• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of sodium salicylate on oxidative stress and insulin resistance induced by free fatty acids

    2010-12-14 01:44:16BingHeShengZhaoWeiZhangYanLiandPingHan

    Bing He, Sheng Zhao, Wei Zhang, Yan Li and Ping Han

    Shenyang, China

    Effect of sodium salicylate on oxidative stress and insulin resistance induced by free fatty acids

    Bing He, Sheng Zhao, Wei Zhang, Yan Li and Ping Han

    Shenyang, China

    (Hepatobiliary Pancreat Dis Int 2010; 9: 49-53)

    free fatty acids;sodium salicylate;oxidative stress;insulin resistance;hepatic glucose production

    Introduction

    The association among obesity, insulin resistance,and type 2 diabetes mellitus is well documented,[1]and free fatty acids (FFAs) have been implicated as an important causative link among them.[2]An elevation of plasma FFAs has been reported to impair insulin action, to accelerate β-cell apoptosis, and might be a major risk factor for type 2 diabetes.[2,3]

    Almost 100 years ago, Williamson[4]showed that high-dose salicylate treatment reduces the severity of glycosuria in diabetic patients, and in 1957, Reid et al[5]further demonstrated that 10-14 days of aspirin treatment improves the results of oral glucose tolerance tests in diabetic patients. It has been reported recently that high-dose salicylate improves FFA-induced insulin resistance and β-cell dysfunction,[6,7]but the mechanism remains uncertain. Previously we found that in insulinresistant rats, the supplementation of sodium salicylate is associated with a reduction of plasma malondialdehyde(MDA), a marker of oxidative stress. To date, few studies have investigated the impact of salicylates on oxidative stress levels in animal models. While oxidative stress is associated with a wide variety of pathologies, including diabetes, cardiovascular disease, and cancer, diabetes mellitus is particularly strongly associated.[8]Thus, the objective of this study was to assess the impact of theanti-in fl ammatory drug sodium salicylate on insulin sensitivity and to explore the potential mechanism by which it improves hepatic and peripheral insulin resistance.

    MethodsAnimal models

    Forty-eight normal male Wistar rats, weighing 230-260 g,were housed in the Department of Laboratory Animals,China Medical University (Shenyang, China). The rats were housed under controlled temperature (23 ℃) and were exposed to a 12∶12-hour light-dark cycle with ad libitum access to water and standard rat chow. After 3-5 days of adaptation to the facility, the rats were anesthetized, and indwelling catheters were inserted as described previously.[9]The rats were allowed 3-4 days of postsurgical recovery before experiments.

    Experimental design

    The rats were fasted overnight for 14 hours and randomized to three groups, one of which received intralipid (20% intralipid+20 U/ml heparin, 5.5 μl/min;IH group, n=16), one was a saline-treated control (equal volume; SAL group, n=16), while another group received sodium salicylate (20% intralipid+20 U/ml heparin, 5.5 μl/min+sodium salicylate, 0.117 mg/kg per minute; IHS group, n=16). The duration of infusion in each group was 7 hours, and [6-3H] glucose (20 μCi, bolus+0.4 μCi/min infusion) was given during the last 2 hours of the experiment to assess endogenous glucose production(EGP) and glucose utilization (GU). Further, the rats were divided into 2 groups of 8 each: a basal infusion group and a hyperinsulinemic-euglycemic clamping group. Clamping was made to maintain blood glucose concentrations at 5.0 mmol/L during the last 2 hours, while steady-state human insulin infusion (5 mU/kg per minute) was given by infusing 20% glucose at a variable rate. Blood samples for testing glucose, insulin, FFAs, C-peptide, and [6-3H]glucose-speci fi c activity were taken during the last 30 minutes. The total blood volume withdrawn was 3.0-3.3 ml during the basal experiment and 3.5-3.8 ml during the clamping experiment. After plasma separation, red blood cells diluted 1∶1 in heparinized saline (4 U/ml)were reinfused into the rats. At the end of the experiment,liver and gastrocnemius samples were removed within 45 seconds of anesthetic injection while infusion was maintained through the jugular vein.

    Laboratory methods

    Plasma glucose was measured with the glucose oxygenase method (BIOSEN5030, Germany). Plasma radioactivity from [6-3H] glucose was determined after deproteinization with Ba(OH)2and ZnSO4. The intraassay coef fi cient of variation was 6.5%. Insulin and C-peptide levels were determined by radioimmunoassay(Beijing Furui Biological Engineering Co., China).The coef fi cients of variation were <8% and 10.5%respectively. Plasma FFA levels were measured using a colorimetric kit, MDA levels and glutathione peroxidase(GSH-PX) activity in the liver and muscle were also measured using colorimetric kits (Nanjing Jiancheng Institute of Bio-engineering, China).

