• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Characterization of Organoboryl Germanium(II)Oxides Containing Ge–O–B and Ge–O–B–O–Ge Cores①

    2021-07-06 09:05:34ZHANGDeXingLIYoPENGLnXinLIHiPuYANGYing
    結(jié)構(gòu)化學(xué) 2021年6期

    ZHANG De-Xing LI Yo PENG Ln-Xin LI Hi-Pu,b YANG Ying②

    a (School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China)

    b (Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China)

    ABSTRACT Organoboryl germanium(II) oxides were synthesized from the 1,4-addition reaction of L′Ge (L′ =HC[C(CH2)N(Ar)]C(Me)N(Ar), Ar = 2,6-iPr2C6H3) with selected monosubstituted arylboronic acids RB(OH)2 (R =2,6-Me2C6H3, 2,4,6-Me3C6H2, 1-Naph) at the molar ratios of 1:1 and 2:1. The mononuclear products RB(OH)OGeL(L = CH[C(Me)N(Ar)]2, Ar = 2,6-iPr2C6H3; R = 2,6-Me2C6H3 (1), 2,4,6-Me3C6H2 (2), 1-Naph (3)) containing the Ge–O–B core were obtained smoothly through the 1:1 reaction. However, the reaction of L′Ge with 2,6-Me2C6H3B(OH)2 in a 2:1 ratio gave only the mononuclear product (1) instead of the expected binuclear one.What’s more, a new borate compound [(2,6-Me2C6H3)4B5O6]-[H:C]+ (4) (:C = C[N(iPr)C(Me)]2) was concomitantly formed when the in situ prepared L′Ge was used as the precursor. In contrast, the use of 2,4,6-Me3C6H2B(OH)2 or 1-NaphB(OH)2 as the organoboryl source in the similar reaction led to the formation and isolation of the binuclear products RB(OGeL)2 (R = 2,4,6-Me3C6H2 (5), 1-Naph (6)) containing the Ge–O–B–O–Ge core in a straight way.Compounds 1~6 were determined by single-crystal X-ray diffraction analysis.

    Keywords: organic boronic acid, germylene, synthesis, crystal structure;

    1 INTRODUCTION

    Organic boronic acids RB(OH)2are common organic reagents used in laboratories and industry and have found extensive application in the fields of medicine[1], biology[2,3],materials[4,5], and organic chemistry[6]for the preparation of organic intermediates or final products[7-9]. The complexes that contain the arylboronate ligand (RB(OH)O) from the reaction of arylboronic acid RB(OH)2with organometallic precursors can be employed to understand the crucial step in synthetic organic reactions such as the cross-coupling and 1,4-addition reactions catalyzed by those metals[10,11]. In addition,arylboronic acids RB(OH)2were also utilized as a boronoxygen ligand to construct the bimetallic zirconium heterocycles for the possible cocatalyst in olefin polymerization[12]due to their latent Lewis acidity. Considering the availability of organic boronic acids for constructing B–O–M compounds and the convenience of germylenes for constructing the interesting heterometallic systems[13-16], we propose to prepare the mono- and binuclear germylenes supported by organoboryl ligands.

    Compared with the multi-step synthetic procedure for binuclear germylenes by the salt metathesis reaction or elimination reaction[17,18], the route via the N-heterocyclic ylide-like germylene L′Ge (L′ = HC[C(CH2)NAr]CMeNAr,Ar = 2,6-iPr2C6H3)[19], which was capable of activating O–H[20,21], COO–H[20], N–H[22,23], and P–H[24,25], seems more convenient and attractive. The construction of compounds containing the B–O–Ge(II) linkage is rarely reported[26-29]and their formation and factors are not well known. Wu et. al.[29]used phenylboronic acid PhB(OH)2to react with L′Ge to afford the unexpected digermylene [LGe(OBPh)2]2O (L =CH[C(Me)N(Ar)]2, Ar = 2,6-iPr2C6H3) bearing the B4O5chain core, which separated the two Ge(II) atoms too far, while the treatment of 2-Ph-C6H4B(OH)2with L′Ge only afforded the mononuclear 2-Ph-C6H4B(OH)OGeL of the 1:1 composition

    as the sole product. However, the stoichiometric reaction of organic boronic acids RB(OH)2with L′Ge to produce monoand binuclear germylenes neatly containing the G–O–B and Ge–O–B–O–Ge cores seems elusive. Thus, in this article, we report on the exploration of the reaction of arylboronic acids RB(OH)2(R = 4-Ph-C6H4, 2,6-Me2C6H3, 2,4,6-Me3C6H2, and 1-Naph) with L′Ge at the ratio of 1:1 or 2:1 for preparing the title compounds.

    2 EXPERIMENTAL

    2. 1 General operation

    All manipulations were carried out in a standard Schlenk technology in a dry argon atmosphere or in the glovebox with oxygen content less than 0.1 ppm. Solvents needed for synthetic reaction in the laboratory were pre-dried with 4A molecular sieve for 3 days, then added with appropriate Na/K alloy and benzophenone, heated and refluxed to make the solvents dark blue or purple. After evaporation, the solvents were stored in anhydrous and oxygen-free solvent bottles in the argon atmosphere for reserve. Compound L′Ge was prepared based on the literature procedure[19]. Other reagents involved in this article were purchased from Aladdin without special instructions.

    The melting point of obtained compounds was measured on a digital display micro melting point meter (X-4B+). Infrared spectra were recorded by using KBr pellets with a NEXUS670(Thermo Fisher Scientific) FT-IR spectrometer. The1H,11B,and13C NMR spectra were measured on a Bruker Advance II 400 MHz NMR instrument at ambient temperature. Elemental analyses for carbon, hydrogen, and nitrogen were performed with a Thermo Quest Italia SPA EA1110 instrument.

    2. 2 General procedure for the synthesis of B–O–Ge(II) compounds

    A solution of the selected arylboronic acids (1 mol or 0.5 mol equiv in 5 mL toluene) was added to the toluene solution of L′Ge (20 mL) at –78°C under vigorous stirring. After slowly warming to room temperature, the mixture was further stirred for 12 h, followed by filtration and evaporation for the product.

