• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    磷化鈷封裝在磷富集的三維多孔碳及其雙功能氧電催化性能研究

    2021-07-10 10:07:12肖瑤裴煜胡一帆馬汝廣王德義王家成
    物理化學(xué)學(xué)報(bào) 2021年7期
    關(guān)鍵詞:理學(xué)院西華超微結(jié)構(gòu)

    肖瑤,裴煜,胡一帆,馬汝廣,王德義,王家成,*

    1 西華大學(xué)理學(xué)院,成都 610039

    2 中國(guó)科學(xué)院上海硅酸鹽研究所,高性能陶瓷與超微結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200050

    1 Introduction

    Rechargeable ZABs have attracted much attention due to their portability and high power density for resolving the energy shortage and environment pollution issues1,2. However, the application of ZAB is greatly limited duo to the sluggish kinetics at the air electrode, which highly depends on the expensive Ptgroup catalysts3,4. To address these issues, many researches have spent energy to study low-cost and high-efficiency catalysts to replace noble metal Pt/RuO25–7. Usually, a large number of active sites and high activity of active species are indispensable for efficient catalysts. For the former aspect, by adjusting the geometry of the catalyst, such as, engineering catalyst morphology with hierarchical pores or reducing the particle size,it can increase the electrochemically active sites8–12. For the latter aspect, by regulate the electronic structure of the catalytic active center, it has an appropriate adsorption energy for the intermediate during the reaction13–16.

    Transition-metal phosphides (TMPs) are ideal candidates because of their good conductivity and high activity. Especially,Co2P-based catalysts are widely studied based on excellent OER17–19. However, there are few reports of Co2P-based materials as efficient ORR catalysts. For the cathode electrocatalyst of ZAB, it is indispensable to have bifunctional catalytic activity. So, there is a huge challenge to elaborately design Co2P-based catalyst with outstanding ORR performance for ZABs. Recently, some studies reported that the doping of heteroatoms with different electronegativities is an available method to enhance the activity of carbon materials by tuning electronic properties and conductivity20–23. For example, Daiet al. prepared vertically-arranged nitrogen-containing carbon nanotubes (VA-NCNTs) that exhibited highly efficient ORR activity. Because the introduction of more electronegative nitrogen atoms into the carbon plane of conjugated nanotubes will cause the adjacent carbon atoms to carry relatively high positive charges24. Moreover, many researchers suggest that the chemical environment of TMPs such as CoP25,26, Co2P27,28and NiCo2P229located plays a crucial role for stable ORR and OER.Chenet al. reported that nitrogen and phosphorus dualcoordinated iron to boost ORR performance30. To this end, it is effective to synthesize highly efficient ORR catalysts based on Co2P and P-containing carbon with their catalytic performance better than that of noble metals.

    What’s more, catalytic reaction is a complex process, which not only depends on the activity of the catalyst, but also relates to number of active sites31. Recently, tremendous efforts have been devoted to fabricate catalytic materials with various structures, for instance, core-shell, array and hierarchical porous structure, to improve the electroactivity32–35. Due to the hierarchical porous structure, it not only facilitates mass and electron transport, but also exposes more active sites. For example, Guoet al. preparing 3D metal sulfide (MxSy)nanomaterials based on the 3D hierarchical porous structure exhibits satisfactory performance36.

    Here, we provide a method to fabricate bifunctional oxygen electrocatalyst of Co2P-based materials by geometrical optimization and electronic adjustment. Co2P nanoparticles wrapped in P-doped porous carbon aerogels show excellent ORR and OER activity. The results indicate that the assynthesized catalyst deliver outstanding ORR activity with halfwave potential (E1/2) of 0.84 V more than other Co2P-based catalysts and comparable to commercial Pt/C. The increase in catalytic activity is mainly due to the regular hierarchical pores,high specific surface area and synergy between Co2P and Pdoped carbon matrix, which significantly optimize the electronic structure of Co2+in Co2P and thus weaken the binding force between the adsorbed OH* and the surface Co atoms in the determination step. When used as a cathode catalyst, Co2P-PCA-800-based ZAB exhibits a high open circuit voltage (1.44 V) and high power density. In addition, ZAB also exhibits higher specific energy density and better stability than noble metal bases. Finally, we believe that this method is universal and can be used to prepare other similar catalysts to solve the energy crisis.

    2 Experimental

    2.1 Chemicals

    Cobalt nitrate hexahydrate (AR), 70% (w, mass fraction)Phytic acid solution, k-Carrageenan and 5% (w) Nafion solution were come from Aldrich (China). The 20% (w) Pt/C and 99.9%(w) RuO2were purchased from Johnson Matthey (UK). All the reagents were utilized without further purification.

    2.2 Preparation of Co2P-PCA hybrid

    The 1.2% (w) k-carrageenan aqueous solution was prepared at 80 °C using magnetic stirring. The Co(NO3)2solution was dropped in carrageenan solution and stirred 60 min. Then phytic acid solution was slowly added and stirred for another 60 min.Finally, it was then cooled at room temperature to obtain carrageenan-PA-M hydrogel, washed and frozen to obtain carrageenan-PA-M aerogels. The carrageenan-PA-M aerogels were pyrolyzed at 800 °C for 3 h in Ar to obtain Co2P-PCA-800.Furthermore, Co-doped carbon aerogels (Co-CA) and P-doped carbon aerogels (PCA) were also made using the same method without adding PA or Co(NO3)2. Pure Co2P nanoparticle was prepared for comparison according to the literature37.

