• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    磷化鈷封裝在磷富集的三維多孔碳及其雙功能氧電催化性能研究

    2021-07-10 10:07:12肖瑤裴煜胡一帆馬汝廣王德義王家成
    物理化學(xué)學(xué)報(bào) 2021年7期
    關(guān)鍵詞:理學(xué)院西華超微結(jié)構(gòu)

    肖瑤,裴煜,胡一帆,馬汝廣,王德義,王家成,*

    1 西華大學(xué)理學(xué)院,成都 610039

    2 中國(guó)科學(xué)院上海硅酸鹽研究所,高性能陶瓷與超微結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200050

    1 Introduction

    Rechargeable ZABs have attracted much attention due to their portability and high power density for resolving the energy shortage and environment pollution issues1,2. However, the application of ZAB is greatly limited duo to the sluggish kinetics at the air electrode, which highly depends on the expensive Ptgroup catalysts3,4. To address these issues, many researches have spent energy to study low-cost and high-efficiency catalysts to replace noble metal Pt/RuO25–7. Usually, a large number of active sites and high activity of active species are indispensable for efficient catalysts. For the former aspect, by adjusting the geometry of the catalyst, such as, engineering catalyst morphology with hierarchical pores or reducing the particle size,it can increase the electrochemically active sites8–12. For the latter aspect, by regulate the electronic structure of the catalytic active center, it has an appropriate adsorption energy for the intermediate during the reaction13–16.

    Transition-metal phosphides (TMPs) are ideal candidates because of their good conductivity and high activity. Especially,Co2P-based catalysts are widely studied based on excellent OER17–19. However, there are few reports of Co2P-based materials as efficient ORR catalysts. For the cathode electrocatalyst of ZAB, it is indispensable to have bifunctional catalytic activity. So, there is a huge challenge to elaborately design Co2P-based catalyst with outstanding ORR performance for ZABs. Recently, some studies reported that the doping of heteroatoms with different electronegativities is an available method to enhance the activity of carbon materials by tuning electronic properties and conductivity20–23. For example, Daiet al. prepared vertically-arranged nitrogen-containing carbon nanotubes (VA-NCNTs) that exhibited highly efficient ORR activity. Because the introduction of more electronegative nitrogen atoms into the carbon plane of conjugated nanotubes will cause the adjacent carbon atoms to carry relatively high positive charges24. Moreover, many researchers suggest that the chemical environment of TMPs such as CoP25,26, Co2P27,28and NiCo2P229located plays a crucial role for stable ORR and OER.Chenet al. reported that nitrogen and phosphorus dualcoordinated iron to boost ORR performance30. To this end, it is effective to synthesize highly efficient ORR catalysts based on Co2P and P-containing carbon with their catalytic performance better than that of noble metals.

    What’s more, catalytic reaction is a complex process, which not only depends on the activity of the catalyst, but also relates to number of active sites31. Recently, tremendous efforts have been devoted to fabricate catalytic materials with various structures, for instance, core-shell, array and hierarchical porous structure, to improve the electroactivity32–35. Due to the hierarchical porous structure, it not only facilitates mass and electron transport, but also exposes more active sites. For example, Guoet al. preparing 3D metal sulfide (MxSy)nanomaterials based on the 3D hierarchical porous structure exhibits satisfactory performance36.

    Here, we provide a method to fabricate bifunctional oxygen electrocatalyst of Co2P-based materials by geometrical optimization and electronic adjustment. Co2P nanoparticles wrapped in P-doped porous carbon aerogels show excellent ORR and OER activity. The results indicate that the assynthesized catalyst deliver outstanding ORR activity with halfwave potential (E1/2) of 0.84 V more than other Co2P-based catalysts and comparable to commercial Pt/C. The increase in catalytic activity is mainly due to the regular hierarchical pores,high specific surface area and synergy between Co2P and Pdoped carbon matrix, which significantly optimize the electronic structure of Co2+in Co2P and thus weaken the binding force between the adsorbed OH* and the surface Co atoms in the determination step. When used as a cathode catalyst, Co2P-PCA-800-based ZAB exhibits a high open circuit voltage (1.44 V) and high power density. In addition, ZAB also exhibits higher specific energy density and better stability than noble metal bases. Finally, we believe that this method is universal and can be used to prepare other similar catalysts to solve the energy crisis.

    2 Experimental

    2.1 Chemicals

    Cobalt nitrate hexahydrate (AR), 70% (w, mass fraction)Phytic acid solution, k-Carrageenan and 5% (w) Nafion solution were come from Aldrich (China). The 20% (w) Pt/C and 99.9%(w) RuO2were purchased from Johnson Matthey (UK). All the reagents were utilized without further purification.

    2.2 Preparation of Co2P-PCA hybrid

    The 1.2% (w) k-carrageenan aqueous solution was prepared at 80 °C using magnetic stirring. The Co(NO3)2solution was dropped in carrageenan solution and stirred 60 min. Then phytic acid solution was slowly added and stirred for another 60 min.Finally, it was then cooled at room temperature to obtain carrageenan-PA-M hydrogel, washed and frozen to obtain carrageenan-PA-M aerogels. The carrageenan-PA-M aerogels were pyrolyzed at 800 °C for 3 h in Ar to obtain Co2P-PCA-800.Furthermore, Co-doped carbon aerogels (Co-CA) and P-doped carbon aerogels (PCA) were also made using the same method without adding PA or Co(NO3)2. Pure Co2P nanoparticle was prepared for comparison according to the literature37.