    2. 3 4-Ph-C6H4B(OH)OGeL (1′)

    The 4-Ph-C6H4B(OH)2(0.198 g, 1 mmol) and L′Ge (0.489 g,1 mmol) were used for the synthesis of 1′. Yield: 60%. m.p.:237.5~241.3 °C. FT-IR (cm-1): ν? = 3475 (w), 3020 (vw), 2961(m), 2864 (vw), 1602 (m), 1552 (m), 1382 (vs), 1322 (s), 1263(vs), 1178 (m), 1114 (m), 1008 (m), 928 (vw), 843 (w), 801(w), 763 (m), 741 (m), 698 (m), 652 (vw), 579 (vw).1H NMR(400 MHz, C6D6, 298 K, ppm):δ= 5.41 (s, 1H,γ-CH), 4.25 (s,1H, OH), 3.42~3.23 (sept,J= 13.6, 6.8, 2H, CHMe2), 3.18~3.07 (sept,J= 13.6, 6.8, 2H, CHMe2), 2.05 (s, 6H, CMe), 1.26(d,J= 3.7, 6H, CHMe2), 1.16 (d,J= 6.8, 6H, CHMe2), 1.12 (d,J= 4.7, 6H, CHMe2), 0.96 (d,J= 6.7, 6H, CHMe2).11B NMR(128 MHz, C6D6, 298 K, ppm):δ= 1.33.13C NMR (101 MHz,C6D6, 298 K, ppm):δ= 166.66, 163.78, 161.90, 145.45,142.34, 141.96, 140.91, 139.44, 137.80, 135.08, 134.84,131.55, 127.87, 127.83, 127.70, 125.49, 125.29, 124.04,123.00, 99.19 (γ-C), 28.20, 27.00, 25.92, 23.63, 23.39, 22.85(CMe), 22.19, 20.85. Anal. Calcd. for C41H51BGeN2O2(687.31): C, 71.65; H, 7.48; N, 4.08%. Found C, 71.49; H,7.68; N, 4.26%.

    2. 4 2,6-Me2C6H3B(OH)OGeL (1)

    The 2,6-Me3C6H3B(OH)2(0.153 g, 1 mmol) and L′Ge(0.489 g, 1 mmol) were used for the synthesis of 1. Yield: 66%.m.p.: 207.7~210.4 °C. FT-IR (cm-1): ν? = 3540 (m), 3052 (vw),2958 (s), 2869 (w), 1619 (vw), 1554 (w), 1519 (w), 1436 (m),1372 (s), 1318 (m), 1251 (m), 1174 (vw), 1059 (vw), 1015 (w),851 (vw), 788 (w), 762 (w), 722 (vw), 695 (vw), 669 (vw).1H NMR (400 MHz, C6D6, 298 K, ppm):δ= 6.81 (d,J= 7.5, 2H,Ph-H), 4.68 (s, 1H,γ-CH), 3.85 (sept,J= 13.6, 6.8, 2H,CHMe2), 3.39 (s, 1H, OH), 3.19 (sept,J= 13.5, 6.8, 2H,CHMe2), 1.67 (s, 6H, CMe), 1.54 (d,J= 6.7, 6H, CMe), 1.50 (s,6H, CHMe2), 1.16 (d,J= 6.8, 12H, CHMe2), 1.07 (d,J= 6.8,6H, CHMe2).11B NMR (128 MHz, C6D6, 298 K, ppm):δ=31.38.13C NMR (101 MHz, C6D6, 298 K, ppm):δ= 162.80,160.35, 145.10, 143.17, 141.62, 138.09, 137.93, 128.14,126.28, 124.73, 124.50, 123.67, 123.58, 122.42, 94.80 (γ-C),27.68, 27.49, 27.47, 24.87, 23.87, 23.60, 23.54, 23.31 (CMe),22.25, 21.59, 20.65, 19.60. Anal. Calcd. for C37H51BGeN2O2(639.27): C, 69.52; H, 8.04; N, 4.38%. Found: C, 69.12; H,8.04; N, 4.24%.

    2. 5 2,4,6-Me3C6H2B(OH)OGeL (2)

    The 2,4,6-Me3C6H2B(OH)2(0.164 g, 1 mmol) and L′Ge(0.489 g, 1 mmol) were used for the synthesis of 2. Yield: 71%.m.p.: 214.7~215.9 °C. FT-IR (cm-1): ν? = 3551 (w), 2961 (s),2923 (w), 2863 (vw), 1607 (vw), 1564 (w), 1518 (w), 1463 (w),1437 (m), 1378 (s), 1348 (m), 1319 (s), 1259 (w), 1174 (vw),1098 (vw), 1055 (vw), 1017 (vw), 851 (vw), 801 (w).1H NMR(400 MHz, C6D6, 298 K, ppm):δ= 6.65 (s, 2H, Ph-H), 4.71 (s,1H,γ-CH), 3.85 (sept,J= 13.6, 6.8, 2H, CHMe2), 3.42 (s, 1H,OH), 3.21 (sept,J= 13.6, 6.8, 2H, CHMe2), 2.10 (d,J= 5.3,6H, CMe), 1.73 (s, 6H, CMe), 1.54 (s, 3H, CMe), 1.52 (s, 6H,CHMe2), 1.23~1.15 (m, 12H, CHMe2), 1.07 (d,J= 6.8, 6H,CHMe2).11B NMR (128MHz, C6D6, 298 K, ppm):δ= 31.61.13C NMR (101 MHz, C6D6, 298 K, ppm):δ= 162.80, 145.11,143.17, 138.21, 135.46, 126.27, 125.79, 123.67, 123.52, 94.91(γ-C), 27.70, 27.48, 24.90, 23.84, 23.70, 23.53, 21.63 (CMe),20.67, 20.17. Anal. Calcd. for C38H53BGeN2O2(653.29): C,69.86; H, 8.18; N, 4.29%. Found: C, 69.93; H, 8.02; N, 4.15%.

