国产精品成人综合色| 亚洲精品中文字幕在线视频 | 国产黄色视频一区二区在线观看| 国产伦理片在线播放av一区| 久久精品国产自在天天线| 日本av手机在线免费观看| 韩国高清视频一区二区三区| 黄色一级大片看看| 最近最新中文字幕免费大全7| 18禁在线无遮挡免费观看视频| 欧美高清性xxxxhd video| 成人免费观看视频高清| 成人国产av品久久久| 色吧在线观看| videossex国产| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 日韩精品有码人妻一区| 国产在视频线精品| 国产日韩欧美在线精品| 亚洲精品日韩在线中文字幕| 国产高清有码在线观看视频| 观看免费一级毛片| 91久久精品电影网| 色哟哟·www| 国产成人aa在线观看| 午夜视频国产福利| 日本色播在线视频| 亚洲精品影视一区二区三区av| 亚洲美女搞黄在线观看| 国产成人精品久久久久久| 亚洲精品色激情综合| 99久国产av精品国产电影| 欧美一级a爱片免费观看看| 亚洲av日韩在线播放| 少妇的逼好多水| 下体分泌物呈黄色| 国产精品99久久久久久久久| 亚洲美女视频黄频| 一本一本综合久久| 免费看不卡的av| 日产精品乱码卡一卡2卡三| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 在线播放无遮挡| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 最近最新中文字幕大全电影3| 国产成人精品久久久久久| 国产男女内射视频| 亚洲精品中文字幕在线视频 | 国产爽快片一区二区三区| .国产精品久久| 日韩大片免费观看网站| 久久精品夜色国产| 国产欧美亚洲国产| 各种免费的搞黄视频| 麻豆成人午夜福利视频| 欧美人与善性xxx| 久久国产乱子免费精品| 亚洲精品国产av成人精品| 欧美一级a爱片免费观看看| 22中文网久久字幕| av国产精品久久久久影院| 国产久久久一区二区三区| 成人亚洲欧美一区二区av| 各种免费的搞黄视频| 久久久久精品性色| 黄色配什么色好看| 五月玫瑰六月丁香| 最近的中文字幕免费完整| 在线播放无遮挡| 日本色播在线视频| 日韩亚洲欧美综合| 国产探花极品一区二区| 五月玫瑰六月丁香| 国产一级毛片在线| 精品熟女少妇av免费看| 美女xxoo啪啪120秒动态图| 国产精品蜜桃在线观看| 欧美xxⅹ黑人| 久久久精品欧美日韩精品| 极品教师在线视频| 欧美日韩综合久久久久久| 中文精品一卡2卡3卡4更新| 国产黄色视频一区二区在线观看| 亚洲成色77777| 日韩三级伦理在线观看| 成人鲁丝片一二三区免费| 一个人看的www免费观看视频| 国产精品久久久久久精品电影| 久久久久网色| 大香蕉久久网| 18禁裸乳无遮挡动漫免费视频 | 日本色播在线视频| 99久国产av精品国产电影| 国产午夜精品一二区理论片| 国产 一区精品| 一区二区三区免费毛片| 国产午夜精品一二区理论片| 国产精品av视频在线免费观看| 欧美xxxx黑人xx丫x性爽| 久久久久久久亚洲中文字幕| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| 99久久精品一区二区三区| 日本与韩国留学比较| 国产免费一区二区三区四区乱码| 成年女人在线观看亚洲视频 | av在线app专区| 我的老师免费观看完整版| av在线天堂中文字幕| 亚洲不卡免费看| 边亲边吃奶的免费视频| 欧美激情在线99| 真实男女啪啪啪动态图| 成人黄色视频免费在线看| 王馨瑶露胸无遮挡在线观看| 欧美日本视频| 久久久久久伊人网av| 熟女人妻精品中文字幕| 国产毛片a区久久久久| 国产欧美另类精品又又久久亚洲欧美| 日韩免费高清中文字幕av| 欧美成人午夜免费资源| 国产精品国产三级专区第一集| 午夜福利视频精品| 80岁老熟妇乱子伦牲交| 日韩大片免费观看网站| 午夜激情福利司机影院| 熟女电影av网| 欧美日韩视频高清一区二区三区二| av在线app专区| 婷婷色麻豆天堂久久| 卡戴珊不雅视频在线播放| 久久精品熟女亚洲av麻豆精品| av免费观看日本| 男人和女人高潮做爰伦理| 国产精品不卡视频一区二区| 