    2.3 Electrocatalytic activity evaluation

    All electrochemical measurements were conducted in a threeelectrode configuration with CHI 760E electrochemical workstation at room temperature. The saturated Hg/HgCl2electrode (SCE) and graphite rod were used as the reference and counter electrodes, respectively. A glassy carbon electrode with catalyst (0.5 mg·cm?2) was used as working electrode. To prepare the working electrode, disperse 5 mg catalyst in a solution containing 500 μL of deionized water, 500 μL of ethanol, and 20 μL of 5% (w) Nafion solution for sonication for 30 min. And the catalyst ink (20 μL) was pipetted onto a polished glassy carbon electrode. For comparison, 20% (w) Pt/C ink with the same load was prepared. The electrochemical measurement was conducted in O2-saturated 0.1 mol·L?1KOH for ORR, 1 mol·L?1KOH for OER. The potential, measured against SCE converted to potential versus RHE according toERHE= 0.2415 +ESCE+ pH × 0.059. Linear sweep voltammetry (LSV)measurements were executed with a scan rate of 10 mV·s?1. The numbers of electrons transferred (n) during ORR was calculated by the following Koutecky-Levich equation at various electrode potentials based on the different rotating speeds. At the same time, the number of electrons transferred (n) and the hydrogen peroxide production (%H2O2) rate were calculated by rotating ring-disk electrode (RRDE) test.

    2.4 Assembly of a zinc-air battery (ZAB)

    In order to test ZABs, the prepared catalyst ink was uniformly coated on carbon paper as the cathode. A polished Zn plate was used as the anode and 6 mol·L?1KOH solution containing 0.2 mol·L?1Zn(OAc)2was used as the electrolyte. The mass loading on carbon paper was 0.62 mg·cm?2. For comparison, a mixture of 20% Pt/C and RuO2(mass ratio of 1 : 1) with the same loading was coated onto carbon paper as the cathode. The electrochemical performances of ZABs, such as cycling ability tests and specific capacities texts were recorded by a Land CT2001A system.

    3 Results and discussion

    The experiment process is schematically described in Fig. S1.The k-carrageenan macromolecules are random coil-like structures in aqueous solution at 80 °C. Co(NO3)2and phytic acid solution are slowly added because metal cations can induce the conversion of random coil carrageenan chains into a doublehelix structure and become carrageenan-M hydrogels36. The obtained hydrogels converted to a Co2P@P-doped carbon aerogelviafreeze drying and pyrolysis at 800 °C (Co2P-PCA-800). In this step, carrageenan as a carbon source and template and unstable small molecules decompose to form a 3D porous architecture. The X-ray diffraction (XRD) results show that the Co2P nanoparticles and Co2P-PCA-800 have main characteristic at around 40.7°, 41.0°, 43.3°, 52° and 54.1°, which could be correspond to the (121), (220), (211), (130), and (002) crystal planes of Co2P, respectively (JCPDS No. 32-0306)38(Fig. 1a).Field emission scanning electron microscopy (FESEM) shows that Co2P-PCA-800 exhibits a 3D self-supporting honeycomb porous structure. The interconnected macropores and mesopores can be observed in the network (Fig. 1b and Fig. S2). Here, we adjust the geometry morphology of carrageenan aerogel by doping Co(NO3)2and phytic acid to obtain regular hierarchical porous structure (Fig. S3). And compared to Co-CA and PCA,the Co2P-PCA-800 has a regular honeycomb porous structure while Co-CA and PCA are broken trivial network structures. The regular interconnected porous structure can be beneficial to mass transfer and ensure uniform distribution of ion current. However,when the structure collapses, the incomplete porous structure not only increases the mass transfer distance, but the lower resistance is the main channel for electrolyte ions. Therefore,most active sites are abandoned during the catalytic process39,40.And the transmission electron microscopy (TEM) shows that the Co2P nanocrystals with a size of 70–100 nm are embedded in the carbon (Fig. 1c). As shown in Fig. 1d, the lattice fringe of 0.226 nm corresponds to the (121) crystal planes of Co2P. The presence of the Co2P crystals is further confirmed by selected area diffraction (ASED) (Fig. 1e). And the elemental mapping images show a relatively uniform dispersion of Co, P and C elements and Co2P nanoparticles are encapsulated in a P-rich carbon matrix (Fig.1f).

    Fig. 1 a) XRD images and Co2P; b, c) SEM and TEM images of Co2P-PCA-800; d) HRTEM image of Co2P-PCA-800; e) SAED pattern of Co2P-PCA-800; f) HADDF and EDS elemental mappings of Co2P-PCA-800.