    2. 6 1-NaphB(OH)OGeL (3)

    The 1-NaphB(OH)2(0.172 g, 1 mmol) and L′Ge (0.489 g, 1 mmol) were used for the synthesis of 3. Yield: 77%. m.p.:223.1~225.6 °C. FT-IR (cm-1): ν? = 3437 (w), 2961 (s), 2668(m), 1624 (m), 1552 (s), 1454 (m), 1437 (m), 1378 (s), 1319(m), 1267 (s), 1093 (vs), 1021 (s), 932 (vw), 847 (vw), 796 (s),754 (w), 699 (w), 554 (vw).1H NMR (400 MHz, C6D6, 298 K,ppm):δ= 9.68 (d,J= 8.6, 1H, Naph-H), 8.42 (d,J= 6.8, 1H,Naph-H), 7.75 (dd,J= 13.0, 8.2, 2H, Naph-H), 7.48 (t,J= 7.5,1H, Naph-H), 7.42~7.31 (m, 2H, Naph-H), 5.22 (s, 1H,γ-CH), 4.38 (s, 1H, -OH), 3.70~3.51 (sept,J= 13.6, 6.8 2H,CHMe2), 3.28 (sept,J= 13.6, 6.8, 2H, CHMe2), 1.62 (s, 6H,CMe), 1.31 (d,J= 6.8, 6H, CHMe2), 1.09 (dd,J= 9.8, 6.9, 12H,CHMe2), 0.92 (d,J= 6.8, 6H, CHMe2).11B NMR (128MHz,C6D6, 298 K, ppm):δ= 29.60.13C NMR (101 MHz, C6D6, 298 K, ppm):δ= 160.35, 142.34, 141.63, 140.10, 139.40, 127.10,126.86, 126.74, 126.62, 124.68, 122.42, 93.12 (γ-C), 27.47,23.31, 22.25, 19.60 (CMe). Anal. Calcd. for C39H49BGeN2O2(661.27): C, 70.84; H, 7.47; N, 4.24%. Found: C, 70.65; H,7.34; N, 4.43%.

    2. 7 2,4,6-Me3C6H2B(OGeL)2 (5)

    The 2,4,6-Me3C6H2B(OH)2(0.172 g, 1 mmol) and L′Ge(0.987 g, 2 mmol) were used for the synthesis of 5. Yield: 65%.m.p.: 262.7~264.8 °C. FT-IR (cm-1): ν? = 3059 (w), 2957 (vs),2859 (m), 1526 (vs), 1437 (s), 1390 (vs), 1276 (s), 1225 (s),1166 (m), 1098 (m), 1055 (m), 1021 (m), 940 (w), 847 (m),784 (s), 754 (m), 724 (w), 677 (w), 613 (vw), 563 (w).1H NMR (400 MHz, C6D6, 298 K, ppm):δ= 5.52 (s, 1H, Ph-H),5.14 (s, 1H, Ph-H), 4.79 (s, 2H,γ-CH), 3.46 (sept,J= 13.1, 6.4,2H, CHMe2), 3.36-3.29 (sept,J= 13.1, 6.4 2H, CHMe2), 3.18(sept,J= 13.4, 6.7, 2H, CHMe2), 3.07 (sept,J= 13.7, 6.8, 2H,CHMe2), 2.11 (s, 12H, CMe), 1.60 (s, 6H, CMe), 1.50 (s, 15H,CHMe), 1.09 (dd,J= 6.7, 3.7, 16H, CHMe), 1.03 (d,J= 6.8,5H, CHMe), 0.89 (s, 16H, CMe), 0.61 (s, 8H, CMe).11B NMR(128 MHz, C6D6, 298 K, ppm):δ= 34.28.13C NMR (101 MHz,C6D6, 298 K, ppm):δ= 163.99, 160.78, 145.44, 144.51,142.11, 142.06, 135.64, 128.57, 126.31, 125.11, 124.93,124.38, 123.09, 122.88, 95.90 (γ-C), 31.19, 28.31, 27.90,27.13, 24.71, 24.51, 24.11, 24.02, 23.73 (CMe), 23.62, 22.68,22.28, 20.67, 20.03. Anal. Calcd. for C67H93BGe2N4O2(1142.58): C, 70.43; H, 8.20; N, 4.90%. Found: C, 70.23; H,8.13; N, 4.87%.

    2. 8 1-NaphB(OGeL)2 (6)

    The 1-NaphB(OH)2(0.172 g, 1 mmol) and L′Ge (0.987 g, 2 mmol) were used for the synthesis of 6. Yield: 58%. m.p.:270.4~272.1 °C. FT-IR (cm-1): ν? = 2961 (s), 2919 (w), 2868(w), 1556 (m), 1462 (m), 1433 (w), 1385 (s), 1317 (m), 1282(m), 1255 (w), 1107 (s), 1046 (w), 1017 (w), 932 (vw), 851(w), 787 (w), 626 (vw).1H NMR (400 MHz, C6D6, 298 K,ppm):δ= 9.82 (d,J= 8.6, 1H, Naph-H), 8.51 (d,J= 6.8, 1H,Naph-H), 7.81 (t,J= 9.0, 2H, Naph-H), 7.58~7.52 (m, 1H,Naph-H), 7.42 (dt,J= 19.9, 7.6, 2H, Naph-H), 4.91 (s, 2H,γ-CH), 3.57 (sept,J= 13.6, 6.7 4H, CHMe2), 3.16 (sept,J=13.6, 6.7, 4H, CHMe2), 1.50 (s, 12H, CMe), 1.16 (d,J= 6.0,12H, CHMe2), 1.10 (d,J= 6.8, 12H, CHMe2), 0.93 (d,J= 14.6,12H, CHMe2), 0.52 (d,J= 14.6, 12H, CHMe2).11B NMR (128 MHz, C6D6, 298 K, ppm):δ= 31.60.13C NMR (101 MHz,C6D6,298 K, ppm)δ= 163.69, 144.90, 142.16, 140.93, 138.08,135.60, 133.10, 130.25, 128.14, 125.97, 124.50, 124.27,123.76, 123.56, 123.27, 122.82, 95.78 (γ-C), 27.83, 26.83,24.36, 24.19, 23.55 (CMe), 23.27, 22.93. Anal. Calcd. for C68H89BGe2N4O2(1150.56): C, 70.99; H, 7.80; N, 4.87%.Found: C, 70.66; H, 7.72; N, 4.68%.

    2. 9 Structure determination and refinement

    Crystals of 1~6 suitable for X-ray diffraction were obtained from the concentrated toluene solutions at –20 °C.The crystallographic data were measured on a Bruker SMART APEX II CCD single crystal diffractometer and were refined by SHELXL[30], and all non-proton coordinate values and anisotropic temperature factors were refined by the full-matrix least-squares method. All proton positions in the structure were determined by theoretical calculation.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) of Complexes 1~3 and 5

    B(1)–O(1) 1.339(2) 1.34(1) 1.345(3) 1.336(3)B(1)–O(2) 1.380(2) 1.38(1) 1.366(3) 1.336(3)Angle (°) (°) (°) (°)O(1)–B(1)–O(2) 115.6(2) 116.2(8) 125.3(2) 129.0 N(1)–Ge(1)–O(1) 94.31(5) 94.1(2) 92.03(6) 97.2(2)N(2)–Ge(1)–O(1) 93.47(5) 95.5(2) 93.42(6) 94.1(2)Ge(1)–O(1)–B(1) 125.5(1) 124.2(5) 135.9(1) 130.5