大码成人一级视频| 秋霞在线观看毛片| 日本-黄色视频高清免费观看| 18禁在线播放成人免费| 免费少妇av软件| 国产精品无大码| 春色校园在线视频观看| 久久久久国产网址| 我要看日韩黄色一级片| 最近最新中文字幕大全电影3| 国产极品天堂在线| 亚洲最大成人手机在线| 成人亚洲精品一区在线观看 | 国产高清有码在线观看视频| 国产又色又爽无遮挡免| 黑人高潮一二区| 欧美丝袜亚洲另类| 亚洲精品aⅴ在线观看| 久久99热这里只频精品6学生| 真实男女啪啪啪动态图| 亚洲精品日韩av片在线观看| 国产精品99久久99久久久不卡 | 亚洲国产精品成人久久小说| 亚洲av二区三区四区| a级毛片免费高清观看在线播放| 成人亚洲精品av一区二区| 亚洲av欧美aⅴ国产| 69av精品久久久久久| 男人添女人高潮全过程视频| 国产成人免费观看mmmm| 亚洲人成网站在线播| 国产高潮美女av| 久久99热这里只频精品6学生| 精品一区二区三卡| 久久久成人免费电影| 99热6这里只有精品| 99视频精品全部免费 在线| 听说在线观看完整版免费高清| av在线老鸭窝| 日本wwww免费看| 久久久久国产精品人妻一区二区| 欧美区成人在线视频| 亚洲av一区综合| 国产成人a区在线观看| 成人黄色视频免费在线看| 在线免费十八禁| 三级经典国产精品| 亚洲精品国产成人久久av| 国产大屁股一区二区在线视频| 亚洲欧美日韩无卡精品| 少妇人妻精品综合一区二区| 亚洲欧美精品自产自拍| 性色avwww在线观看| 99re6热这里在线精品视频| 国产成人精品婷婷| 国产高清三级在线| 99热网站在线观看| 热re99久久精品国产66热6| 天堂中文最新版在线下载 | 亚洲国产精品999| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 汤姆久久久久久久影院中文字幕| 我要看日韩黄色一级片| 蜜桃久久精品国产亚洲av| 亚洲av国产av综合av卡| 午夜福利视频1000在线观看| 女人久久www免费人成看片| 国产男人的电影天堂91| 亚洲欧美日韩另类电影网站 | 一个人看视频在线观看www免费| 亚洲天堂av无毛| 麻豆成人午夜福利视频| 永久网站在线| 能在线免费看毛片的网站| 天天一区二区日本电影三级| 99九九线精品视频在线观看视频| 少妇的逼水好多| 成人国产av品久久久| 亚洲欧美精品专区久久| 亚洲人与动物交配视频| 三级国产精品欧美在线观看| 男插女下体视频免费在线播放| 黄色配什么色好看| 青春草亚洲视频在线观看| av在线老鸭窝| 免费电影在线观看免费观看| 丝瓜视频免费看黄片| 国产黄频视频在线观看| 少妇人妻精品综合一区二区| 久久热精品热| 五月天丁香电影| 大陆偷拍与自拍| 久久97久久精品| 亚洲精华国产精华液的使用体验| 一级毛片电影观看| 久久久精品免费免费高清| 国产成人免费观看mmmm| 又爽又黄a免费视频| 婷婷色综合大香蕉| 极品教师在线视频| 精华霜和精华液先用哪个| 在线免费观看不下载黄p国产| 身体一侧抽搐| 男人和女人高潮做爰伦理| 国产男女超爽视频在线观看| 18禁在线无遮挡免费观看视频| 不卡视频在线观看欧美| 综合色丁香网| 伦精品一区二区三区| 色哟哟·www| 又黄又爽又刺激的免费视频.| 少妇被粗大猛烈的视频| 国产精品伦人一区二区| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 1000部很黄的大片| 国产亚洲av嫩草精品影院| 夫妻性生交免费视频一级片| 一个人观看的视频www高清免费观看| 欧美人与善性xxx| 国产亚洲最大av| 国产探花在线观看一区二区| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品| 精品久久久久久久久亚洲| 日本黄色片子视频| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 两个人的视频大全免费| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人 | 免费观看性生交大片5| 国产精品人妻久久久久久| 国产亚洲午夜精品一区二区久久 | 