    Further investigated the composition and valence of the sample. XPS indicates the surface composition of C, Co and P in the Co2P-PCA-800. And the element contents are estimated as the percentage of 96.95%, 0.22% and 2.84%, which verifies the doping of P and Co within the carbon framework (Fig. S4). C 1sspectrum with binding energies of 284.7, 286.6, 293.2 and 296.0 eV can be ascribed to the C―C, C―O, C=O and O=C―O―P type bonds of Co2P-PCA-800 in Fig. 2a. And compared to the C 1sof Co-CA, it has a strong electron-withdrawing peak of O=C―O―P. Therefore, the doping of P can adjust the charge distribution of local Co2+. This can also be found in C 1sof PCA(Fig. S4b). This result is also consistent with that from Co 2ppeak. In the Co 2pspectrum, there are two orbital double peaks of Co2+, accompanied by two satellite peaks. And the peaks at 781.2 and 796.7 eV correspond to the Co 2p3/2and Co 2p1/2orbitals, respectively. At the same time, compared with metallic cobalt (778.2 eV), the cobalt 2p3/2peak (Fig. 2b) shifted to a more positive value at 781.2 eV, indicating that Co2+in the Co2PPCA-800 catalyst has a partial positive charge20. In the P 2pspectrum (Fig. 2c), the binding energies of 132.8, 132.9, 133.8 eV and 135.2 eV can be corresponded to the P―C, C3―PO3,C―PO3and C―O―PO3type bonds respectively41. And the P―Co peaks at 129.6 and 130.8 eV can also be found. The charge transfer between Co2P and P-doped carbon can change the electronic structure of each other, thereby having better performance13. The above results indicate that we successfully prepared Co2P and P-doped carbon hybrid materials, which are potential as active bifunctional electrocatalyst.

    Raman spectroscopy for further analysis (Fig. 2d). There are two peaks around 1300 and 1600 cm?1, corresponding to the D and G peaks, which are characteristic peaks of defective carbon and graphene carbon layer, respectively. As observed, the ID/IGratios of Co2P-PCA-800 is 0.98 indicating that a higher defective degree present in Co2P-PCA-800 than the control samples. The presence of defects will change the charge distribution of adjacent carbons, which may be beneficial to the electrochemical reaction42–44. In order to determine the specific surface area and porosity of the prepared material, the N2adsorption-desorption test was performed. The N2adsorption-desorption isotherms of all the samples show typical type IV adsorption isotherm (Fig.2e) indicating the presence of mesopores. Combining with SEM,we know that the carbon materials are a hierarchical porous structure containing mesopores and macropores. The BET specific surface area of Co2P-PCA-800 is 266.98 m2·g?1higher than other comparative samples in Table S1. And the samples possess mesoporous structure in Fig. 2f. As we all know,pyrolysis temperature is also critical to the electrocatalytic performance of carbon materials, so we also prepare samples at different temperature (Fig. S5). The Co2P-PCA-800 also has a higher defective degree and larger specific surface area. With high specific surface area, the electrocatalyst can be expected to have excellent performance in the ORR/OER electrochemical test.

    Fig. 2 XPS spectrum of the synthesized Co2P-PCA-800 composite: a) C 1s; b) Co 2p and c) P 2p; d) Raman spectrum of Co-CA, PCA and Co2P-PCA-800; e, f) nitrogen adsorption-desorption isotherms and pore-size distribution of Co-CA, PCA and Co2P-PCA-800.

    Fig. 3 a) ORR polarization curves; b) Comparison of the onset (Eonset) and half-wave (E1/2) potentials of different catalysts; c) LSV curves of the Co2P-PCA-800 at a different rotation rate (inset: K-L plots based on the ORR curves of Co2P-PCA-800 at different potentials (vs. RHE);d) Number of electrons transferred and peroxide yields of Co2P-PCA-800 and 20% Pt/C; e) Tolerance toward methanol text of Co2P-PCA-800 and 20% Pt/C; f) Current–time (i–t) chronoamperometric responses for the ORR of the Co2P-PCA-800 and 20% Pt/C.

    The ORR activities of the Co2P-PCA-800 electrocatalysts were first measured by three-electrode system. The linear sweep voltammogram curves show the Co2P-PCA-800 with higher onset potential (Eonset) of 0.97 V (vs. RHE) and half-wave potential (E1/2) of 0.84 V (vs. RHE) outperforming Co-CA (0.92 V, 0.78 V), PCA (0.89 V, 0.77 V) and Co2P (0.75 V, 0.67 V) (Fig.3a). And theE1/2of Co2P-PCA-800 is comparable with Pt/C. We compare theEonsetandE1/2of the catalysts and Co2P-PCA-800 possess more positive half-wave potential (Fig. 3b). Co2P-PCA-800 shows better ORR catalytic activity indicating that the formation of the hybrid structure of Co2P and P-doped porous carbon has suitable adsorption energy. Also, we compare the ORR catalytic activity of the samples at different pyrolysis temperatures and others Co2P-electrocatalysts reported (Fig. S6 and Table S2). Compared to others, Co2P-PCA-800 also has satisfactory ORR catalytic activity, which mainly comes from the regular hierarchical porous structure and local charge change by P-doping. The LSV at different rotation rates are tested, and the results fitted by the Koutecky-Levich (K-L) plot (Fig. 3c).As the rotation speed increases, the current density increases accordingly, and the electron transfer number (n) is 3.9,suggesting that the ORR process is a primary four-electron reaction. In the meantime, the electron transfer number and hydrogen peroxide (H2O2%) are evaluated by rotating ring-disk electrode measurements. Similarly, the RRDE test shows that the Co2P-PCA-800 catalyst has a good selectivity, showing a higher electron transfer number (n) ~3.9 and a lower hydrogen peroxide yield 5% (Fig. 3d). The methanol tolerance and stability of Co2PPCA-800 are tested by chronoamperometric measurement. As shown in Fig. 3e, Co2P-PCA-800 exhibits excellent tolerance toward the methanol crossover. On the contrary, the chronoamperometric current of Pt/C catalyst dropped sharply,while the Co2P-PCA-800 was basically unchanged after methanol injection. Moreover, the chronoamperometric responses of Co2P-PCA-800 and Pt/C catalysts are measured at 0.4 V and shows that Co2P-PCA-800 has better stability than Pt/C (Fig. 3f). The results indicated that Co2P nanoparticles dispersed in P-doped carbon matrix can effectively improve the catalytic efficiency.