    Table 2. Selected Bond Lengths (?) and Bond Angles (°) of 4

    3 RESULTS AND DISCUSSION

    The previous report[29]that produced the digermylene[LGe(OBPh)2]2O and mononuclear 2-Ph-C6H4B(OH)OGeL through the reaction of the respective RB(OH)2(R = Ph,2-Ph-C6H4) with L′Ge provided us a hint for better understanding the ligand effect by simply varying the substituents (carbon numbers) of R group ranging from Ph to Ph-C6H4. The first attempt was to react 4-Ph-C6H4B(OH)2with L′Ge at ratios of 1:1 and 2:1. The1H NMR analysis of the separated product indicated a 1:1 composition of 4-Ph-C6H4B(OH)OGeL (1′), similar to the finding in the case of 2-Ph-C6H4B(OH)2[29]. It is therefore suggested that the six-carbon substituent (2/4-Ph), either at the ortho- or para-position affiliated to the starting phenyl group of PhB(OH)2, might be too bulky to realize the formation of digermylene. Accordingly, we focused on the fewer carbon substituents in the further detailed exploration, including the two-carbon (2,6-Me2C6H3), three-carbon (2,4,6-Me3C6H2),and four carbon (1-Naph) ones (Scheme 1).

    The 1:1 reaction of 2,6-Me2C6H3B(OH)2with L′Ge was carried out straightforward to afford the white solids as the product (1, Scheme 1) in moderate yield (66%). The melting point of 1 is 207.7~210.4 °C, showing good thermal stability.In the FT-IR spectrum, the stretching vibration of O–H bonds appeared at 3540.55 cm-1, due to the single unreacted hydroxyl group of the organic boronic acid in the product.

    Scheme 1. Syntheses of 1~3

    In the1H NMR spectrum of 1, the signal of this unreacted hydroxyl proton was observed atδ3.39 ppm. The singlet atδ4.68 ppm (γ-CH) and the two septets at 3.81~3.88 ppm(methine protons of the isopropyl groups) revealed the typical framework of theβ-diketiminate ligand. The comparison of the integration areas of methyl groups between 2,6-Me2C6H3substituents with those on the backbone of diketiminate ligand confirmed the 1:1 composition of the product 1. The11B NMR spectrum of 1 exhibited a broad resonance atδ31.612 ppm.The recrystallization of 1 inn-hexane at room temperature afforded colorless crystals, which were subjected to single-crystal diffraction X-ray characterization. Compound 1 crystallizes in monoclinicP21/nspace group. The selected bond lengths and bond angles are listed in Table 1. The molecular structure of 2,6-Me2C6H4B(OH)OGeL (1) is depicted in Fig. 1.

    Fig. 1. Molecular structure of 1. Thermal ellipsoids are drawn at 30% level.Hydrogen atoms except for the OH group are omitted for clarity

    The unit cell contained two molecules of 1, which shared similar structural parameters and were connected by the single intermolecular hydrogen bond (O–H···O 2.159 ?) to deliver a formal dimer. Fig. 1 presents one of them. The formation of Ge–O–B linkage was firmly confirmed, where the central Ge atom was coordinated by two N and one O atoms in a distorted tetrahedral environment when considering the lone pairs on it.The six-membered C3N2Ge ring took a twist boat conformation with an angle of 38.86° between C3and N2Ge planes. Interestingly, the lone pairs and the 2,6-Me2C6H4plane may take the parallel orientation, and the latter played a window awning to partially shade the Ge(II) center. In addition, the 2,6-Me2C6H4plane is almost perpendicular(88.63°) to the quasi mirror-symmetric plane (represented byγ-C–Ge(1)–O(1) plane) of the backbone of theβ-diketiminate ligand. The bond length of Ge(1)–O(1) (1.848(1) ?) falls in a reasonable range (1.827(2)~1.952(1) ?)[20,31,32], and the bond angle of Ge(1)–O(1)–B(1) (125.5(1)°) is close to those in the literature (124.8(6)~127.9(4)°)[29].

    The reaction of 2,4,6-Me3C6H2B(OH)2with L′Ge in the molar ratio of 1:1 led to the isolation of yellow crystalline solids (2). The melting point (214.7~215.9 °C) of 2 is slightly higher than that of 1 (207.7~210.4 °C). By comparing with those for 1, the FT-IR and NMR spectra confirmed the successful formation of 2,4,6-Me3C6H2B(OH)OGeL (2).Compound 2 crystallizes in monoclinic space groupP21/c,and its molecular structure (Fig. 2) is remarkably similar to that of 1.

    Fig. 2. Molecular structure of 2. Thermal ellipsoids are drawn at 30% level.Hydrogen atoms except for the OH group are omitted for clarity

    The angle between the C3and N2Ge planes (43.61°) within the six-membered ring C3N2Ge is found slightly wider than that of 1 (38.86°), while that between the 2,6-Me2C6H4andγ-C–Ge(1)–O(1) planes (87.57°) is a little smaller. This observation is possibly brought by the increased bulky hindrance from 2,6-Me2C6H3to 2,4,6-Me3C6H2substituents.The bond angle of B–O–Ge (124.2(5)°) of 2 is comparable to that of 1 (125.5(1)°). There was no intermolecular hydrogen bonding formed in 2, which might be related to the presence of solvent molecules in the unit cell.

    The treatment of 1-NaphB(OH)2with one equivalent of L′Ge in toluene gave a solid product (3) with relatively high melting point (223.1~225.6 °C) when compared with those of 1 (207.7~210.4 °C) and 2 (214.7~215.9 °C). The formation of 1-NaphB(OH)OGeL (3) in a 1:1 composition was further justified by FT-IR and NMR characterizations.Compound 3 crystallizes in the triclinic space groupP1 (Fig.3). The neighboring two molecules were fused via the intermolecular hydrogen bond (O–H···O, 2.059 ?), similar to the case in 1.