    2.3 Electrocatalytic activity evaluation

    All electrochemical measurements were conducted in a threeelectrode configuration with CHI 760E electrochemical workstation at room temperature. The saturated Hg/HgCl2electrode (SCE) and graphite rod were used as the reference and counter electrodes, respectively. A glassy carbon electrode with catalyst (0.5 mg·cm?2) was used as working electrode. To prepare the working electrode, disperse 5 mg catalyst in a solution containing 500 μL of deionized water, 500 μL of ethanol, and 20 μL of 5% (w) Nafion solution for sonication for 30 min. And the catalyst ink (20 μL) was pipetted onto a polished glassy carbon electrode. For comparison, 20% (w) Pt/C ink with the same load was prepared. The electrochemical measurement was conducted in O2-saturated 0.1 mol·L?1KOH for ORR, 1 mol·L?1KOH for OER. The potential, measured against SCE converted to potential versus RHE according toERHE= 0.2415 +ESCE+ pH × 0.059. Linear sweep voltammetry (LSV)measurements were executed with a scan rate of 10 mV·s?1. The numbers of electrons transferred (n) during ORR was calculated by the following Koutecky-Levich equation at various electrode potentials based on the different rotating speeds. At the same time, the number of electrons transferred (n) and the hydrogen peroxide production (%H2O2) rate were calculated by rotating ring-disk electrode (RRDE) test.

    2.4 Assembly of a zinc-air battery (ZAB)

    In order to test ZABs, the prepared catalyst ink was uniformly coated on carbon paper as the cathode. A polished Zn plate was used as the anode and 6 mol·L?1KOH solution containing 0.2 mol·L?1Zn(OAc)2was used as the electrolyte. The mass loading on carbon paper was 0.62 mg·cm?2. For comparison, a mixture of 20% Pt/C and RuO2(mass ratio of 1 : 1) with the same loading was coated onto carbon paper as the cathode. The electrochemical performances of ZABs, such as cycling ability tests and specific capacities texts were recorded by a Land CT2001A system.

    3 Results and discussion

    The experiment process is schematically described in Fig. S1.The k-carrageenan macromolecules are random coil-like structures in aqueous solution at 80 °C. Co(NO3)2and phytic acid solution are slowly added because metal cations can induce the conversion of random coil carrageenan chains into a doublehelix structure and become carrageenan-M hydrogels36. The obtained hydrogels converted to a Co2P@P-doped carbon aerogelviafreeze drying and pyrolysis at 800 °C (Co2P-PCA-800). In this step, carrageenan as a carbon source and template and unstable small molecules decompose to form a 3D porous architecture. The X-ray diffraction (XRD) results show that the Co2P nanoparticles and Co2P-PCA-800 have main characteristic at around 40.7°, 41.0°, 43.3°, 52° and 54.1°, which could be correspond to the (121), (220), (211), (130), and (002) crystal planes of Co2P, respectively (JCPDS No. 32-0306)38(Fig. 1a).Field emission scanning electron microscopy (FESEM) shows that Co2P-PCA-800 exhibits a 3D self-supporting honeycomb porous structure. The interconnected macropores and mesopores can be observed in the network (Fig. 1b and Fig. S2). Here, we adjust the geometry morphology of carrageenan aerogel by doping Co(NO3)2and phytic acid to obtain regular hierarchical porous structure (Fig. S3). And compared to Co-CA and PCA,the Co2P-PCA-800 has a regular honeycomb porous structure while Co-CA and PCA are broken trivial network structures. The regular interconnected porous structure can be beneficial to mass transfer and ensure uniform distribution of ion current. However,when the structure collapses, the incomplete porous structure not only increases the mass transfer distance, but the lower resistance is the main channel for electrolyte ions. Therefore,most active sites are abandoned during the catalytic process39,40.And the transmission electron microscopy (TEM) shows that the Co2P nanocrystals with a size of 70–100 nm are embedded in the carbon (Fig. 1c). As shown in Fig. 1d, the lattice fringe of 0.226 nm corresponds to the (121) crystal planes of Co2P. The presence of the Co2P crystals is further confirmed by selected area diffraction (ASED) (Fig. 1e). And the elemental mapping images show a relatively uniform dispersion of Co, P and C elements and Co2P nanoparticles are encapsulated in a P-rich carbon matrix (Fig.1f).

    Fig. 1 a) XRD images and Co2P; b, c) SEM and TEM images of Co2P-PCA-800; d) HRTEM image of Co2P-PCA-800; e) SAED pattern of Co2P-PCA-800; f) HADDF and EDS elemental mappings of Co2P-PCA-800.