    Calculations

    Glucose turnover (rate of appearance of glucose determined with [6-3H] glucose) was calculated using the steady-state formula.[10]Data were presented as average values in samples taken in the last 30 minutes of the experiment.

    Statistical analysis

    The data were expressed as mean±SD. All calculations were performed using the SPSS12.0 software package.Experimental results were analyzed using one-way ANOVA with a probability for type 1 error set at P<0.05.

    ResultsPlasma levels of FFAs, glucose, insulin, and C-peptide

    IH elevated plasma FFA levels by 2-fold, and increased basal plasma insulin and C-peptide levels by 0.6 and 0.7-fold respectively. Plasma glucose levels were higher with IH vs. SAL infusion in the basal experiments but were maintained at 5.0 mmol/L during the clamping(Table). Sodium salicylate decreased FFAs slightly,signi fi cantly decreased basal plasma glucose level by 70%, and reduced basal plasma insulin and C-peptide levels by 39% and 32%, respectively (Table).

    Hepatic glucose production (HGP)

    In the basal state, IH increased HGP by 1.5-fold,while sodium salicylate decreased HGP by 16%. During the hyperinsulinemic-euglycemic clamping, HGP in the IH group was 2-fold that in the SAL group and the infusion of sodium salicylate resulted in a decrease of 20% in HGP.

    Glucose utilization (GU)

    Under basal state conditions, IH increased GU by 1.6-fold. GU was reduced by 20% with intralipidinfusion during the clamping, as compared with that with SAL infusion. Sodium salicylate decreased GU by 18% in the basal state, and increased GU by 14% in clamping conditions, compared with the IH group.

    Table. Plasma levels of FFAs, glucose, insulin, and C-peptide in basal fasting state and in the clamped state (insulin infusion rate: 5 mU/kg per minute)

    Fig. 1. Liver and muscle MDA levels. Data were expressed as mean±SD; SAL: saline; IH: intralipid + heparin; IHS: intralipid+heparin+sodium salicylate; *: P<0.05, vs. SAL; **: P<0.01, vs.SAL; #: P<0.01, vs. IH.

    Fig. 2. Liver and muscle GSH-PX activity. Data were expressed as mean±SD; SAL: saline; IH: intralipid+heparin; IHS: intralipid+heparin+sodium salicylate; *: P<0.01, vs. SAL; #: P<0.05, vs. IH;##: P<0.01, vs. IH.

    MDA levels and GSH-PX activity in the liver and muscle

    After intralipid infusion, MDA levels in the liver and muscle were increased by 2- and 4-fold, while GSHPX activity decreased by 45% and 46%, respectively.Compared to the IH group, sodium salicylate treatment reduced MDA content in the liver and muscle by 63%and 66%, and elevated the GSH-PX activity by 35% and 37%, respectively (Figs. 1, 2).

    Discussion

    The elevation of plasma FFAs has been shown to impair insulin action and cause insulin resistance. Insulin resistance is a key etiological factor for type 2 diabetes mellitus. Additional 41 million people are prediabetic with a constellation of insulin resistance, hypertension,and dyslipidemia, which puts them at increased risk for cardiovascular morbidity and mortality.[11]Thus,there is an urgent need for effective interventions to prevent diabetes in insulin-resistant populations. In recent studies, the improvement of insulin resistance by anti-in fl ammatory salicylates has been investigated,but the molecular target remains uncertain. A better understanding of the mechanisms will be required to combat the epidemics of type 2 diabetes and cardiovascular diseases that are fueled by obesityassociated insulin resistance. In this study, the effects of FFAs on hepatic and skeletal muscle glucose metabolism were tested. In addition, we determined whether highdose anti-in fl ammatory salicylates prevent FFA-induced alterations of insulin action and the biochemical mechanisms that underlie these effects.

    In our animal model, IH elevated basal plasma FFAs to above the physiological range but within the FFA elevation seen in uncontrolled diabetes. The FFA levels in the clamping were lower than the basal FFA levels,which are consistent with the antilipolytic and FFA reesteri fi cation effects of insulin.[12]IH increased insulin and C-peptide levels in all groups, because of increased insulin secretion in the basal state and a decreased insulin clearance during the clamping.[13]Sodium salicylate down-regulated high FFA-induced endogenous insulin secretion, and decreased plasma glucose levels accordingly. Acetylsalicylic acid was reported to promote fatty acid oxidation and reduce the plasma FFA level.[14]However, we did not fi nd a signi fi cant decrease of FFAs after sodium salicylate infusion, which may be due to the short infusion time.

    Previous studies have reported that FFAs cause insulin resistance by increasing gluconeogenesis in the liver,[15]impairing the insulin-mediated suppression of HGP, and inhibiting insulin-stimulated glucose uptake in skeletal muscle.[16]The skeletal muscle is the major site for insulin-stimulated glucose disposal, and is the major target for peripheral insulin resistance.[17]Our study showed that FFAs induced hepatic insulin resistance by elevating HGP levels and induced peripheral insulin resistance by decreasing GU and metabolism. A 7-hour infusion of sodium salicylate resulted in signi fi cant improvements in insulin sensitivity, including a 20%decrease in HGP and a 15% increase in GU.