    Fig. 3. Molecular structure of 3. Thermal ellipsoids are drawn at 30% level.Other hydrogen atoms except for the OH group are omitted for clarity

    One striking structural feature in 3 is the nearly opposite orientation of the R group (1-Naph) relative to the lone pair direction. The angle between the 1-Naph andγ-C–Ge(1)–O(1)planes is as narrow as 30.27°, that is to say, the R group does not play as a window awning shielding the lone pair in this case; instead, it looks more like a fore-and-aft sail mounted on the upturned C3N2Ge boat. In this view, the structure of 3 resembles much more to that of 2-Ph-C6H4B(OH)OGeL[29],except for the difference that the 1-Naph group is directed to the boat stern and the 2-Ph-C6H4group to the bow. The angle between the C3and N2Ge planes (31.67°) is much sharper,while the bond angle of Ge(1)–O(1)–B(1) is greatly wider(135.9(1)°) than those of 1 (124.2(5)°), 2 (125.5(1)°), and 2-Ph-C6H4B(OH)OGe (126.0(1)°)[29]. Apart from the steric factors, the electronic factor that the naphthyl group can disperse the lone pairs on hydroxyl oxygen through the induction effect may also contribute to the weaker bond repulsive force and larger bond angle[33].

    It can be seen from the above that the R groups of phenyl based RB(OH)2varying from the two-carbon (2,6-Me2C6H3)to three-carbon (2,4,6-Me3C6H2) and four-carbon (1-Naph)substituents (Scheme 1), all helping to smoothly realize the formation of organoboryl germanium(II) oxides containing Ge–O–B core (1~3). Subsequently, these monosubstituted arylboronic acids were used to prepare the digermylene.

    The reaction time of L′Ge with 2,6-Me2C6H3B(OH)2at the molar ratio of 2:1 (Scheme 2) was extended to 24 h to ensure the completion. The spectroscopic characterization of the obtained solids showed that it turned out to be the 1:1 product(1) instead of the digermylene 2,6-Me3C6H3B(OGeL)2(Scheme 2). Interestingly, in several repeated experiments using thein situgenerated L′Ge, yellow-green crystals (4)slowly grew from the mother liquor during concentration.

    Scheme 2. Reaction of L′Ge with 2,6-Me2C6H3B(OH)2 at the molar ratio of 2:1

    The single-crystal X-ray diffraction analysis revealed that it was a novel borate [(2,6-Me2C6H3)4B5O6]-[H:C]+(4, Scheme 2) (:C = C[N(iPr)C(Me)]2). Compound 4 crystallizes in the orthorhombic space groupP43212. As shown in Fig. 4, in the anionic part, the central B atom shared by two B3O3six-membered rings was situated in a tetrahedral environment completed by four O atoms, while other B atoms were all three-coordinated. The two B3O3rings were almost perpendicular to each other (88.85°, estimated by the angle between two O(1)–B(1)–O(2) planes), and each B3O3ring took a slightly twisted boat conformation.

    Fig. 4. Molecular structure of 4. Thermal ellipsoids are drawn at 30% level.Hydrogen atoms except for [H:C]+ are omitted for clarity

    The bond lengths of B(1)–O(1) (1.475 ?) and B(1)–O(2)(1.459 ?) of 4 were comparable to those in other borates[R4B5O6]?[ArMR]+(R = Ph, 4-CF3C6H4, 4-BrC6H4; Ar =CH-2,6-(CHNMe); M = Sb, Bi) (typically 1.474(9) ?)[34]and[Ar4B5O6]?[Rh(PMe3)4]+(Ar = 2,6-Me2C6H3)[35]. The formation of 4 might be initiated by the self-polymerization[35]of the arylboronic acid 2,6-Me2C6H3B(OH)2in the presence of[H:C]+Cl-or the residual :C during thein situformation of L′Ge. Compound 4 represented a rare borate example of such to contain a metal-free cationic part.

    The parallel 2:1 reaction of L′Ge with 2,4,6-Me3C6H2-B(OH)2led to the separation of 5 (Scheme 3). The melting point of 5 is about 50 °C higher than that of 2.

    Scheme 3. Syntheses of 5 and 6

    In the FT-IR spectrum of 5, the absence of O–H vibration absorption band suggested the complete reaction of both hydroxyl groups with L′Ge. This point is further confirmed by1H NMR characterization, together with the correct integral ratio of protons of naphthyl group and theβ-diketiminate ligand for the 2:1 composition of organoboryl binuclear germanium(II) oxide 2,4,6-Me3C6H2B(OGeL)2(5). The11B NMR spectrum of 5 showed a broad signal atδ34.282 ppm.

    Compound 5 crystallizes in the monoclinic space groupC2/c. As depicted in Fig. 5, the two LGe fragments were bridged by the deprotonated 2,4,6-Me3C6H2BO2ligand.

    Fig. 5. Molecular structure of 5. Thermal ellipsoids are drawn at 30% level with the hydrogen atoms omitted for clarity

    The length of Ge–O (1.849(5) ?) bond is close to those of 1~3 (1.848(1)~1.853(5) ?). The bent Ge–O–B–O–Ge chain took a configuration of letter ―n‖, allowing for the short distance between two Ge(II) atoms (3.682 ?). This is much shorter than those for the reported digermylenes[29][LGe(OBPh)2]2O (9.555 ?) separated by nine atoms or[(LGeOBO)2O]BMes (6.962 ?) separated by five atoms. The short Ge(II)???Ge(II) separation in 5 may be of benefit to the chelate or synergetic effect in the future assembly of the heterometallic system by germylene donors[36].

    The six-membered C3N2Ge ring of theβ-diketiminate ligand backbone of 5 also took a twisted boat conformation,with an angle between C3and N2Ge planes of as narrow as 17.79°. However, when compared with that of 2, the C3N2Ge boat conformation experienced an inversion from 2 to 5,suggesting a flexible adaption of theβ-diketiminate ligand by complying with the situation in reaction and crystallization.

    The 2:1 reaction of L′Ge with 1-NaphB(OH)2led to the crop of yellow crystalline solids (6). The melting point of 6 is 270.4~272.1 °C, which is also almost 50 °C higher than that of 3. Spectroscopic characterizations confirmed the formation of digermylene 1-NaphB(OGeL)2(6). The single crystals of 6 were subjected to X-ray structural analysis. Compound 6 crystallizes in monoclinicI2/mspace group (a= 13.93,b=18.03,c= 14.42 ?;β= 103.35°,V= 3522.06 ?3). Although the severe disorder of bridging ligand impeded the further refinement, the expected structural feature can be surely perceived.