    Further investigated the composition and valence of the sample. XPS indicates the surface composition of C, Co and P in the Co2P-PCA-800. And the element contents are estimated as the percentage of 96.95%, 0.22% and 2.84%, which verifies the doping of P and Co within the carbon framework (Fig. S4). C 1sspectrum with binding energies of 284.7, 286.6, 293.2 and 296.0 eV can be ascribed to the C―C, C―O, C=O and O=C―O―P type bonds of Co2P-PCA-800 in Fig. 2a. And compared to the C 1sof Co-CA, it has a strong electron-withdrawing peak of O=C―O―P. Therefore, the doping of P can adjust the charge distribution of local Co2+. This can also be found in C 1sof PCA(Fig. S4b). This result is also consistent with that from Co 2ppeak. In the Co 2pspectrum, there are two orbital double peaks of Co2+, accompanied by two satellite peaks. And the peaks at 781.2 and 796.7 eV correspond to the Co 2p3/2and Co 2p1/2orbitals, respectively. At the same time, compared with metallic cobalt (778.2 eV), the cobalt 2p3/2peak (Fig. 2b) shifted to a more positive value at 781.2 eV, indicating that Co2+in the Co2PPCA-800 catalyst has a partial positive charge20. In the P 2pspectrum (Fig. 2c), the binding energies of 132.8, 132.9, 133.8 eV and 135.2 eV can be corresponded to the P―C, C3―PO3,C―PO3and C―O―PO3type bonds respectively41. And the P―Co peaks at 129.6 and 130.8 eV can also be found. The charge transfer between Co2P and P-doped carbon can change the electronic structure of each other, thereby having better performance13. The above results indicate that we successfully prepared Co2P and P-doped carbon hybrid materials, which are potential as active bifunctional electrocatalyst.

    Raman spectroscopy for further analysis (Fig. 2d). There are two peaks around 1300 and 1600 cm?1, corresponding to the D and G peaks, which are characteristic peaks of defective carbon and graphene carbon layer, respectively. As observed, the ID/IGratios of Co2P-PCA-800 is 0.98 indicating that a higher defective degree present in Co2P-PCA-800 than the control samples. The presence of defects will change the charge distribution of adjacent carbons, which may be beneficial to the electrochemical reaction42–44. In order to determine the specific surface area and porosity of the prepared material, the N2adsorption-desorption test was performed. The N2adsorption-desorption isotherms of all the samples show typical type IV adsorption isotherm (Fig.2e) indicating the presence of mesopores. Combining with SEM,we know that the carbon materials are a hierarchical porous structure containing mesopores and macropores. The BET specific surface area of Co2P-PCA-800 is 266.98 m2·g?1higher than other comparative samples in Table S1. And the samples possess mesoporous structure in Fig. 2f. As we all know,pyrolysis temperature is also critical to the electrocatalytic performance of carbon materials, so we also prepare samples at different temperature (Fig. S5). The Co2P-PCA-800 also has a higher defective degree and larger specific surface area. With high specific surface area, the electrocatalyst can be expected to have excellent performance in the ORR/OER electrochemical test.

    Fig. 2 XPS spectrum of the synthesized Co2P-PCA-800 composite: a) C 1s; b) Co 2p and c) P 2p; d) Raman spectrum of Co-CA, PCA and Co2P-PCA-800; e, f) nitrogen adsorption-desorption isotherms and pore-size distribution of Co-CA, PCA and Co2P-PCA-800.

    Fig. 3 a) ORR polarization curves; b) Comparison of the onset (Eonset) and half-wave (E1/2) potentials of different catalysts; c) LSV curves of the Co2P-PCA-800 at a different rotation rate (inset: K-L plots based on the ORR curves of Co2P-PCA-800 at different potentials (vs. RHE);d) Number of electrons transferred and peroxide yields of Co2P-PCA-800 and 20% Pt/C; e) Tolerance toward methanol text of Co2P-PCA-800 and 20% Pt/C; f) Current–time (i–t) chronoamperometric responses for the ORR of the Co2P-PCA-800 and 20% Pt/C.

    The ORR activities of the Co2P-PCA-800 electrocatalysts were first measured by three-electrode system. The linear sweep voltammogram curves show the Co2P-PCA-800 with higher onset potential (Eonset) of 0.97 V (vs. RHE) and half-wave potential (E1/2) of 0.84 V (vs. RHE) outperforming Co-CA (0.92 V, 0.78 V), PCA (0.89 V, 0.77 V) and Co2P (0.75 V, 0.67 V) (Fig.3a). And theE1/2of Co2P-PCA-800 is comparable with Pt/C. We compare theEonsetandE1/2of the catalysts and Co2P-PCA-800 possess more positive half-wave potential (Fig. 3b). Co2P-PCA-800 shows better ORR catalytic activity indicating that the formation of the hybrid structure of Co2P and P-doped porous carbon has suitable adsorption energy. Also, we compare the ORR catalytic activity of the samples at different pyrolysis temperatures and others Co2P-electrocatalysts reported (Fig. S6 and Table S2). Compared to others, Co2P-PCA-800 also has satisfactory ORR catalytic activity, which mainly comes from the regular hierarchical porous structure and local charge change by P-doping. The LSV at different rotation rates are tested, and the results fitted by the Koutecky-Levich (K-L) plot (Fig. 3c).As the rotation speed increases, the current density increases accordingly, and the electron transfer number (n) is 3.9,suggesting that the ORR process is a primary four-electron reaction. In the meantime, the electron transfer number and hydrogen peroxide (H2O2%) are evaluated by rotating ring-disk electrode measurements. Similarly, the RRDE test shows that the Co2P-PCA-800 catalyst has a good selectivity, showing a higher electron transfer number (n) ~3.9 and a lower hydrogen peroxide yield 5% (Fig. 3d). The methanol tolerance and stability of Co2PPCA-800 are tested by chronoamperometric measurement. As shown in Fig. 3e, Co2P-PCA-800 exhibits excellent tolerance toward the methanol crossover. On the contrary, the chronoamperometric current of Pt/C catalyst dropped sharply,while the Co2P-PCA-800 was basically unchanged after methanol injection. Moreover, the chronoamperometric responses of Co2P-PCA-800 and Pt/C catalysts are measured at 0.4 V and shows that Co2P-PCA-800 has better stability than Pt/C (Fig. 3f). The results indicated that Co2P nanoparticles dispersed in P-doped carbon matrix can effectively improve the catalytic efficiency.