    What’s more, Co2P-PCA-800 also has satisfactory OER performance. The potentials corresponding to the current density of 10 mA·cm?2(E10) for Co2P-PCA-800, Co-CA, and PCA are 1.70, 1.72 and 1.73 V, respectively, suggesting the enhanced and excellent OER performance for Co2P-PCA-800 (Fig. S7a). Fit the LSV polarization curve and calculate the Tafel slope to evaluate the dynamics of the catalyst. The Tafel slope of Co2PPCA-800 is 81.1 mV·dec?1(Fig. S7b), which is lower than those of Co-CA (94.4 mV · dec?1) and PCA (113.1 mV·dec?1),suggesting a more favorable kinetics of Co2P-PCA-800, while the improvement of the kinetics could be owing to the more active sites and better conductivity. To further illustrate, we conducted an electrochemical impedance test (Fig. S7c). The smallest diameter of the semicircle for Co2P-PCA-800 in the Nyquist plot indicates the high conductivity of Co2P-PCA-800.The OER performance also depends on electrochemically active surface area (ECSA). To compare ECSA, we measure the electrochemical double-layer capacitances of samplesviaa simple efficient cyclic voltammetry (CV) (Fig. S8). Co2P-PCA-800 exhibits aCdlof 12.9 mF·cm?2, which is larger than that of Co-CA (6.0 mF·cm?2) and PCA (0.5 mF·cm?2) (Fig. S7d). This high ECSA of Co2P-PCA-800 is ascribed to the larger specific surface. The outstanding electrocatalytic performance of Co2PPCA-800 can be ascribed to following reasons: (i) The improved conductive property of hybrids. Although cobalt or cobalt oxide nanoparticles have lower conductivity and are easy to aggregate,P-doped carbon is not only beneficial for electrical conductivity and electrochemical performance, but also maintain the structural stability. (ii) The high surface area and hierarchical porous structure. The porous structure and high surface area can provide high density of active sites and accelerates the mass transport. (iii) The synergy Co2P and P-doped carbon. As is known to all, the difference in electronegativity between carbon atoms and heteroatoms, the doping heteroatoms generally redistributes charge density and spin density of carbon atoms,thereby effectively regulating the work function and having a more appropriate adsorption energy.27. Here, based on the synergistic effect of Co2P and P-doped carbon, Co2P-PCA-800 shows outstanding ORR catalytic performance mainly due to proper desorption. And, the ORR reaction on the Co surface of Co2P may be as follows:

    where * denotes active site on the surface10,45. Based on Geyer,the rate-determining step in the overall ORR process is the desorption of OH * on the Co surface of Co2P nanoparticles. P doping produced a strong electron-withdrawing group, which can induce Co electron transfer, and eventually lead to weakening of the binding force between the intermediate OH*and the surface Co atom25. And the real active sites for OER may be the cobalt hydroxide. The previous research has proved that transition metal phosphides could undergo surface reconstruction to form hydroxides in the OER process46,47.

    Fig. 4 a) Schematic illustration of the ZAB; b) Photograph of ZAB open circuit voltage measurement; c) Discharge polarization curves and power density of Co2P-PCA-800 and Pt/C||RuO2; d) Galvanostatic discharge curves of Co2P-PCA-800 and Pt/C||RuO2 tested at 10 mA·cm?2; e, f) Cycle test at 10 mA·cm?2.

    The high catalytic activities of Co2P-PCA-800 complex prompt us to prepare a ZAB by using the Co2P-PCA-800 catalyst as air cathode and zinc foil as the anode (Fig. 4a). For comparison, we assembled the cathode catalyst as precious metal-based ZAB. The open-circuit potential of Co2P-PCA-800 based ZAB is ~1.44 V (Fig. 4b). As shown in Fig. S9, there is a smaller voltage gap, which indicates excellent rechargeable capability of Co2P-PCA-800 based battery. The discharge polarization curve and power density display that Co2P-PCA-800 exhibits similar performance compared to Pt/C||RuO2. The discharge polarization and corresponding current density of 133 mA·cm?2at 0.4 V, and the peak power density of 58 mW·cm?2at 90 mA·cm?2for Co2P-PCA-800 are compared to those of the Pt/C||RuO2. But the Co2P-PCA-800-based battery perform a higher capacity than Pt/C||RuO2, such as, 741 mAh·g?1for Co2PPCA-800vs.620 mAh·g?1for Pt/C||RuO2at 10 mA·cm?2(Fig.4d). Finally, Pt/C||RuO2-based battery showed poor stability for 18 h, while the battery with Co2P-PCA-800 shows a good stability for 32 h in Fig. 4e. And the charge-discharge voltage gap of the two batteries has slightly increased at 35 cycles.However, the voltage gap rapidly increases for Pt/C||RuO2about(1.55 V), while Co2P-PCA-800 remain stable after 35 cycles(Fig. 4f). The above results demonstrate the outstanding activity and stability of Co2P-PCA-800 as cost-effective electrocatalysts for rechargeable ZABs.