    We found that IH increased MDA levels in the liver and skeletal muscle by 2- and 4-fold, and reduced the GSH-PX activity by 45% and 46%, respectively. MDA is a marker of oxidative stress, while GSH-PX re fl ects the capacity for elimination of free radicals. These results showed that FFAs are strongly associated with a persistent imbalance between the production of highly reactive molecular species and antioxidant defense.[18]It has been reported that the increased production of these active molecules or a reduced capacity for elimination causes abnormal changes in intracellular signaling and gene expression, ultimately resulting in a pathological situation that includes insulin resistance.[19]After administration of sodium salicylate, MDA levels in the liver and muscle decreased by 63% and 64%,and the GSH-PX activity increased by 35% and 37%,respectively. These results indicated that sodium salicylate signi fi cantly relieves the degree of oxidative stress in the liver and skeletal muscle. At the same time,it improved hepatic and peripheral insulin resistance by decreasing HGP and increasing GU. High doses of salicylate (4-10 g/d), including sodium salicylate and aspirin, have been used to treat in fl ammatory conditions such as rheumatic fever and rheumatoid arthritis. These high doses are thought to inhibit nuclear factor kappa B (NF-κB) and its upstream activator IκB kinase β (IKK-β), as opposed to working through cyclooxygenases, the classical targets of non-steroidal anti-in fl ammatory drugs.[20,21]High doses of salicylates also lower blood glucose concentrations although their potential for treating diabetes has been all but forgotten by modern biomedical science. In this study, we found that the anti-in fl ammatory drug, sodium salicylate,relieved oxidative damage in the liver and skeletal muscle, and improved FFA-induced insulin resistance.Thus we presumed that sodium salicylate might inhibit IKK-β- and NF-κB-mediated transcription, which in certain cells would enhance the production of low-level in fl ammatory cytokines, such as TNF-α and IL-6. It has been demonstrated that in fl ammatory cytokines increase the transcription and translation of reactive molecular species and activate some reactive molecular species.[22,23]Ultimately, the anti-in fl ammatory drug sodium salicylate may improve insulin resistance through abating the degree of oxidative stress in the liver and skeletal muscle.

    In summary, our data demonstrate that the shortterm elevation of fatty acids induces insulin resistance by enhancing oxidative stress levels in the liver and skeletal muscle. Also, in this study we preliminarily assessed the ef fi cacy of the anti-in fl ammatory drug sodium salicylate as a new treatment for insulin resistance.This effect was associated with at least one mechanism:Sodium salicylate reduced the degree of oxidative stress in the liver and skeletal muscle, and therefore improved hepatic and peripheral insulin resistance. IKK-β and NF-κB might provide a potential pathogenic link to oxidative stress.

    Funding: This study was supported by a grant from the Bureau of Education of Liaoning Province, China (No. 20060999).

    Ethical approval: Not needed.

    Contributors: HB proposed the study and wrote the fi rst draft.ZS analyzed the data. HP carried out the experiments. All authors contributed to the design and interpretation of the study and to further drafts. HP is the guarantor.

    Competing interest: No bene fi ts in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Westphal SA. Obesity, abdominal obesity, and insulin resistance.Clin Cornerstone 2008;9:23-31.

    2 Wilding JP. The importance of free fatty acids in the development of Type 2 diabetes. Diabet Med 2007;24:934-945.

    3 Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C,Park E, et al. Free fatty acid-induced reduction in glucosestimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 2007;56:2927-2937.

    4 Williamson RT. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. Br Med J 1901;1:760-762.

    5 Reid J, MacDougall AI, Andrews MM. Aspirin and diabetes mellitus. Br Med J 1957;2:1071-1074.

    6 Manrique C, Lastra G, Palmer J, Gardner M, Sowers JR.Aspirin and Diabetes Mellitus: revisiting an old player. Ther Adv Cardiovasc Dis 2008;2:37-42.

    7 Zeender E, Maedler K, Bosco D, Berney T, Donath MY, Halban PA. Pioglitazone and sodium salicylate protect human betacells against apoptosis and impaired function induced by glucose and interleukin-1beta. J Clin Endocrinol Metab 2004;89:5059-5066.

    8 Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008;44:1973-2001.

    9 Han P, Zhang YY, Lu Y, He B, Zhang W, Xia F. Effects of different free fatty acids on insulin resistance in rats.Hepatobiliary Pancreat Dis Int 2008;7:91-96.

    10 Lam TK, van de Werve G, Giacca A. Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. Am J Physiol Endocrinol Metab 2003;284:E281-290.