    4 CONCLUSION

    In summary, three monosubstituted arylboronic acids RB(OH)2(R = 2,6-Me2C6H3, 2,4,6-Me3C6H2, 1-Naph) were used as the protonation reagent to react with the N-heterocyclic ylide-like germylene L′Ge (L′ =HC[C(CH2)NAr]CMeNAr, Ar = 2,6-iPr2C6H3) for the preparation of organoboryl germanium(II) oxides containing Ge–O–B and Ge–O–B–O–Ge cores. The mononuclear product RB(OH)OGeL (L = CH[C(Me)N(Ar)]2; R =2,6-Me2C6H3(1), 2,4,6-Me3C6H2(2), 1-Naph (3)) and the binuclear product RB(OGeL)2(R = 2,4,6-Me3C6H2(5),1-Naph (6)) were obtained in a straight way. When taking R =Ph as the starting point (zero-carbon modification) and R =2/4-PhC6H4(six-carbon modification) as the ending point by combining the literature work, it was suggested that the window for both formation Ge–O–B and Ge–O–B–O–Ge products is relatively narrow, possibly affected by the self-polymerization degree of the arylboronic acids as well as the steric hindrance of their R groups. The obtained digermylenes can be further employed as donors to construct the heterometallic B–O–Ge→M (M = metal) system for the screen of the promising candidate in catalysis