    4 Conclusions

    In summary, we report an effective approach to fabrication Co2P-PCA-800 catalyst with high-performance catalytic activity. The as-prepared Co2P-PCA-800 has a 3D honeycomb hierarchical porous structure. Due to the high specific surface area, regular hierarchical pore structure, and P-doping adjusts the electronic structure of Co2+in Co2P, the Co2P-PCA-800 exhibited excellent ORR/OER electrocatalytic activity. When used as a ZAB cathode, Co2P-PCA-800 exhibit excellent charge and discharge performance closed to Pt/C||RuO2.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    理學(xué)院西華超微結(jié)構(gòu)
    西華大學(xué)成果展示
    包裝工程(2024年8期)2024-04-23 03:59:24
    昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
    昆明理工大學(xué)理學(xué)院簡(jiǎn)介
    西華大學(xué)成果展示
    包裝工程(2023年4期)2023-03-07 01:13:24
    子路、曾皙、冉有、公西華侍坐
    文苑(2020年5期)2020-06-16 03:18:36
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版)
    白藜蘆醇對(duì)金黃色葡萄球菌標(biāo)準(zhǔn)株抑菌作用及超微結(jié)構(gòu)的影響
    電擊死大鼠心臟超微結(jié)構(gòu)及HSP70、HIF-1α表達(dá)變化
    不同波長(zhǎng)Q開(kāi)關(guān)激光治療太田痣療效分析及超微結(jié)構(gòu)觀察
    国产精品 欧美亚洲| 在线播放国产精品三级| 人妻一区二区av| 国产精品久久电影中文字幕 | 亚洲专区中文字幕在线| 国产又色又爽无遮挡免费看| 亚洲,欧美精品.| 国产淫语在线视频| 精品国产亚洲在线| 妹子高潮喷水视频| 亚洲专区中文字幕在线| 丁香欧美五月| kizo精华| 亚洲成人国产一区在线观看| 狠狠精品人妻久久久久久综合| 老熟女久久久| 精品亚洲成国产av| 老司机深夜福利视频在线观看| 丝袜美足系列| a级毛片黄视频| 亚洲美女黄片视频| 精品免费久久久久久久清纯 | 国精品久久久久久国模美| 亚洲欧美一区二区三区黑人| 亚洲熟女毛片儿| avwww免费| 国产伦人伦偷精品视频| 老司机福利观看| 美女视频免费永久观看网站| 女人被躁到高潮嗷嗷叫费观| 两个人看的免费小视频| 18在线观看网站| 最黄视频免费看| 久久久久久亚洲精品国产蜜桃av| 99精国产麻豆久久婷婷| 国产欧美日韩综合在线一区二区| 在线播放国产精品三级| 欧美激情久久久久久爽电影 | 在线观看免费午夜福利视频| 日本av手机在线免费观看| 亚洲专区国产一区二区| 热99国产精品久久久久久7| 久久久久国产一级毛片高清牌| 窝窝影院91人妻| 老司机深夜福利视频在线观看| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 一本—道久久a久久精品蜜桃钙片| 两个人看的免费小视频| 精品一区二区三区视频在线观看免费 | 久久久久久久久久久久大奶| 美女扒开内裤让男人捅视频| 免费在线观看视频国产中文字幕亚洲| tube8黄色片| 99精国产麻豆久久婷婷| 中文字幕色久视频| 久久精品亚洲熟妇少妇任你| 国产xxxxx性猛交| 国产有黄有色有爽视频| 日韩中文字幕视频在线看片| 五月天丁香电影| 亚洲成人免费av在线播放| av有码第一页| 日本撒尿小便嘘嘘汇集6| 国产成人av激情在线播放| 水蜜桃什么品种好| 80岁老熟妇乱子伦牲交| 久久久久国内视频| 久久热在线av| 国产精品免费视频内射| 亚洲精品一二三| 99re6热这里在线精品视频| 国产男靠女视频免费网站| 国产在视频线精品| 男女高潮啪啪啪动态图| 亚洲天堂av无毛| 国产福利在线免费观看视频| 黄色视频,在线免费观看| 久久国产精品男人的天堂亚洲| 一级黄色大片毛片| 伦理电影免费视频| 欧美日韩成人在线一区二区| 久久久水蜜桃国产精品网| 国产深夜福利视频在线观看| 欧美日韩av久久| 国产免费视频播放在线视频| 国产亚洲午夜精品一区二区久久| 热99re8久久精品国产| 亚洲国产欧美一区二区综合| 性高湖久久久久久久久免费观看| 亚洲国产av影院在线观看| 精品少妇久久久久久888优播| 黑人巨大精品欧美一区二区mp4| av欧美777| 久久精品国产亚洲av高清一级| 少妇的丰满在线观看| 