    11 Misra A, Khurana L. Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 2008;93:S9-30.

    12 Wiesenthal SR, Sandhu H, McCall RH, Tchipashvili V, Yoshii H, Polonsky K, et al. Free fatty acids impair hepatic insulin extraction in vivo. Diabetes 1999;48:766-774.

    13 Lam TK, Yoshii H, Haber CA, Bogdanovic E, Lam L, Fantus IG, et al. Free fatty acid-induced hepatic insulin resistance:a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab 2002;283:E682-691.

    14 van der Crabben SN, Allick G, Ackermans MT, Endert E, Romijn JA, Sauerwein HP. Prolonged fasting induces peripheral insulin resistance, which is not ameliorated by highdose salicylate. J Clin Endocrinol Metab 2008;93:638-641.

    15 Li L, Yang GY. Effect of hepatic glucose production on acute insulin resistance induced by lipid-infusion in awake rats.World J Gastroenterol 2004;10:3208-3211.

    16 Lam TK, Carpentier A, Lewis GF, van de Werve G, Fantus IG,Giacca A. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab 2003;284:E863-873.

    17 Abdul-Ghani MA, Matsuda M, DeFronzo RA. Strong association between insulin resistance in liver and skeletal muscle in non-diabetic subjects. Diabet Med 2008;25:1289-1294.

    18 Yang R, Shi Y, Li W, Yue P. Effect of lipoic acid on gene expression related to oxidative stress, lipid and glucose metabolism of mice fed with high fat diet. Wei Sheng Yan Jiu 2008;37:560-562, 565.

    19 Evans JL, Maddux BA, Gold fi ne ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 2005;7:1040-1052.

    20 Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al.Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11:183-190.

    21 Hundal RS, Petersen KF, Mayerson AB, Randhawa PS,Inzucchi S, Shoelson SE, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002;109:1321-1326.

    22 Martínez JA. Mitochondrial oxidative stress and in fl ammation:an slalom to obesity and insulin resistance. J Physiol Biochem 2006;62:303-306.

    23 Tilg H, Moschen AR. In fl ammatory mechanisms in the regulation of insulin resistance. Mol Med 2008;14:222-231.

    BACKGROUND: It has been reported that high-dose salicylates improve free fatty acids (FFAs)-induced insulin resistance and β-cell dysfunction in vitro, but the mechanism remains uncertain. In insulin-resistant rats, we found that the supplementation of sodium salicylate is associated with a reduction of plasma malondialdehyde (MDA), a marker of oxidative stress. Few studies have investigated the effects of salicylates on oxidative stress levels in insulin-resistant animal models. This study aimed to assess the effect of sodium salicylate on insulin sensitivity and to explore the potential mechanism by which it improves hepatic and peripheral insulin resistance.

    METHODS: Intralipid+heparin (IH), saline (SAL), or intralipid+heparin+sodium salicylate (IHS) were separately infused for 7 hours in normal Wistar rats. During the last 2 hours of the infusion, hyperinsulinemic-euglycemic clamping was performed with [6-3H] glucose tracer. Plasma glucose was measured using the glucose oxygenase method. Plasma insulin and C-peptide were determined by radioimmunoassay. MDA levels and glutathione peroxidase (GSH-PX) activity in the liver and skeletal muscle were measured with colorimetric kits.RESULTS: Compared with infusion of SAL, IH infusion increased hepatic glucose production (HGP), and decreased glucose utilization (GU) (P<0.05). The elevation of plasma free fatty acids increased the MDA levels and decreased the GSH-PX activity in the liver and muscle (P<0.01). Sodium salicylate treatment decreased HGP, elevated GU (P<0.05),reduced MDA content by 60% (P<0.01), and increased the GSH-PX activity by 35% (P<0.05).CONCLUSIONS: Short-term elevation of fatty acids induces insulin resistance by enhancing oxidative stress levels in the liver and muscle. The administration of the anti-in fl ammatory drug sodium salicylate reduces the degree of oxidative stress,therefore improving hepatic and peripheral insulin resistance.IKK-β and NF-κB provide potential pathogenic links to oxidative stress.

    Author Af fi liations: Department of Endocrinology, Shengjing Af fi liated Hospital, China Medical University, Shenyang 110004, China (He B,Zhao S, Li Y and Han P); and Department of Internal Medicine, Fourth Af fi liated Hospital, China Medical University, Shenyang 110032, China(Zhang W)

    Ping Han, MD, Department of Endocrinology,Shengjing Af fi liated Hospital, China Medical University, Shenyang 110004,China (Tel: 86-24-83955273; Fax: 86-24-83955273; Email: hanping85@hotmail.com)

    ? 2010, Hepatobiliary Pancreat Dis Int. All rights reserved.