    精品一区二区三卡| 欧美乱色亚洲激情| 精品久久蜜臀av无| 午夜成年电影在线免费观看| 亚洲一区高清亚洲精品| 日本wwww免费看| 精品久久久久久电影网| 国产国语露脸激情在线看| 精品无人区乱码1区二区| 日韩一卡2卡3卡4卡2021年| bbb黄色大片| 成年女人毛片免费观看观看9| 男女高潮啪啪啪动态图| 成熟少妇高潮喷水视频| av片东京热男人的天堂| 色精品久久人妻99蜜桃| 久9热在线精品视频| 国产精品久久视频播放| 老鸭窝网址在线观看| 日韩大码丰满熟妇| 十八禁人妻一区二区| 1024视频免费在线观看| 欧美成狂野欧美在线观看| 欧美日韩乱码在线| 成熟少妇高潮喷水视频| 麻豆国产av国片精品| 国产熟女午夜一区二区三区| 两人在一起打扑克的视频| 91麻豆av在线| 大码成人一级视频| 美女 人体艺术 gogo| 欧美成人免费av一区二区三区| 亚洲人成电影观看| 51午夜福利影视在线观看| 久久精品国产清高在天天线| 国产精品久久久av美女十八| 国产精品亚洲一级av第二区| 热re99久久国产66热| 精品第一国产精品| 色尼玛亚洲综合影院| 夜夜夜夜夜久久久久| 男人的好看免费观看在线视频 | 99国产极品粉嫩在线观看| 久久久久久免费高清国产稀缺| 午夜免费成人在线视频| 精品人妻在线不人妻| 亚洲第一av免费看| 亚洲成人免费av在线播放| 亚洲 欧美 日韩 在线 免费| 亚洲精品国产区一区二| 神马国产精品三级电影在线观看 | 丰满的人妻完整版| 久久香蕉国产精品| 日韩欧美免费精品| 午夜福利在线观看吧| 99香蕉大伊视频| 国产区一区二久久| 国产成人啪精品午夜网站| 精品第一国产精品| 欧美乱码精品一区二区三区| 亚洲午夜精品一区,二区,三区| 午夜两性在线视频| 精品电影一区二区在线| 国产精品国产av在线观看| 99精国产麻豆久久婷婷| 大码成人一级视频| 黄网站色视频无遮挡免费观看| 亚洲视频免费观看视频| 国产成人影院久久av| 男女高潮啪啪啪动态图| 亚洲三区欧美一区| 国产午夜精品久久久久久| 在线观看免费午夜福利视频| 久久青草综合色| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频| av福利片在线| 91九色精品人成在线观看| 国产亚洲精品第一综合不卡| 一夜夜www| 可以免费在线观看a视频的电影网站| 亚洲专区字幕在线| 伊人久久大香线蕉亚洲五| av有码第一页| 欧美中文日本在线观看视频| 欧美日韩精品网址| 日本精品一区二区三区蜜桃| 国产精品秋霞免费鲁丝片| 午夜日韩欧美国产| 99re在线观看精品视频| 一个人观看的视频www高清免费观看 | 亚洲精品美女久久av网站| 99精品久久久久人妻精品| 亚洲 欧美一区二区三区| 亚洲精品国产区一区二| 亚洲九九香蕉| 国产成人啪精品午夜网站| 国产亚洲av高清不卡| 88av欧美| 日本wwww免费看| 国产伦一二天堂av在线观看| 国产高清激情床上av| 中亚洲国语对白在线视频| 成人影院久久| 一进一出抽搐gif免费好疼 | 亚洲欧美日韩另类电影网站| 女性生殖器流出的白浆| 精品久久蜜臀av无| 久久精品91蜜桃| 免费高清视频大片| 精品国产一区二区久久| 亚洲国产精品合色在线| 午夜福利,免费看| 91国产中文字幕| 我的亚洲天堂| 久久久国产欧美日韩av| 亚洲五月天丁香| 久久久久久久久免费视频了| 亚洲精品在线观看二区| 日韩人妻精品一区2区三区| 搡老乐熟女国产| 亚洲精品在线美女| 日韩视频一区二区在线观看| 成人亚洲精品av一区二区 | 在线观看免费午夜福利视频| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜一区二区| 亚洲欧美激情综合另类| 热99国产精品久久久久久7| 国产不卡一卡二| 亚洲五月天丁香| 精品久久久久久久久久免费视频 | 又大又爽又粗| 亚洲午夜理论影院| 两个人免费观看高清视频| 亚洲五月天丁香| 91老司机精品| 亚洲成人精品中文字幕电影 | 欧美人与性动交α欧美软件| 欧美黄色片欧美黄色片| 欧美中文日本在线观看视频| 黄网站色视频无遮挡免费观看| 啦啦啦 在线观看视频| 性少妇av在线| 手机成人av网站| 91麻豆精品激情在线观看国产 | 亚洲国产精品999在线| av网站免费在线观看视频| 成人影院久久| 好男人电影高清在线观看| 黄频高清免费视频| 淫妇啪啪啪对白视频| 亚洲全国av大片| 丝袜美腿诱惑在线| 久久热在线av| 久久久久久人人人人人| 国产成人精品久久二区二区91| 久久久久精品国产欧美久久久| 动漫黄色视频在线观看| 日韩欧美免费精品| 夜夜躁狠狠躁天天躁| 日本五十路高清| 国产精品九九99| 两性夫妻黄色片| 午夜老司机福利片| 国产成人欧美在线观看| 中文字幕av电影在线播放| 一级黄色大片毛片| 精品人妻1区二区| 久久久水蜜桃国产精品网| 在线观看午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看舔阴道视频| 1024香蕉在线观看| 日本wwww免费看| 老司机亚洲免费影院| 日本 av在线| 两性夫妻黄色片| 欧美乱码精品一区二区三区| 日韩欧美三级三区| av片东京热男人的天堂| 激情在线观看视频在线高清| 女性生殖器流出的白浆| 国内久久婷婷六月综合欲色啪| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| 搡老乐熟女国产| 大型黄色视频在线免费观看| 视频在线观看一区二区三区| 男男h啪啪无遮挡| 丁香欧美五月| 午夜精品久久久久久毛片777| 9191精品国产免费久久| 国产精品免费一区二区三区在线| 夜夜夜夜夜久久久久| 在线观看66精品国产| 长腿黑丝高跟| 欧美另类亚洲清纯唯美| 日本五十路高清| 国产精品久久视频播放| 好看av亚洲va欧美ⅴa在| 一a级毛片在线观看| 亚洲一区二区三区欧美精品| 国产成人免费无遮挡视频| 亚洲国产看品久久| 国产欧美日韩综合在线一区二区| 午夜激情av网站| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 每晚都被弄得嗷嗷叫到高潮| av超薄肉色丝袜交足视频| 免费观看精品视频网站| 一区二区日韩欧美中文字幕| 日本wwww免费看| 变态另类成人亚洲欧美熟女 | 久久久精品欧美日韩精品| 熟女少妇亚洲综合色aaa.| 身体一侧抽搐| 中文字幕另类日韩欧美亚洲嫩草| 黄色a级毛片大全视频| 在线视频色国产色| 在线观看日韩欧美| 欧美人与性动交α欧美软件| 国产精品日韩av在线免费观看 | 国产精品国产高清国产av| 亚洲熟妇中文字幕五十中出 | 国产精品久久久人人做人人爽| 欧美日韩福利视频一区二区| 亚洲欧美日韩另类电影网站| 亚洲欧美一区二区三区黑人| 热re99久久国产66热| 精品久久久久久,| 久久九九热精品免费| 咕卡用的链子| 99在线人妻在线中文字幕| 成人亚洲精品av一区二区 | 女人精品久久久久毛片| 久久久久久免费高清国产稀缺| 日本a在线网址| 人人澡人人妻人| 亚洲国产毛片av蜜桃av| 久久久精品国产亚洲av高清涩受| 在线观看www视频免费| 国产av精品麻豆| 丰满迷人的少妇在线观看| 91字幕亚洲| 国产亚洲精品久久久久5区| 欧美久久黑人一区二区| 一a级毛片在线观看| 波多野结衣一区麻豆| 欧美日韩精品网址| 欧美日韩乱码在线| 看黄色毛片网站| 黄片小视频在线播放| 亚洲成国产人片在线观看| 亚洲三区欧美一区| 99久久精品国产亚洲精品| 亚洲avbb在线观看| 我的亚洲天堂| 久久香蕉精品热| 亚洲,欧美精品.