激情 狠狠 欧美| 80岁老熟妇乱子伦牲交| 有码 亚洲区| 男人添女人高潮全过程视频| 日韩av免费高清视频| 内地一区二区视频在线| 亚洲欧美成人综合另类久久久| 极品教师在线视频| 在线观看一区二区三区| 亚洲美女搞黄在线观看| 久久久成人免费电影| 内地一区二区视频在线| 精华霜和精华液先用哪个| 热re99久久精品国产66热6| 日产精品乱码卡一卡2卡三| 狂野欧美白嫩少妇大欣赏| 欧美精品人与动牲交sv欧美| 久久精品夜色国产| 蜜臀久久99精品久久宅男| 国产中年淑女户外野战色| 日韩欧美 国产精品| 99久久精品国产国产毛片| 欧美最新免费一区二区三区| 久久午夜福利片| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 网址你懂的国产日韩在线| 国产黄片视频在线免费观看| 日本熟妇午夜| 国产成人免费无遮挡视频| 大香蕉久久网| 美女内射精品一级片tv| 国产高清不卡午夜福利| 免费观看的影片在线观看| 99精国产麻豆久久婷婷| 99久国产av精品国产电影| 永久网站在线| 精品人妻熟女av久视频| 亚洲精品亚洲一区二区| 久久99热6这里只有精品| 一区二区三区精品91| 韩国av在线不卡| 国产黄色免费在线视频| 久久久久性生活片| 亚洲欧美精品专区久久| 成人鲁丝片一二三区免费| 欧美日韩在线观看h| 国产精品久久久久久精品古装| 国产一区二区三区av在线| 男人狂女人下面高潮的视频| 少妇丰满av| 蜜桃久久精品国产亚洲av| 成人国产麻豆网| av线在线观看网站| 各种免费的搞黄视频| 精品久久久噜噜| 国产精品人妻久久久影院| 国产一区有黄有色的免费视频| 爱豆传媒免费全集在线观看| 美女被艹到高潮喷水动态| 欧美另类一区| 久久久久久久久久成人| 午夜福利视频精品| 亚洲国产高清在线一区二区三| 99久国产av精品国产电影| 麻豆久久精品国产亚洲av| 国产精品久久久久久精品电影小说 | 小蜜桃在线观看免费完整版高清| 99九九线精品视频在线观看视频| 久久鲁丝午夜福利片| 91久久精品国产一区二区成人| 成人亚洲精品一区在线观看 | 熟女人妻精品中文字幕| 2021天堂中文幕一二区在线观| 三级国产精品片| 国产精品无大码| 18禁动态无遮挡网站| 国产精品秋霞免费鲁丝片| 国产大屁股一区二区在线视频| 黑人高潮一二区| 精品视频人人做人人爽| av在线天堂中文字幕| 不卡视频在线观看欧美| 欧美xxxx黑人xx丫x性爽| 日本免费在线观看一区| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 亚洲精品456在线播放app| 又大又黄又爽视频免费| tube8黄色片| 亚洲内射少妇av| 国产精品人妻久久久久久| 亚洲av一区综合| 黄色一级大片看看| 男插女下体视频免费在线播放| 成人毛片60女人毛片免费| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 亚洲av在线观看美女高潮| 爱豆传媒免费全集在线观看| 80岁老熟妇乱子伦牲交| 久久久久久久精品精品| 99精国产麻豆久久婷婷| 国产人妻一区二区三区在| 日产精品乱码卡一卡2卡三| 91精品国产九色| 草草在线视频免费看| 日本一本二区三区精品| 亚洲精品国产色婷婷电影| 麻豆成人av视频| 少妇猛男粗大的猛烈进出视频 | 韩国av在线不卡| 免费观看a级毛片全部| 免费黄网站久久成人精品| 成人国产av品久久久| 九色成人免费人妻av| 少妇的逼水好多| 日本av手机在线免费观看| 久久女婷五月综合色啪小说 | 看十八女毛片水多多多| 大香蕉97超碰在线| 91午夜精品亚洲一区二区三区| 又爽又黄无遮挡网站| 99热国产这里只有精品6| 麻豆乱淫一区二区| 天堂中文最新版在线下载 | 欧美三级亚洲精品| 少妇熟女欧美另类| 视频区图区小说| 亚洲av成人精品一区久久| 一级a做视频免费观看| 国产成人一区二区在线| 欧美xxxx黑人xx丫x性爽| 1000部很黄的大片| 又爽又黄无遮挡网站| 国产伦精品一区二区三区视频9| 久久久久久久亚洲中文字幕| 亚洲最大成人av| 欧美激情久久久久久爽电影| 日本一二三区视频观看| 日日啪夜夜撸| 