    What’s more, Co2P-PCA-800 also has satisfactory OER performance. The potentials corresponding to the current density of 10 mA·cm?2(E10) for Co2P-PCA-800, Co-CA, and PCA are 1.70, 1.72 and 1.73 V, respectively, suggesting the enhanced and excellent OER performance for Co2P-PCA-800 (Fig. S7a). Fit the LSV polarization curve and calculate the Tafel slope to evaluate the dynamics of the catalyst. The Tafel slope of Co2PPCA-800 is 81.1 mV·dec?1(Fig. S7b), which is lower than those of Co-CA (94.4 mV · dec?1) and PCA (113.1 mV·dec?1),suggesting a more favorable kinetics of Co2P-PCA-800, while the improvement of the kinetics could be owing to the more active sites and better conductivity. To further illustrate, we conducted an electrochemical impedance test (Fig. S7c). The smallest diameter of the semicircle for Co2P-PCA-800 in the Nyquist plot indicates the high conductivity of Co2P-PCA-800.The OER performance also depends on electrochemically active surface area (ECSA). To compare ECSA, we measure the electrochemical double-layer capacitances of samplesviaa simple efficient cyclic voltammetry (CV) (Fig. S8). Co2P-PCA-800 exhibits aCdlof 12.9 mF·cm?2, which is larger than that of Co-CA (6.0 mF·cm?2) and PCA (0.5 mF·cm?2) (Fig. S7d). This high ECSA of Co2P-PCA-800 is ascribed to the larger specific surface. The outstanding electrocatalytic performance of Co2PPCA-800 can be ascribed to following reasons: (i) The improved conductive property of hybrids. Although cobalt or cobalt oxide nanoparticles have lower conductivity and are easy to aggregate,P-doped carbon is not only beneficial for electrical conductivity and electrochemical performance, but also maintain the structural stability. (ii) The high surface area and hierarchical porous structure. The porous structure and high surface area can provide high density of active sites and accelerates the mass transport. (iii) The synergy Co2P and P-doped carbon. As is known to all, the difference in electronegativity between carbon atoms and heteroatoms, the doping heteroatoms generally redistributes charge density and spin density of carbon atoms,thereby effectively regulating the work function and having a more appropriate adsorption energy.27. Here, based on the synergistic effect of Co2P and P-doped carbon, Co2P-PCA-800 shows outstanding ORR catalytic performance mainly due to proper desorption. And, the ORR reaction on the Co surface of Co2P may be as follows:

    where * denotes active site on the surface10,45. Based on Geyer,the rate-determining step in the overall ORR process is the desorption of OH * on the Co surface of Co2P nanoparticles. P doping produced a strong electron-withdrawing group, which can induce Co electron transfer, and eventually lead to weakening of the binding force between the intermediate OH*and the surface Co atom25. And the real active sites for OER may be the cobalt hydroxide. The previous research has proved that transition metal phosphides could undergo surface reconstruction to form hydroxides in the OER process46,47.

    Fig. 4 a) Schematic illustration of the ZAB; b) Photograph of ZAB open circuit voltage measurement; c) Discharge polarization curves and power density of Co2P-PCA-800 and Pt/C||RuO2; d) Galvanostatic discharge curves of Co2P-PCA-800 and Pt/C||RuO2 tested at 10 mA·cm?2; e, f) Cycle test at 10 mA·cm?2.

    The high catalytic activities of Co2P-PCA-800 complex prompt us to prepare a ZAB by using the Co2P-PCA-800 catalyst as air cathode and zinc foil as the anode (Fig. 4a). For comparison, we assembled the cathode catalyst as precious metal-based ZAB. The open-circuit potential of Co2P-PCA-800 based ZAB is ~1.44 V (Fig. 4b). As shown in Fig. S9, there is a smaller voltage gap, which indicates excellent rechargeable capability of Co2P-PCA-800 based battery. The discharge polarization curve and power density display that Co2P-PCA-800 exhibits similar performance compared to Pt/C||RuO2. The discharge polarization and corresponding current density of 133 mA·cm?2at 0.4 V, and the peak power density of 58 mW·cm?2at 90 mA·cm?2for Co2P-PCA-800 are compared to those of the Pt/C||RuO2. But the Co2P-PCA-800-based battery perform a higher capacity than Pt/C||RuO2, such as, 741 mAh·g?1for Co2PPCA-800vs.620 mAh·g?1for Pt/C||RuO2at 10 mA·cm?2(Fig.4d). Finally, Pt/C||RuO2-based battery showed poor stability for 18 h, while the battery with Co2P-PCA-800 shows a good stability for 32 h in Fig. 4e. And the charge-discharge voltage gap of the two batteries has slightly increased at 35 cycles.However, the voltage gap rapidly increases for Pt/C||RuO2about(1.55 V), while Co2P-PCA-800 remain stable after 35 cycles(Fig. 4f). The above results demonstrate the outstanding activity and stability of Co2P-PCA-800 as cost-effective electrocatalysts for rechargeable ZABs.