    February 2, 2009

    Accepted after revision November 7, 2009

    亚洲精品久久久久久婷婷小说| 免费看av在线观看网站| 欧美变态另类bdsm刘玥| 人人妻人人澡人人爽人人夜夜| 亚洲精品视频女| 18禁裸乳无遮挡动漫免费视频 | 免费黄网站久久成人精品| 国产欧美日韩精品一区二区| 国内精品美女久久久久久| 精品一区二区免费观看| 啦啦啦中文免费视频观看日本| 韩国av在线不卡| 精品一区二区三卡| 欧美区成人在线视频| 97人妻精品一区二区三区麻豆| 男女国产视频网站| 久久久久国产精品人妻一区二区| a级一级毛片免费在线观看| 成人亚洲欧美一区二区av| 哪个播放器可以免费观看大片| 国产精品爽爽va在线观看网站| 国产淫片久久久久久久久| 老师上课跳d突然被开到最大视频| 精品酒店卫生间| 亚洲精品日韩av片在线观看| 欧美日韩视频高清一区二区三区二| 最近2019中文字幕mv第一页| kizo精华| 精品人妻视频免费看| 久久ye,这里只有精品| 国产精品一区www在线观看| 免费少妇av软件| 亚洲成人av在线免费| 日韩伦理黄色片| 国产黄片视频在线免费观看| 国产爽快片一区二区三区| 国产一区二区三区综合在线观看 | 少妇的逼好多水| 国产在视频线精品| 精品一区二区三卡| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影| 有码 亚洲区| 色播亚洲综合网| 国产在视频线精品| 免费人成在线观看视频色| 大话2 男鬼变身卡| 搡老乐熟女国产| 97精品久久久久久久久久精品| 成人欧美大片| 国产亚洲5aaaaa淫片| 狂野欧美激情性xxxx在线观看| 国产美女午夜福利| 久久亚洲国产成人精品v| 日韩av在线免费看完整版不卡| 少妇的逼好多水| 亚洲国产色片| 亚洲欧美成人精品一区二区| 哪个播放器可以免费观看大片| 久久久久久久精品精品| 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| 日韩三级伦理在线观看| 国产淫片久久久久久久久| 国产探花在线观看一区二区| 午夜福利在线在线| 最近中文字幕高清免费大全6| 超碰97精品在线观看| 伦精品一区二区三区| 2021天堂中文幕一二区在线观| 我要看日韩黄色一级片| 毛片一级片免费看久久久久| 日韩 亚洲 欧美在线| 成人亚洲精品av一区二区| 亚洲国产精品国产精品| 人妻制服诱惑在线中文字幕| 一区二区三区精品91| 久久99精品国语久久久| xxx大片免费视频| 日韩欧美精品免费久久| 久久久久久久大尺度免费视频| 99热全是精品| 晚上一个人看的免费电影| 男女无遮挡免费网站观看| av福利片在线观看| 最新中文字幕久久久久| 午夜亚洲福利在线播放| 亚洲欧美清纯卡通| 亚洲欧美清纯卡通| 建设人人有责人人尽责人人享有的 | 午夜免费男女啪啪视频观看| 成人毛片60女人毛片免费| 国产一区二区在线观看日韩| 国产伦精品一区二区三区视频9| 亚洲欧美日韩卡通动漫| 国产精品久久久久久av不卡| 久久久久精品性色| 乱码一卡2卡4卡精品| .国产精品久久| 久久久成人免费电影| 91久久精品国产一区二区成人| 热re99久久精品国产66热6| 高清毛片免费看| 人人妻人人爽人人添夜夜欢视频 | 欧美bdsm另类| 亚洲国产欧美在线一区| 丝袜美腿在线中文| 夜夜爽夜夜爽视频| 国产午夜精品久久久久久一区二区三区| 亚洲精品成人av观看孕妇| 18+在线观看网站| 国产精品成人在线| 天美传媒精品一区二区| videos熟女内射| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 永久网站在线| 一级二级三级毛片免费看| 又爽又黄无遮挡网站| 赤兔流量卡办理| av天堂中文字幕网| 波野结衣二区三区在线| 99视频精品全部免费 在线| 男女边摸边吃奶| 国产高潮美女av| 日本午夜av视频| 亚洲欧洲国产日韩| 欧美 日韩 精品 国产| 国产伦在线观看视频一区| 联通29元200g的流量卡| 国内精品美女久久久久久| 亚洲美女视频黄频| 青春草亚洲视频在线观看| 亚洲,一卡二卡三卡| 亚洲精品第二区| 国产高清三级在线| av在线亚洲专区| 久久久亚洲精品成人影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一区二区三区四区激情视频| 在线免费十八禁| av在线老鸭窝| 久久女婷五月综合色啪小说 | 最近中文字幕高清免费大全6| 丝袜脚勾引网站| 亚洲不卡免费看| 欧美+日韩+精品| 永久免费av网站大全| 97超视频在线观看视频| 欧美日韩国产mv在线观看视频 | 国产精品久久久久久久久免| 