午夜91福利影院| 国产深夜福利视频在线观看| 亚洲av日韩在线播放| 国产单亲对白刺激| 欧美日韩av久久| 99热网站在线观看| 丝袜人妻中文字幕| 淫妇啪啪啪对白视频| 少妇 在线观看| 国产高清激情床上av| 大型av网站在线播放| 精品久久蜜臀av无| 亚洲精品一卡2卡三卡4卡5卡| 性少妇av在线| 岛国在线观看网站| 国产91精品成人一区二区三区 | 国产日韩欧美视频二区| 热99久久久久精品小说推荐| 国产av又大| 怎么达到女性高潮| 黑人巨大精品欧美一区二区蜜桃| 精品国产乱码久久久久久男人| 成人国产av品久久久| 19禁男女啪啪无遮挡网站| 最黄视频免费看| 午夜福利视频精品| 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| 中文字幕最新亚洲高清| 少妇粗大呻吟视频| 国产有黄有色有爽视频| 高清在线国产一区| 亚洲三区欧美一区| 国产三级黄色录像| 欧美黄色淫秽网站| 黄色视频在线播放观看不卡| 亚洲第一青青草原| 日本一区二区免费在线视频| 一本综合久久免费| 一个人免费看片子| 久久精品成人免费网站| 国产av国产精品国产| 精品人妻1区二区| 久久国产精品大桥未久av| 中文字幕色久视频| 热re99久久精品国产66热6| 欧美激情极品国产一区二区三区| 老司机福利观看| 侵犯人妻中文字幕一二三四区| 国产免费av片在线观看野外av| 亚洲人成电影观看| 亚洲中文日韩欧美视频| 久久狼人影院| tocl精华| 中文字幕精品免费在线观看视频| 久久天堂一区二区三区四区| 三级毛片av免费| 搡老熟女国产l中国老女人| 亚洲欧美色中文字幕在线| 色94色欧美一区二区| 国产成人精品无人区| 一区在线观看完整版| 色综合欧美亚洲国产小说| 脱女人内裤的视频| 欧美激情久久久久久爽电影 | 亚洲专区字幕在线| 一边摸一边做爽爽视频免费| 亚洲全国av大片| 精品视频人人做人人爽| 99在线人妻在线中文字幕 | 91老司机精品| 亚洲av第一区精品v没综合| 久久久久国产一级毛片高清牌| 亚洲一区中文字幕在线| 一二三四社区在线视频社区8| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机深夜福利视频在线观看| 国产免费av片在线观看野外av| 成人黄色视频免费在线看| 国精品久久久久久国模美| 精品亚洲成国产av| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 国产又爽黄色视频| 国产熟女午夜一区二区三区| 欧美人与性动交α欧美软件| 美女高潮喷水抽搐中文字幕| 在线av久久热| 亚洲精品在线美女| 久久99一区二区三区| 在线播放国产精品三级| 国产日韩欧美亚洲二区| 日韩人妻精品一区2区三区| 国产在线精品亚洲第一网站| 色在线成人网| 69精品国产乱码久久久| 一边摸一边抽搐一进一出视频| 国产一卡二卡三卡精品| 老司机午夜十八禁免费视频| 又紧又爽又黄一区二区| 国产一区二区三区在线臀色熟女 | 国产成人av教育| 亚洲午夜精品一区,二区,三区| 国产精品二区激情视频| 大码成人一级视频| 成人av一区二区三区在线看| 啪啪无遮挡十八禁网站| 一区二区三区国产精品乱码| 宅男免费午夜| 亚洲精品乱久久久久久| 悠悠久久av| 久久中文字幕一级| xxxhd国产人妻xxx| 久久亚洲精品不卡| 欧美黄色淫秽网站| 纯流量卡能插随身wifi吗| 国产伦人伦偷精品视频| 国产99久久九九免费精品| 久久久国产欧美日韩av| 欧美日韩福利视频一区二区| 亚洲欧美精品综合一区二区三区| 成在线人永久免费视频| 人人澡人人妻人| 男女午夜视频在线观看| tocl精华| 亚洲五月色婷婷综合| 国产精品.久久久| 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| 日韩人妻精品一区2区三区| 精品高清国产在线一区| 欧美午夜高清在线| 老司机福利观看| 女人被躁到高潮嗷嗷叫费观| 18在线观看网站| 国产精品亚洲av一区麻豆| 亚洲第一欧美日韩一区二区三区 | 日本a在线网址| 国产高清国产精品国产三级| 国产成人系列免费观看| 一区二区av电影网| 亚洲精品中文字幕在线视频| 久久精品91无色码中文字幕| 日韩免费高清中文字幕av| 亚洲成人国产一区在线观看| 亚洲精品国产一区二区精华液| 久久婷婷成人综合色麻豆| 国产精品av久久久久免费| 久久人妻av系列| 免费人妻精品一区二区三区视频| 国产精品熟女久久久久浪| 日韩欧美三级三区| 高清av免费在线| 少妇粗大呻吟视频| 亚洲五月婷婷丁香| 国产精品1区2区在线观看. | 亚洲人成电影观看| 亚洲色图av天堂| 亚洲精品国产精品久久久不卡| 黄片大片在线免费观看| 9191精品国产免费久久| 精品少妇黑人巨大在线播放| 一级毛片电影观看| 欧美精品高潮呻吟av久久| 1024视频免费在线观看| 欧美久久黑人一区二区| 亚洲伊人色综图| 久久天躁狠狠躁夜夜2o2o| 热re99久久国产66热| 成年动漫av网址| 国产福利在线免费观看视频| 国精品久久久久久国模美| 亚洲成人免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| 午夜福利一区二区在线看| 亚洲国产av影院在线观看| 51午夜福利影视在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲欧美激情在线| 午夜日韩欧美国产| 日日摸夜夜添夜夜添小说| 久久精品亚洲熟妇少妇任你| 午夜精品国产一区二区电影| 黄片小视频在线播放| 高清黄色对白视频在线免费看| 亚洲,欧美精品.