    4 Conclusions

    In summary, we report an effective approach to fabrication Co2P-PCA-800 catalyst with high-performance catalytic activity. The as-prepared Co2P-PCA-800 has a 3D honeycomb hierarchical porous structure. Due to the high specific surface area, regular hierarchical pore structure, and P-doping adjusts the electronic structure of Co2+in Co2P, the Co2P-PCA-800 exhibited excellent ORR/OER electrocatalytic activity. When used as a ZAB cathode, Co2P-PCA-800 exhibit excellent charge and discharge performance closed to Pt/C||RuO2.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    理學(xué)院西華超微結(jié)構(gòu)
    西華大學(xué)成果展示
    包裝工程(2024年8期)2024-04-23 03:59:24
    昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
    昆明理工大學(xué)理學(xué)院簡(jiǎn)介
    西華大學(xué)成果展示
    包裝工程(2023年4期)2023-03-07 01:13:24
    子路、曾皙、冉有、公西華侍坐
    文苑(2020年5期)2020-06-16 03:18:36
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版)
    白藜蘆醇對(duì)金黃色葡萄球菌標(biāo)準(zhǔn)株抑菌作用及超微結(jié)構(gòu)的影響
    電擊死大鼠心臟超微結(jié)構(gòu)及HSP70、HIF-1α表達(dá)變化
    不同波長(zhǎng)Q開(kāi)關(guān)激光治療太田痣療效分析及超微結(jié)構(gòu)觀察
    青青草视频在线视频观看| 国产精品国产三级国产av玫瑰| 精品人妻熟女av久视频| 亚洲精品国产成人久久av| 亚洲乱码一区二区免费版| 成人午夜精彩视频在线观看| 少妇人妻精品综合一区二区 | 精品一区二区三区人妻视频| 欧美变态另类bdsm刘玥| 麻豆成人午夜福利视频| 精品国产三级普通话版| 边亲边吃奶的免费视频| 午夜福利成人在线免费观看| 哪里可以看免费的av片| 国产精品久久久久久久电影| 成人美女网站在线观看视频| 午夜福利视频1000在线观看| 黑人高潮一二区| 一级黄色大片毛片| 美女被艹到高潮喷水动态| 性色avwww在线观看| 哪个播放器可以免费观看大片| 嘟嘟电影网在线观看| av在线天堂中文字幕| 国产探花极品一区二区| 人妻系列 视频| 成人漫画全彩无遮挡| 只有这里有精品99| 国产精品一区二区在线观看99 | 日韩亚洲欧美综合| 国产三级在线视频| 亚洲精华国产精华液的使用体验 | 久久亚洲国产成人精品v| 免费搜索国产男女视频| 精品人妻偷拍中文字幕| 免费人成在线观看视频色| 免费看日本二区| 热99在线观看视频| 天堂网av新在线| 性色avwww在线观看| 国产成人福利小说| 1000部很黄的大片| a级一级毛片免费在线观看| 日本黄色片子视频| 六月丁香七月| 免费搜索国产男女视频| 欧美zozozo另类| 哪个播放器可以免费观看大片| 麻豆成人av视频| 国产中年淑女户外野战色| 黑人高潮一二区| 日韩中字成人| 婷婷精品国产亚洲av| 精品久久久久久久人妻蜜臀av| 国产精品一区www在线观看| 哪里可以看免费的av片| www日本黄色视频网| 熟女电影av网| 日韩大尺度精品在线看网址| 亚洲四区av| 我要搜黄色片| 日韩制服骚丝袜av| 12—13女人毛片做爰片一| 日韩在线高清观看一区二区三区| 蜜桃久久精品国产亚洲av| av女优亚洲男人天堂| 嫩草影院新地址| 天堂√8在线中文| ponron亚洲| 久久鲁丝午夜福利片| 夜夜夜夜夜久久久久| 久久6这里有精品| 亚洲内射少妇av| 深夜a级毛片| 国产午夜福利久久久久久| 国产精品野战在线观看| 国产久久久一区二区三区| 麻豆国产av国片精品| 校园人妻丝袜中文字幕| 国产不卡一卡二| 我的老师免费观看完整版| 白带黄色成豆腐渣| 在线播放无遮挡| 午夜久久久久精精品| 蜜桃亚洲精品一区二区三区| 国产人妻一区二区三区在| 免费搜索国产男女视频| 国产黄a三级三级三级人| 日韩三级伦理在线观看| 91av网一区二区| 国产乱人视频| 大香蕉久久网| 国产单亲对白刺激| 