亚洲av中文字字幕乱码综合| 一级毛片黄色毛片免费观看视频| 少妇人妻一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品成人综合色| 亚洲欧美一区二区三区国产| 99久久人妻综合| 国产成人一区二区在线| 日韩一本色道免费dvd| 99热国产这里只有精品6| 搡老乐熟女国产| 亚洲国产色片| av在线app专区| 九草在线视频观看| 国产成人精品久久久久久| 中文字幕av成人在线电影| 99久久精品热视频| 偷拍熟女少妇极品色| 一本一本综合久久| 中文字幕制服av| 免费av观看视频| 午夜福利在线观看免费完整高清在| 最新中文字幕久久久久| 青春草亚洲视频在线观看| 插阴视频在线观看视频| 国产精品伦人一区二区| 成人午夜精彩视频在线观看| 99视频精品全部免费 在线| eeuss影院久久| 免费大片18禁| 国产黄色视频一区二区在线观看| 国产综合懂色| 黄色配什么色好看| 日产精品乱码卡一卡2卡三| 少妇的逼好多水| 亚洲欧美清纯卡通| 一二三四中文在线观看免费高清| 卡戴珊不雅视频在线播放| 免费在线观看成人毛片| 亚洲av成人精品一区久久| 特级一级黄色大片| 2021天堂中文幕一二区在线观| 久久久精品94久久精品| 最后的刺客免费高清国语| 香蕉精品网在线| 在线播放无遮挡| 久久久久久九九精品二区国产| 99久久中文字幕三级久久日本| 亚洲aⅴ乱码一区二区在线播放| 天堂俺去俺来也www色官网| 欧美一级a爱片免费观看看| 精品国产一区二区三区久久久樱花 | 水蜜桃什么品种好| 老女人水多毛片| 亚洲经典国产精华液单| 日本午夜av视频| 久久人人爽av亚洲精品天堂 | 久久99热6这里只有精品| 成年女人在线观看亚洲视频 | 一本久久精品| 亚洲国产成人一精品久久久| 看黄色毛片网站| 国内精品美女久久久久久| 99热网站在线观看| 国产成人免费无遮挡视频| 成人鲁丝片一二三区免费| 欧美老熟妇乱子伦牲交| 国内少妇人妻偷人精品xxx网站| 99热网站在线观看| 嫩草影院入口| 国产v大片淫在线免费观看| 亚洲精品一二三| 国产高潮美女av| 又粗又硬又长又爽又黄的视频| 国产在视频线精品| 新久久久久国产一级毛片| 久久久久久久久久人人人人人人| 亚洲精品成人久久久久久| 国产亚洲最大av| 国产人妻一区二区三区在| 中文在线观看免费www的网站| .国产精品久久| 2022亚洲国产成人精品| 搡女人真爽免费视频火全软件| 一级毛片电影观看| 日本爱情动作片www.在线观看| 久久精品久久久久久久性| 久久久欧美国产精品| 大话2 男鬼变身卡| 五月玫瑰六月丁香| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久| 色网站视频免费| 少妇被粗大猛烈的视频| 亚洲最大成人av| 99热这里只有是精品在线观看| 赤兔流量卡办理| 日本与韩国留学比较| 深爱激情五月婷婷| 水蜜桃什么品种好| 精品久久久久久久人妻蜜臀av| 22中文网久久字幕| 男女国产视频网站| 日韩一区二区三区影片| 人人妻人人爽人人添夜夜欢视频 | 性插视频无遮挡在线免费观看| 亚洲国产成人一精品久久久| 网址你懂的国产日韩在线| 成人国产麻豆网| 国产成人a∨麻豆精品| 亚洲图色成人| 99精国产麻豆久久婷婷| 免费不卡的大黄色大毛片视频在线观看| 久久午夜福利片| 别揉我奶头 嗯啊视频| 在线a可以看的网站| 免费播放大片免费观看视频在线观看| 丰满少妇做爰视频| 黄色欧美视频在线观看| 男的添女的下面高潮视频| 久久久久久国产a免费观看| 国产精品99久久99久久久不卡 | 久久精品国产a三级三级三级| 亚洲经典国产精华液单| 高清日韩中文字幕在线| 热99国产精品久久久久久7| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| 久久影院123| 麻豆精品久久久久久蜜桃| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站| 激情 狠狠 欧美| 免费看日本二区| 黄色配什么色好看| 高清日韩中文字幕在线| 日本欧美国产在线视频| 欧美97在线视频| 亚洲精品亚洲一区二区| 欧美一区二区亚洲| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 男插女下体视频免费在线播放| 欧美97在线视频| 亚洲一区二区三区欧美精品 | 国产毛片在线视频| 婷婷色综合大香蕉| 在线观看免费高清a一片| tube8黄色片| 亚洲精品aⅴ在线观看| 狂野欧美激情性xxxx在线观看| 如何舔出高潮| 欧美日韩综合久久久久久| 国产成年人精品一区二区| 日韩精品有码人妻一区| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 