| 欧美av亚洲av综合av国产av| 国产精品1区2区在线观看. | 一二三四社区在线视频社区8| 新久久久久国产一级毛片| 丝瓜视频免费看黄片| 女人被躁到高潮嗷嗷叫费观| 建设人人有责人人尽责人人享有的| 大香蕉久久网| 亚洲精品国产精品久久久不卡| 国产精品九九99| 精品卡一卡二卡四卡免费| 精品国产亚洲在线| 不卡av一区二区三区| 久久影院123| 最新在线观看一区二区三区| tube8黄色片| 狠狠精品人妻久久久久久综合| 亚洲全国av大片| 一个人免费在线观看的高清视频| 亚洲男人天堂网一区| 亚洲成人手机| 欧美一级毛片孕妇| 亚洲欧美一区二区三区黑人| 成年动漫av网址| 亚洲色图av天堂| 怎么达到女性高潮| av又黄又爽大尺度在线免费看| 国产精品久久久久久人妻精品电影 | 免费av中文字幕在线| 最新的欧美精品一区二区| 国产一卡二卡三卡精品| av免费在线观看网站| 国产精品亚洲一级av第二区| 精品人妻在线不人妻| 欧美激情 高清一区二区三区| 久久久久久久国产电影| 一区福利在线观看| 国产精品免费视频内射| 免费在线观看日本一区| 欧美日韩福利视频一区二区| 高清黄色对白视频在线免费看| 1024香蕉在线观看| 国产亚洲av高清不卡| 日本vs欧美在线观看视频| 女警被强在线播放| 人人妻人人爽人人添夜夜欢视频| 怎么达到女性高潮| 国产一卡二卡三卡精品| www.自偷自拍.com| 久久精品亚洲熟妇少妇任你| 日本av手机在线免费观看| 免费不卡黄色视频| 99国产精品一区二区蜜桃av | 国产欧美日韩综合在线一区二区| 精品国产乱码久久久久久男人| 考比视频在线观看| videosex国产| 亚洲av日韩在线播放| 成人黄色视频免费在线看| 十分钟在线观看高清视频www| 精品午夜福利视频在线观看一区 | 丁香六月欧美| 水蜜桃什么品种好| 91字幕亚洲| 搡老岳熟女国产| 1024香蕉在线观看| 热99re8久久精品国产| 啦啦啦视频在线资源免费观看| 国产精品久久久久成人av| 亚洲精品一卡2卡三卡4卡5卡| 午夜视频精品福利| av在线播放免费不卡| 91成年电影在线观看| av网站免费在线观看视频| 超色免费av| 丰满迷人的少妇在线观看| 99九九在线精品视频| 又黄又粗又硬又大视频| 日本黄色视频三级网站网址 | 亚洲欧美一区二区三区久久| 欧美精品亚洲一区二区| 精品一区二区三区视频在线观看免费 | 亚洲国产中文字幕在线视频| 高潮久久久久久久久久久不卡| 一本大道久久a久久精品| 亚洲伊人色综图| 高清欧美精品videossex| 成人av一区二区三区在线看| 日本欧美视频一区| 女性生殖器流出的白浆| 大香蕉久久成人网| 亚洲综合色网址| 99国产精品99久久久久| 一边摸一边抽搐一进一出视频| 中文字幕制服av| 一区二区日韩欧美中文字幕| 五月开心婷婷网| 免费人妻精品一区二区三区视频| 18禁裸乳无遮挡动漫免费视频| 少妇猛男粗大的猛烈进出视频| 女性被躁到高潮视频| 免费少妇av软件| 黑丝袜美女国产一区| 一级,二级,三级黄色视频| 日韩一卡2卡3卡4卡2021年| 多毛熟女@视频| 午夜91福利影院| 欧美日韩亚洲高清精品| 一区二区日韩欧美中文字幕| 肉色欧美久久久久久久蜜桃| 国产极品粉嫩免费观看在线| 高清在线国产一区| 亚洲一区中文字幕在线| 国产男靠女视频免费网站| 久久久国产精品麻豆| 亚洲天堂av无毛| 国产高清videossex| 色老头精品视频在线观看| 少妇精品久久久久久久| 亚洲性夜色夜夜综合| bbb黄色大片| 久久99热这里只频精品6学生| 亚洲专区国产一区二区| 午夜福利一区二区在线看| 中文字幕另类日韩欧美亚洲嫩草| 一进一出抽搐动态| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 涩涩av久久男人的天堂| 亚洲精品美女久久久久99蜜臀| 视频在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 无限看片的www在线观看| 在线亚洲精品国产二区图片欧美| 亚洲精品一二三| 亚洲一码二码三码区别大吗| 国产一区二区在线观看av| 亚洲欧美一区二区三区久久| 免费看a级黄色片| 国产精品九九99| tocl精华| xxxhd国产人妻xxx| 国产精品一区二区精品视频观看| 97人妻天天添夜夜摸| 好男人电影高清在线观看| 日本五十路高清| 亚洲成人国产一区在线观看| 青草久久国产| 超碰成人久久| 大码成人一级视频| 97人妻天天添夜夜摸| 国产一区有黄有色的免费视频| 性色av乱码一区二区三区2| 亚洲精品乱久久久久久| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av香蕉五月 | 国产精品一区二区在线观看99| 最新在线观看一区二区三区| 香蕉久久夜色| 欧美精品高潮呻吟av久久| 少妇裸体淫交视频免费看高清 | 免费观看人在逋| 欧美一级毛片孕妇| 一边摸一边抽搐一进一出视频| 最近最新中文字幕大全免费视频| 久久香蕉激情| 