美女xxoo啪啪120秒动态图| 五月玫瑰六月丁香| 国产亚洲精品久久久久久毛片| 又爽又黄a免费视频| 在线免费观看不下载黄p国产| 观看美女的网站| 久久人人爽人人爽人人片va| 精品国产三级普通话版| 国产女主播在线喷水免费视频网站 | 国产精品无大码| 九九热线精品视视频播放| 欧美在线一区亚洲| 国产精品麻豆人妻色哟哟久久 | 精品午夜福利在线看| 人妻制服诱惑在线中文字幕| 亚洲在久久综合| 在线国产一区二区在线| 亚洲在线观看片| 性插视频无遮挡在线免费观看| 欧美三级亚洲精品| 人人妻人人澡欧美一区二区| 欧美bdsm另类| 国产免费一级a男人的天堂| 看黄色毛片网站| 男人狂女人下面高潮的视频| 禁无遮挡网站| 六月丁香七月| 毛片一级片免费看久久久久| 午夜免费激情av| 日韩一区二区三区影片| 免费观看的影片在线观看| 最后的刺客免费高清国语| 校园人妻丝袜中文字幕| 我要看日韩黄色一级片| 一级二级三级毛片免费看| a级毛片a级免费在线| 有码 亚洲区| 久久久久久久午夜电影| 少妇的逼好多水| 久久久久久国产a免费观看| 久久久久久国产a免费观看| 综合色av麻豆| 精品久久久久久久久av| 亚洲av免费在线观看| 国产成年人精品一区二区| 亚洲一级一片aⅴ在线观看| 亚洲国产精品sss在线观看| 深夜a级毛片| 自拍偷自拍亚洲精品老妇| 日韩av不卡免费在线播放| 久久热精品热| 日韩欧美 国产精品| .国产精品久久| 欧美不卡视频在线免费观看| 看片在线看免费视频| 99精品在免费线老司机午夜| 中文在线观看免费www的网站| 午夜精品国产一区二区电影 | 免费无遮挡裸体视频| 国产亚洲精品av在线| 亚洲人成网站在线观看播放| 欧美另类亚洲清纯唯美| 又爽又黄无遮挡网站| 色视频www国产| 秋霞在线观看毛片| 亚洲一区高清亚洲精品| 桃色一区二区三区在线观看| 简卡轻食公司| 国产中年淑女户外野战色| 国内精品宾馆在线| 国产精品美女特级片免费视频播放器| 欧美xxxx性猛交bbbb| 春色校园在线视频观看| 午夜老司机福利剧场| 午夜免费激情av| 亚洲欧美日韩高清专用| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩高清专用| 午夜爱爱视频在线播放| 午夜爱爱视频在线播放| 99热这里只有是精品在线观看| 欧美3d第一页| 欧美丝袜亚洲另类| 午夜激情福利司机影院| 青春草国产在线视频 | 观看免费一级毛片| 午夜久久久久精精品| 国产成人精品一,二区 | 18禁黄网站禁片免费观看直播| 女同久久另类99精品国产91| 国产成人精品一,二区 | 在线观看一区二区三区| avwww免费| 黄片wwwwww| 久久这里只有精品中国| av免费在线看不卡| 日韩欧美一区二区三区在线观看| 国产不卡一卡二| 成人国产麻豆网| 深夜精品福利| 亚洲一级一片aⅴ在线观看| av免费在线看不卡| 国产国拍精品亚洲av在线观看| 亚洲国产欧洲综合997久久,| 精品久久久久久久久av| 日韩欧美精品v在线| 亚洲欧美精品自产自拍| 亚洲人成网站在线播放欧美日韩| 日韩国内少妇激情av| 国产日韩欧美在线精品| 天堂网av新在线| 国产成人精品一,二区 | 全区人妻精品视频| 亚洲国产精品合色在线| av福利片在线观看| 黄色配什么色好看| 女同久久另类99精品国产91| 男的添女的下面高潮视频| 此物有八面人人有两片| 最新中文字幕久久久久| 99久久中文字幕三级久久日本| 亚洲精品成人久久久久久| 久久久精品欧美日韩精品| 精品一区二区三区视频在线| 久久人人爽人人片av| 给我免费播放毛片高清在线观看| 成人av在线播放网站| 午夜激情福利司机影院| 一进一出抽搐动态| 国产片特级美女逼逼视频| 禁无遮挡网站| 国产中年淑女户外野战色| 亚洲最大成人手机在线| 一本久久精品| 日本在线视频免费播放| 波野结衣二区三区在线| 变态另类成人亚洲欧美熟女| 夜夜看夜夜爽夜夜摸| 91久久精品电影网| 日本色播在线视频| 国产精品,欧美在线| 草草在线视频免费看| 男人舔女人下体高潮全视频| 亚洲综合色惰| 有码 亚洲区| 国产视频首页在线观看| 99热只有精品国产| 淫秽高清视频在线观看| 日本av手机在线免费观看| 色播亚洲综合网| 简卡轻食公司| 欧美色欧美亚洲另类二区| 高清毛片免费看| 午夜视频国产福利| 成人亚洲欧美一区二区av| 中文字幕av成人在线电影| 成人国产麻豆网| 精品久久国产蜜桃| 一个人观看的视频www高清免费观看| 高清毛片免费观看视频网站| 国产69精品久久久久777片| 国产大屁股一区二区在线视频| 日韩欧美在线乱码| 免费看光身美女| 免费观看在线日韩| 国产真实伦视频高清在线观看| avwww免费| 丰满乱子伦码专区| 一边摸一边抽搐一进一小说| 非洲黑人性xxxx精品又粗又长| 蜜桃亚洲精品一区二区三区| 观看免费一级毛片| 欧美激情国产日韩精品一区| 高清午夜精品一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 欧美在线一区亚洲| 99在线视频只有这里精品首页| 