永久网站在线| 在线观看国产h片| 91精品国产九色| h日本视频在线播放| 欧美日韩精品成人综合77777| 午夜福利视频精品| 欧美一级a爱片免费观看看| 男女啪啪激烈高潮av片| 久久久久久国产a免费观看| 欧美3d第一页| 看十八女毛片水多多多| 黑人高潮一二区| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区综合在线观看 | 国产成人午夜福利电影在线观看| 97人妻精品一区二区三区麻豆| 插阴视频在线观看视频| 秋霞伦理黄片| 久久99蜜桃精品久久| 亚洲婷婷狠狠爱综合网| 国产探花在线观看一区二区| 免费高清在线观看视频在线观看| 嫩草影院新地址| 极品少妇高潮喷水抽搐| 国产永久视频网站| 亚洲精品国产色婷婷电影| 免费在线观看成人毛片| 十八禁网站网址无遮挡 | 精品亚洲乱码少妇综合久久| 大话2 男鬼变身卡| 噜噜噜噜噜久久久久久91| 亚洲精品国产av蜜桃| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 欧美成人午夜免费资源| 日本黄大片高清| 久久影院123| 狠狠精品人妻久久久久久综合| 国产男女超爽视频在线观看| 少妇人妻久久综合中文| 人妻少妇偷人精品九色| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产精品成人久久小说| 欧美人与善性xxx| av免费在线看不卡| 欧美xxxx性猛交bbbb| 亚洲国产日韩一区二区| 丰满人妻一区二区三区视频av| 成年人午夜在线观看视频| 午夜免费观看性视频| 成人黄色视频免费在线看| 欧美成人a在线观看| 秋霞伦理黄片| 免费观看a级毛片全部| 国内精品宾馆在线| 欧美变态另类bdsm刘玥| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 亚洲国产精品999| 久久99热这里只有精品18| 狂野欧美白嫩少妇大欣赏| 国产欧美亚洲国产| 五月玫瑰六月丁香| 日本黄色片子视频| 插逼视频在线观看| 欧美另类一区| 中文字幕亚洲精品专区| 国产免费一级a男人的天堂| 免费观看性生交大片5| 亚洲av成人精品一区久久| 免费看a级黄色片| 亚洲,一卡二卡三卡| 亚洲丝袜综合中文字幕| 日本午夜av视频| 精品一区二区三区视频在线| 特级一级黄色大片| 一本色道久久久久久精品综合| 日本黄色片子视频| 在线a可以看的网站| 激情 狠狠 欧美| 别揉我奶头 嗯啊视频| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 精品久久久久久久人妻蜜臀av| 又大又黄又爽视频免费| 人妻少妇偷人精品九色| 国产精品.久久久| 久久久国产一区二区| 如何舔出高潮| 成年女人看的毛片在线观看| 国产精品精品国产色婷婷| 免费黄频网站在线观看国产| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 久久久久九九精品影院| 伦精品一区二区三区| 亚洲av男天堂| 韩国高清视频一区二区三区| 精品熟女少妇av免费看| 校园人妻丝袜中文字幕| 久久精品熟女亚洲av麻豆精品| 最新中文字幕久久久久| 精品一区二区三区视频在线| 久久鲁丝午夜福利片| 97在线视频观看| 国产在线一区二区三区精| 国产精品国产三级专区第一集| 高清欧美精品videossex| 特级一级黄色大片| 国国产精品蜜臀av免费| 成人二区视频| 免费观看av网站的网址| 噜噜噜噜噜久久久久久91| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区| 亚洲高清免费不卡视频| 在线播放无遮挡| 爱豆传媒免费全集在线观看| 免费看日本二区| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频 | 自拍欧美九色日韩亚洲蝌蚪91 | 国内揄拍国产精品人妻在线| 亚洲人与动物交配视频| 亚洲成人av在线免费| 色视频在线一区二区三区| 免费人成在线观看视频色| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 亚洲av二区三区四区| 狂野欧美激情性xxxx在线观看| 真实男女啪啪啪动态图| 哪个播放器可以免费观看大片| 成年人午夜在线观看视频| 国产白丝娇喘喷水9色精品| 尾随美女入室| 男男h啪啪无遮挡| 国产精品人妻久久久久久| 97超视频在线观看视频| 久久99热6这里只有精品| 亚洲欧美一区二区三区黑人 | 中文字幕亚洲精品专区| 在线观看av片永久免费下载| 能在线免费看毛片的网站| 不卡视频在线观看欧美| 久久精品综合一区二区三区| 