亚洲精品乱码久久久v下载方式| 久久久久久伊人网av| 成年女人在线观看亚洲视频 | 精品国产一区二区三区久久久樱花 | 丝袜美腿在线中文| 寂寞人妻少妇视频99o| 免费在线观看成人毛片| 精品国产三级普通话版| 国产淫语在线视频| 久久99热这里只频精品6学生| 最近中文字幕2019免费版| 水蜜桃什么品种好| 久久精品国产自在天天线| 亚洲人成网站高清观看| 亚洲最大成人av| 亚洲色图av天堂| 久久国内精品自在自线图片| 一区二区三区精品91| 久久精品国产a三级三级三级| 国产国拍精品亚洲av在线观看| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 边亲边吃奶的免费视频| 国产精品久久久久久久久免| 亚洲av免费在线观看| 欧美老熟妇乱子伦牲交| 欧美日韩国产mv在线观看视频 | av一本久久久久| 伦理电影大哥的女人| 国产亚洲精品久久久com| 亚洲真实伦在线观看| 国产在线一区二区三区精| 色哟哟·www| 久久久久国产网址| 成年人午夜在线观看视频| 亚洲熟女精品中文字幕| 国产成人精品一,二区| 中国国产av一级| av福利片在线观看| 高清欧美精品videossex| 麻豆久久精品国产亚洲av| av女优亚洲男人天堂| 国产黄片美女视频| 熟女电影av网| 日本一二三区视频观看| 看十八女毛片水多多多| 午夜老司机福利剧场| 欧美区成人在线视频| 久久午夜福利片| 黄色日韩在线| 日日摸夜夜添夜夜爱| 久久这里有精品视频免费| 秋霞伦理黄片| 九色成人免费人妻av| 成人一区二区视频在线观看| 大片电影免费在线观看免费| 国产欧美日韩精品一区二区| 色哟哟·www| 在线观看人妻少妇| 欧美bdsm另类| 成人鲁丝片一二三区免费| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| 精品人妻偷拍中文字幕| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在| 欧美xxxx黑人xx丫x性爽| 久久久欧美国产精品| 有码 亚洲区| 男女无遮挡免费网站观看| 一边亲一边摸免费视频| 亚洲不卡免费看| 少妇丰满av| 久久久久久久大尺度免费视频| 久久精品国产自在天天线| 国产爽快片一区二区三区| 亚洲精品日韩av片在线观看| 美女高潮的动态| 精品人妻偷拍中文字幕| 老司机影院成人| 成人亚洲欧美一区二区av| 欧美zozozo另类| 白带黄色成豆腐渣| 大片免费播放器 马上看| 日本-黄色视频高清免费观看| 老司机影院成人| 神马国产精品三级电影在线观看| 亚洲精品日本国产第一区| 国产精品一区二区性色av| av国产久精品久网站免费入址| 伦理电影大哥的女人| 毛片一级片免费看久久久久| 三级男女做爰猛烈吃奶摸视频| 一个人观看的视频www高清免费观看| 99视频精品全部免费 在线| 国产精品嫩草影院av在线观看| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 两个人的视频大全免费| 久久久久精品性色| 少妇人妻一区二区三区视频| 精品亚洲乱码少妇综合久久| 日韩av免费高清视频| 国产精品不卡视频一区二区| 亚洲欧美日韩卡通动漫| 美女脱内裤让男人舔精品视频| 国产老妇伦熟女老妇高清| 男女边摸边吃奶| 成年av动漫网址| 亚洲精品色激情综合| 欧美高清成人免费视频www| 啦啦啦中文免费视频观看日本| 亚洲av二区三区四区| 国产片特级美女逼逼视频| 国内少妇人妻偷人精品xxx网站| 亚洲成人一二三区av| 国产伦精品一区二区三区视频9| 免费少妇av软件| 久久久精品欧美日韩精品| 国产成人freesex在线| 18禁在线无遮挡免费观看视频| 永久网站在线| 亚洲精品第二区| 黄片无遮挡物在线观看| 久久精品国产亚洲av天美| 黑人高潮一二区| 看黄色毛片网站| 免费观看无遮挡的男女| 你懂的网址亚洲精品在线观看| 国产人妻一区二区三区在| 2022亚洲国产成人精品| 欧美极品一区二区三区四区| 我的女老师完整版在线观看| 女的被弄到高潮叫床怎么办| 午夜福利在线在线| 乱系列少妇在线播放| 亚洲欧美精品自产自拍| 亚洲精品国产av成人精品|