国产成+人综合+亚洲专区| 国产主播在线观看一区二区| 国产熟女午夜一区二区三区| 热re99久久国产66热| 精品视频人人做人人爽| 久久九九热精品免费| 亚洲国产欧美网| 在线永久观看黄色视频| 精品国产乱码久久久久久小说| 欧美国产精品va在线观看不卡| 在线永久观看黄色视频| 人人妻人人澡人人看| 久久久久网色| 国产在线视频一区二区| 性少妇av在线| av免费在线观看网站| 岛国毛片在线播放| 国产精品亚洲av一区麻豆| 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 亚洲综合色网址| 少妇粗大呻吟视频| 性色av乱码一区二区三区2| 青青草视频在线视频观看| 亚洲少妇的诱惑av| 久久天躁狠狠躁夜夜2o2o| 中文字幕高清在线视频| 天天影视国产精品| 99久久精品国产亚洲精品| 纯流量卡能插随身wifi吗| 在线观看免费日韩欧美大片| 精品国产亚洲在线| 黄片大片在线免费观看| 日韩一区二区三区影片| 亚洲av日韩在线播放| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美亚洲二区| 视频在线观看一区二区三区| 午夜日韩欧美国产| 99re在线观看精品视频| 香蕉国产在线看| 一级a爱视频在线免费观看| 欧美激情高清一区二区三区| 两个人看的免费小视频| 啦啦啦免费观看视频1| 女警被强在线播放| 变态另类成人亚洲欧美熟女 | 亚洲av成人一区二区三| 亚洲欧美色中文字幕在线| 后天国语完整版免费观看| 曰老女人黄片| 国产男女超爽视频在线观看| 欧美国产精品一级二级三级| 中文字幕制服av| 视频在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 十八禁网站免费在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产区一区二| 满18在线观看网站| 亚洲成人手机| 深夜精品福利| 777米奇影视久久| 成人国产一区最新在线观看| 视频在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 热re99久久精品国产66热6| 日韩欧美免费精品| 久久 成人 亚洲| 美国免费a级毛片| 国产精品九九99| 国产高清三级在线| av欧美777| 成人三级做爰电影| av中文乱码字幕在线| 国产麻豆成人av免费视频| 在线a可以看的网站| 欧美日韩乱码在线| 人人妻人人看人人澡| 国产精品一及| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av在线| 免费观看的影片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品九九99| 久久午夜综合久久蜜桃| 97人妻精品一区二区三区麻豆| 别揉我奶头~嗯~啊~动态视频| 99视频精品全部免费 在线 | 9191精品国产免费久久| 久久久水蜜桃国产精品网| 国产69精品久久久久777片 | av在线天堂中文字幕| 精品国内亚洲2022精品成人| 午夜免费观看网址| 精品久久久久久成人av| 色老头精品视频在线观看| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 亚洲国产看品久久| 一级作爱视频免费观看| 日本黄大片高清| 亚洲人与动物交配视频| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 成人特级黄色片久久久久久久| cao死你这个sao货| 两性午夜刺激爽爽歪歪视频在线观看| 久久久精品欧美日韩精品| 亚洲av中文字字幕乱码综合| 长腿黑丝高跟| 国产又黄又爽又无遮挡在线| 啦啦啦免费观看视频1| 日本黄色片子视频| 国产爱豆传媒在线观看| 久久精品91无色码中文字幕| 成年版毛片免费区| 性色av乱码一区二区三区2| 国产亚洲精品综合一区在线观看| 亚洲精品国产精品久久久不卡| 男女那种视频在线观看| 欧美午夜高清在线| 欧美成人免费av一区二区三区| 久久久国产欧美日韩av| 99热6这里只有精品| 好男人电影高清在线观看| 成人性生交大片免费视频hd| 国产一区二区三区视频了| 国产成人影院久久av| 精品不卡国产一区二区三区| 99久久无色码亚洲精品果冻| 成人高潮视频无遮挡免费网站| 亚洲av电影在线进入| 人妻久久中文字幕网| 亚洲一区二区三区色噜噜| 成在线人永久免费视频| 国产成人啪精品午夜网站| 婷婷精品国产亚洲av| 国产精品免费一区二区三区在线| 国产真实乱freesex| 中文资源天堂在线| 五月玫瑰六月丁香| 最新美女视频免费是黄的| 亚洲国产看品久久| 狂野欧美激情性xxxx| 久久久久久九九精品二区国产| 一进一出抽搐动态| 欧美一区二区精品小视频在线| 男人的好看免费观看在线视频| 午夜福利在线观看免费完整高清在 | 少妇人妻一区二区三区视频| 成人鲁丝片一二三区免费| 日韩精品青青久久久久久| 黄色片一级片一级黄色片| 两个人的视频大全免费| 别揉我奶头~嗯~啊~动态视频| 国内少妇人妻偷人精品xxx网站 | 亚洲电影在线观看av| 丝袜人妻中文字幕| 久久国产精品影院| 久久久久国内视频| 亚洲人成网站在线播放欧美日韩| 丝袜人妻中文字幕| 亚洲 欧美 日韩 在线 免费| 久久午夜亚洲精品久久|