蜜桃亚洲精品一区二区三区| 久久人妻av系列| 国产亚洲精品av在线| 国语自产精品视频在线第100页| 午夜福利在线观看免费完整高清在 | 亚洲精品成人久久久久久| 悠悠久久av| 人人妻人人澡人人爽人人夜夜 | 12—13女人毛片做爰片一| 久久精品人妻少妇| 婷婷六月久久综合丁香| 久久久久久久午夜电影| 欧美变态另类bdsm刘玥| 国产91av在线免费观看| 男女那种视频在线观看| 搞女人的毛片| 12—13女人毛片做爰片一| 少妇被粗大猛烈的视频| 99热网站在线观看| 色哟哟·www| 午夜福利在线观看吧| 最近2019中文字幕mv第一页| 如何舔出高潮| 亚洲三级黄色毛片| 波野结衣二区三区在线| 午夜福利在线在线| 只有这里有精品99| 亚洲欧美精品专区久久| 亚洲av.av天堂| 嫩草影院精品99| 亚洲高清免费不卡视频| 久久人人爽人人片av| 久久久精品大字幕| 国产精品国产高清国产av| 三级国产精品欧美在线观看| 午夜福利在线在线| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人综合色| 热99re8久久精品国产| 高清毛片免费看| 精品久久久久久成人av| 亚洲成av人片在线播放无| 精品熟女少妇av免费看| 亚洲电影在线观看av| 国产免费一级a男人的天堂| 一级毛片电影观看 | 91狼人影院| 人妻夜夜爽99麻豆av| 亚洲国产欧美在线一区| 亚洲国产色片| 中文在线观看免费www的网站| 看免费成人av毛片| 日日啪夜夜撸| 久久精品夜夜夜夜夜久久蜜豆| 超碰av人人做人人爽久久| 久99久视频精品免费| 国产色爽女视频免费观看| 黄色一级大片看看| 男女做爰动态图高潮gif福利片| 久久久国产成人免费| 成人综合一区亚洲| 人体艺术视频欧美日本| 男人舔女人下体高潮全视频| 青春草亚洲视频在线观看| 一本一本综合久久| av黄色大香蕉| 九草在线视频观看| 日本免费一区二区三区高清不卡| 国产精品一及| 国模一区二区三区四区视频| 男人狂女人下面高潮的视频| 国产在线男女| 全区人妻精品视频| 国产伦精品一区二区三区视频9| 亚洲av一区综合| 国产片特级美女逼逼视频| 国产 一区 欧美 日韩| 国产精品乱码一区二三区的特点| 中出人妻视频一区二区| 久久久久久久久久黄片| 久久草成人影院| 精品日产1卡2卡| 日韩制服骚丝袜av| 国产一区亚洲一区在线观看| 欧美性猛交╳xxx乱大交人| 日韩 亚洲 欧美在线| 99热这里只有是精品50| 永久网站在线| 亚洲一级一片aⅴ在线观看| 午夜老司机福利剧场| 亚洲av电影不卡..在线观看| 欧美激情国产日韩精品一区| 国产三级在线视频| 噜噜噜噜噜久久久久久91| 午夜爱爱视频在线播放| 国产成人a区在线观看| 亚洲中文字幕日韩| 久久婷婷人人爽人人干人人爱| 国产黄片视频在线免费观看| 国产v大片淫在线免费观看| 97超碰精品成人国产| 国内精品美女久久久久久| 99热只有精品国产| 99riav亚洲国产免费| 精品久久久久久久久久久久久| 搞女人的毛片| 2021天堂中文幕一二区在线观| 亚洲欧洲日产国产| 人妻少妇偷人精品九色| av专区在线播放| 你懂的网址亚洲精品在线观看 | 久久久久久九九精品二区国产| 国产一区二区激情短视频| 少妇人妻精品综合一区二区 | 白带黄色成豆腐渣| 亚洲精品日韩av片在线观看| 亚洲无线在线观看| 乱系列少妇在线播放| 啦啦啦韩国在线观看视频| 国产乱人视频| 噜噜噜噜噜久久久久久91| 中文字幕精品亚洲无线码一区| 麻豆一二三区av精品| 麻豆久久精品国产亚洲av| 国产成人精品婷婷| 免费观看在线日韩| 国产 一区精品| 久久韩国三级中文字幕| 欧美极品一区二区三区四区| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄 | 国产爱豆传媒在线观看| 色综合站精品国产| 欧美丝袜亚洲另类| 精品少妇黑人巨大在线播放 | 亚洲精品乱码久久久久久按摩| 精品午夜福利在线看| 69av精品久久久久久| 人妻久久中文字幕网| 伊人久久精品亚洲午夜| 18禁黄网站禁片免费观看直播| 国产高清有码在线观看视频| 晚上一个人看的免费电影| 岛国毛片在线播放| 最新中文字幕久久久久| 日韩高清综合在线| av专区在线播放| 午夜福利在线在线| 色播亚洲综合网| 亚洲在线自拍视频| 日韩一本色道免费dvd| 淫秽高清视频在线观看| 91精品国产九色| 日本黄色视频三级网站网址| 色哟哟·www| 极品教师在线视频| 成人亚洲欧美一区二区av| 精品午夜福利在线看| 能在线免费观看的黄片| 久久这里有精品视频免费| 欧美+亚洲+日韩+国产| 我要看日韩黄色一级片| 久99久视频精品免费| 国产成人午夜福利电影在线观看| 婷婷色综合大香蕉| 久久九九热精品免费| 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区| av视频在线观看入口| 成人午夜精彩视频在线观看| 哪个播放器可以免费观看大片| 精品久久久久久久末码| 99热这里只有精品一区| 欧美日韩一区二区视频在线观看视频在线 | 有码 亚洲区| 麻豆乱淫一区二区| 亚洲,欧美,日韩| 热99在线观看视频| 国产人妻一区二区三区在| 看黄色毛片网站| 最好的美女福利视频网| 毛片一级片免费看久久久久| 亚洲欧美日韩高清在线视频| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 亚洲人成网站在线播| 国产老妇女一区| 一边亲一边摸免费视频| 免费看日本二区| 国产亚洲精品久久久久久毛片| 变态另类丝袜制服| 亚洲成a人片在线一区二区| av福利片在线观看| 亚洲精品粉嫩美女一区| 中出人妻视频一区二区| 国产极品精品免费视频能看的| a级毛片a级免费在线| 女的被弄到高潮叫床怎么办| 边亲边吃奶的免费视频| 国产乱人视频| 变态另类丝袜制服| 免费看日本二区| 国产高清不卡午夜福利| a级毛片免费高清观看在线播放| 亚洲av不卡在线观看| 久久久久久九九精品二区国产| av在线播放精品| 欧美一级a爱片免费观看看| 日本色播在线视频| 国内精品宾馆在线| 国产免费男女视频| 国产男人的电影天堂91| 日本黄色片子视频| 熟女电影av网| 狠狠狠狠99中文字幕| 亚洲三级黄色毛片| 精华霜和精华液先用哪个| 男人和女人高潮做爰伦理| 欧美潮喷喷水| www.色视频.com| 午夜福利成人在线免费观看| 国产av在哪里看| 欧美丝袜亚洲另类| 亚洲电影在线观看av| 超碰av人人做人人爽久久| 亚洲精华国产精华液的使用体验 | 午夜精品国产一区二区电影 | 赤兔流量卡办理| 国产成人91sexporn| 精品无人区乱码1区二区| 女同久久另类99精品国产91| 亚洲精品国产成人久久av| 日本三级黄在线观看| 2021天堂中文幕一二区在线观| 亚洲精品国产av成人精品| 久久久久免费精品人妻一区二区| 国产精品一及| 色视频www国产| 国产高潮美女av| 日韩成人av中文字幕在线观看| 成年av动漫网址| 日本五十路高清| 给我免费播放毛片高清在线观看| 少妇熟女aⅴ在线视频| 91在线精品国自产拍蜜月| 青春草视频在线免费观看| 日韩中字成人| 亚洲成人久久爱视频| 精品不卡国产一区二区三区| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 亚洲成人中文字幕在线播放| 最后的刺客免费高清国语| 91精品一卡2卡3卡4卡| 久久这里只有精品中国| 99热6这里只有精品| 一级黄色大片毛片| 我要搜黄色片| 久久久久久久久中文| 高清日韩中文字幕在线| 婷婷色av中文字幕| 欧美精品一区二区大全| 一边摸一边抽搐一进一小说| 亚洲成av人片在线播放无| 国产国拍精品亚洲av在线观看| 九九爱精品视频在线观看| 免费观看a级毛片全部| 国产成人aa在线观看| 老熟妇乱子伦视频在线观看| 狂野欧美激情性xxxx在线观看| 国产色爽女视频免费观看| 国内揄拍国产精品人妻在线| 日韩亚洲欧美综合| 欧美区成人在线视频| 亚洲五月天丁香| 一个人看视频在线观看www免费| 色综合站精品国产| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 日本黄色片子视频| 欧美一区二区精品小视频在线| 毛片女人毛片| 欧美日韩国产亚洲二区| 精品久久国产蜜桃| 乱码一卡2卡4卡精品| 亚洲精品久久久久久婷婷小说 | 亚洲精品久久久久久婷婷小说 | av免费在线看不卡| 欧美成人免费av一区二区三区| 日产精品乱码卡一卡2卡三| 国产精华一区二区三区| 精品不卡国产一区二区三区| а√天堂www在线а√下载| 97超碰精品成人国产| 九色成人免费人妻av| 国产大屁股一区二区在线视频| 日韩制服骚丝袜av| 特大巨黑吊av在线直播| 免费观看a级毛片全部| 国产视频内射| 国产女主播在线喷水免费视频网站 | 尾随美女入室| 精品国产三级普通话版| 男人的好看免费观看在线视频| 日韩欧美国产在线观看| 日韩人妻高清精品专区| а√天堂www在线а√下载| 日韩欧美国产在线观看| 22中文网久久字幕| 我要搜黄色片| 高清在线视频一区二区三区 | 性欧美人与动物交配| 1000部很黄的大片| 一夜夜www| 精品人妻一区二区三区麻豆| 男的添女的下面高潮视频| 青青草视频在线视频观看| 精品99又大又爽又粗少妇毛片| 欧美三级亚洲精品| 中国国产av一级| 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址| 成年女人永久免费观看视频| 日本在线视频免费播放| 国产极品精品免费视频能看的| 欧美性猛交╳xxx乱大交人| 亚洲第一电影网av| 2022亚洲国产成人精品| 插阴视频在线观看视频| 在线播放无遮挡| 国产私拍福利视频在线观看| 秋霞在线观看毛片| 免费观看在线日韩| 久久九九热精品免费| 身体一侧抽搐| 亚洲欧美日韩高清专用| 人妻夜夜爽99麻豆av| 亚洲国产色片| 成人毛片60女人毛片免费| 国产真实乱freesex| 国内精品美女久久久久久| 国产精品嫩草影院av在线观看| 女同久久另类99精品国产91| 好男人视频免费观看在线| 国产亚洲精品久久久久久毛片|