日本一本二区三区精品| 黄片wwwwww| 成人鲁丝片一二三区免费| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| 国产探花极品一区二区| 色哟哟·www| 国产成人a区在线观看| 99热国产这里只有精品6| 免费在线观看成人毛片| 制服丝袜香蕉在线| 少妇猛男粗大的猛烈进出视频 | 国产成人福利小说| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人中文字幕在线播放| 久久久久国产精品人妻一区二区| 寂寞人妻少妇视频99o| av卡一久久| 在线精品无人区一区二区三 | 成人漫画全彩无遮挡| 国产免费又黄又爽又色| 亚洲av.av天堂| 国产久久久一区二区三区| av在线观看视频网站免费| 丝袜脚勾引网站| 免费观看在线日韩| 国产免费一区二区三区四区乱码| 一个人看视频在线观看www免费| 男女边吃奶边做爰视频| 欧美97在线视频| 国产亚洲91精品色在线| 别揉我奶头 嗯啊视频| 亚洲精品成人久久久久久| a级毛色黄片| 国产女主播在线喷水免费视频网站| 美女内射精品一级片tv| 天天一区二区日本电影三级| 男女国产视频网站| 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 日日啪夜夜爽| 亚洲精品成人久久久久久| 美女高潮的动态| 国产黄色免费在线视频| 国产美女午夜福利| 成年女人看的毛片在线观看| 国产成人免费无遮挡视频| 日韩国内少妇激情av| 综合色av麻豆| 日韩电影二区| 黑人高潮一二区| 尤物成人国产欧美一区二区三区| 又大又黄又爽视频免费| 蜜桃亚洲精品一区二区三区| 2022亚洲国产成人精品| 少妇熟女欧美另类| 亚洲精品亚洲一区二区| 国产老妇伦熟女老妇高清| 亚洲国产高清在线一区二区三| 久久午夜福利片| 久久女婷五月综合色啪小说 | 欧美 日韩 精品 国产| 黄片无遮挡物在线观看| a级毛色黄片| 日韩欧美精品v在线| 麻豆精品久久久久久蜜桃| 午夜福利在线在线| 午夜激情福利司机影院| 男女边摸边吃奶| 人妻少妇偷人精品九色| 日韩欧美 国产精品| 日本欧美国产在线视频| 国产午夜福利久久久久久| 亚洲av免费高清在线观看| 免费观看在线日韩| 春色校园在线视频观看| 美女脱内裤让男人舔精品视频| 欧美日韩国产mv在线观看视频 | 欧美区成人在线视频| 美女内射精品一级片tv| 大陆偷拍与自拍| 好男人视频免费观看在线| 网址你懂的国产日韩在线| 91久久精品国产一区二区成人| 国产精品一区二区三区四区免费观看| 久久99热这里只频精品6学生| 日本熟妇午夜| 亚洲色图综合在线观看| 黄色配什么色好看| 丝袜美腿在线中文| 成人免费观看视频高清| 欧美激情在线99| 国产探花极品一区二区| 国精品久久久久久国模美| 伦理电影大哥的女人| 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 18禁裸乳无遮挡免费网站照片| 夜夜看夜夜爽夜夜摸| 大香蕉97超碰在线| 午夜福利网站1000一区二区三区| 下体分泌物呈黄色| 22中文网久久字幕| 乱系列少妇在线播放| 亚洲精品日韩在线中文字幕| 免费黄色在线免费观看| 日产精品乱码卡一卡2卡三| 韩国高清视频一区二区三区| 只有这里有精品99| 久久久久性生活片| 五月开心婷婷网| 亚洲av电影在线观看一区二区三区 | 热99国产精品久久久久久7| 乱码一卡2卡4卡精品| 纵有疾风起免费观看全集完整版| 国产男女内射视频| 免费看av在线观看网站| 尾随美女入室| 又大又黄又爽视频免费| 中文字幕制服av| eeuss影院久久| 高清在线视频一区二区三区| 国产成人免费观看mmmm| 观看免费一级毛片| 高清av免费在线| 欧美日本视频| 日韩成人av中文字幕在线观看| 三级经典国产精品| 男插女下体视频免费在线播放| 国产午夜福利久久久久久| 国产精品一区www在线观看| 男女啪啪激烈高潮av片| 女人被狂操c到高潮| 亚洲欧洲国产日韩| 亚洲人成网站高清观看| 午夜激情久久久久久久| 国产精品人妻久久久久久| 国产黄片视频在线免费观看| 国产成人精品福利久久| 久久久久九九精品影院| 欧美精品一区二区大全| 欧美性感艳星| 欧美激情国产日韩精品一区| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 老司机影院成人| 汤姆久久久久久久影院中文字幕| 一级av片app| 美女国产视频在线观看| 国产探花在线观看一区二区| 国产精品爽爽va在线观看网站| 国产成人一区二区在线| 丝袜美腿在线中文| 一级毛片黄色毛片免费观看视频| 麻豆成人午夜福利视频| 汤姆久久久久久久影院中文字幕| 极品教师在线视频|