| 免费观看人在逋| 中出人妻视频一区二区| 国产精品国产高清国产av| 午夜a级毛片| av超薄肉色丝袜交足视频| 欧洲精品卡2卡3卡4卡5卡区| 曰老女人黄片| avwww免费| 国产黄色免费在线视频| 亚洲精品国产色婷婷电影| 亚洲人成网站在线播放欧美日韩| 日本精品一区二区三区蜜桃| 欧美日韩福利视频一区二区| 精品久久久精品久久久| 久久狼人影院| 男人的好看免费观看在线视频 | 日韩国内少妇激情av| 久久婷婷成人综合色麻豆| 久热这里只有精品99| cao死你这个sao货| 欧美另类亚洲清纯唯美| 美女国产高潮福利片在线看| 国产高清激情床上av| 色精品久久人妻99蜜桃| 亚洲精品国产色婷婷电影| 999精品在线视频| 国产一区二区三区综合在线观看| 麻豆国产av国片精品| 麻豆一二三区av精品| 国产99白浆流出| 久久久国产精品麻豆| 色婷婷av一区二区三区视频| 国产精品久久久久成人av| 天天影视国产精品| 久久精品成人免费网站| 两个人看的免费小视频| 亚洲成人免费av在线播放| 99精品久久久久人妻精品| 欧美精品亚洲一区二区| 国产亚洲精品久久久久5区| 国产99久久九九免费精品| av视频免费观看在线观看| 欧美丝袜亚洲另类 | 亚洲国产看品久久| 女人被狂操c到高潮| 国产精品综合久久久久久久免费 | 后天国语完整版免费观看| 九色亚洲精品在线播放| 大型av网站在线播放| 亚洲中文日韩欧美视频| 深夜精品福利| 久久国产精品人妻蜜桃| 久久精品aⅴ一区二区三区四区| 国产97色在线日韩免费| 国产深夜福利视频在线观看| 欧美成狂野欧美在线观看| 午夜激情av网站| 亚洲av第一区精品v没综合| 男男h啪啪无遮挡| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频 | 亚洲免费av在线视频| 老司机靠b影院| 一级,二级,三级黄色视频| 757午夜福利合集在线观看| 精品久久久久久久毛片微露脸| 夜夜躁狠狠躁天天躁| 宅男免费午夜| 成人影院久久| av视频免费观看在线观看| 国产亚洲欧美精品永久| 国产一区在线观看成人免费| 中文字幕色久视频| 欧美在线黄色| 色综合欧美亚洲国产小说| 久久国产乱子伦精品免费另类| 视频区图区小说| 动漫黄色视频在线观看| 如日韩欧美国产精品一区二区三区| 777久久人妻少妇嫩草av网站| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 99在线人妻在线中文字幕| 人人澡人人妻人| 亚洲视频免费观看视频| 国产片内射在线| 男女下面进入的视频免费午夜 | 少妇裸体淫交视频免费看高清 | 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 欧美成人免费av一区二区三区| 国产三级在线视频| 日本vs欧美在线观看视频| 久久欧美精品欧美久久欧美| 国产成人一区二区三区免费视频网站| 亚洲伊人色综图| 99香蕉大伊视频| 丝袜在线中文字幕| 久久香蕉激情| 12—13女人毛片做爰片一| 中文欧美无线码| 女同久久另类99精品国产91| www.www免费av| 亚洲色图av天堂| 国产成人精品无人区| 国产精品久久久久成人av| 国产精品av久久久久免费| 成人精品一区二区免费| 露出奶头的视频| 99精品在免费线老司机午夜| 亚洲精品国产精品久久久不卡| 一级毛片女人18水好多| 国产黄a三级三级三级人| 高潮久久久久久久久久久不卡| 欧美黑人欧美精品刺激| 黄片播放在线免费| 日韩三级视频一区二区三区| 国产激情欧美一区二区| 亚洲熟妇熟女久久| 亚洲国产欧美网| 亚洲精品粉嫩美女一区| 亚洲中文日韩欧美视频| 免费高清在线观看日韩| 国产伦一二天堂av在线观看| 在线看a的网站| 又黄又粗又硬又大视频| 亚洲国产精品一区二区三区在线| 亚洲午夜精品一区,二区,三区| 日韩av在线大香蕉| 欧美日韩av久久| 国产精品久久久久久人妻精品电影| 成年版毛片免费区| 一个人观看的视频www高清免费观看 | 日韩大尺度精品在线看网址 | 一区在线观看完整版| 在线观看www视频免费| 国产精华一区二区三区| 在线观看www视频免费| 亚洲色图 男人天堂 中文字幕| 在线观看www视频免费| 波多野结衣一区麻豆| 老汉色∧v一级毛片| 青草久久国产| 18禁观看日本| 老司机午夜十八禁免费视频| 国产成人精品在线电影| 一级毛片高清免费大全| 91av网站免费观看| 曰老女人黄片| 午夜免费激情av| 激情视频va一区二区三区| 国产色视频综合| 老司机靠b影院| 亚洲人成电影免费在线| 亚洲av成人不卡在线观看播放网| 日本撒尿小便嘘嘘汇集6| 日本五十路高清| 亚洲成国产人片在线观看| 在线观看一区二区三区激情| 法律面前人人平等表现在哪些方面| 精品国产一区二区三区四区第35| 成人影院久久| www.999成人在线观看| 怎么达到女性高潮| videosex国产| 在线观看舔阴道视频| 18禁美女被吸乳视频| 久久久久国产精品人妻aⅴ院| 亚洲aⅴ乱码一区二区在线播放 | 欧美人与性动交α欧美精品济南到| 老汉色∧v一级毛片| 人人妻人人澡人人看| 伊人久久大香线蕉亚洲五| 热99re8久久精品国产| 色在线成人网| 国产精品久久电影中文字幕| 88av欧美| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 成人18禁高潮啪啪吃奶动态图| 男女下面进入的视频免费午夜 | 一级毛片高清免费大全| 亚洲视频免费观看视频| 国产区一区二久久| 在线观看www视频免费| 丝袜美腿诱惑在线| 搡老乐熟女国产| 午夜影院日韩av| 午夜精品在线福利| 手机成人av网站| 久久精品影院6| 国产高清国产精品国产三级| 搡老岳熟女国产| 国产欧美日韩综合在线一区二区| 757午夜福利合集在线观看| 久久香蕉国产精品| 国内久久婷婷六月综合欲色啪| av天堂在线播放| 国产av又大| 一级a爱视频在线免费观看| 午夜福利在线观看吧| 不卡一级毛片| 亚洲欧美激情综合另类| 亚洲片人在线观看| 国产日韩一区二区三区精品不卡| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 国产成人欧美在线观看| 少妇被粗大的猛进出69影院| 一级毛片精品| 午夜亚洲福利在线播放| 久久香蕉精品热| 别揉我奶头~嗯~啊~动态视频| 精品人妻1区二区| 亚洲欧美精品综合久久99| 亚洲国产看品久久| 人人妻人人添人人爽欧美一区卜| 一个人免费在线观看的高清视频| 欧美国产精品va在线观看不卡| 色精品久久人妻99蜜桃| 免费在线观看影片大全网站| 女人被狂操c到高潮| 精品人妻在线不人妻| 怎么达到女性高潮| 国产精品av久久久久免费| 国产精品99久久99久久久不卡| 久久精品亚洲av国产电影网| 亚洲专区中文字幕在线| 人妻久久中文字幕网| 1024香蕉在线观看| 亚洲av片天天在线观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美人与性动交α欧美精品济南到| 神马国产精品三级电影在线观看 | 国产91精品成人一区二区三区| 99精品在免费线老司机午夜| 欧美激情高清一区二区三区| 亚洲人成网站在线播放欧美日韩| 女警被强在线播放| 久久久久亚洲av毛片大全| 亚洲国产中文字幕在线视频| 免费高清视频大片| 欧美性长视频在线观看| 中国美女看黄片| 少妇粗大呻吟视频| 欧美中文日本在线观看视频| 午夜福利一区二区在线看| 亚洲精品久久午夜乱码| 日韩欧美免费精品| 丰满饥渴人妻一区二区三| 国产精品美女特级片免费视频播放器 | 国产成人系列免费观看| 级片在线观看| 国产精品自产拍在线观看55亚洲| 激情在线观看视频在线高清| 在线观看日韩欧美| 巨乳人妻的诱惑在线观看| 黄片播放在线免费| 欧美日韩亚洲综合一区二区三区_| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| 亚洲美女黄片视频| 精品第一国产精品| 黄色视频,在线免费观看| 一级黄色大片毛片| 国产成人av教育| 久久精品aⅴ一区二区三区四区| 黄色怎么调成土黄色| 国内毛片毛片毛片毛片毛片| 亚洲熟女毛片儿| 国产精品秋霞免费鲁丝片| 久热这里只有精品99| 日日夜夜操网爽| 男女下面插进去视频免费观看| 亚洲成人免费电影在线观看| 夜夜夜夜夜久久久久| 日韩欧美一区二区三区在线观看| 91精品国产国语对白视频| av网站免费在线观看视频| 成人av一区二区三区在线看| 91麻豆av在线| 国产欧美日韩精品亚洲av| 国产免费男女视频| 午夜免费激情av| 村上凉子中文字幕在线| 国产日韩一区二区三区精品不卡| 亚洲性夜色夜夜综合| 午夜两性在线视频| 操美女的视频在线观看| 欧美黄色片欧美黄色片| 精品国产国语对白av| www.www免费av| 99国产极品粉嫩在线观看| 成人影院久久| 99精国产麻豆久久婷婷| 久久精品91蜜桃| 欧美黄色淫秽网站| 99热只有精品国产| 久久精品亚洲精品国产色婷小说| 香蕉国产在线看| 亚洲美女黄片视频| 黄色怎么调成土黄色| 天堂中文最新版在线下载| 妹子高潮喷水视频| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 国产精品乱码一区二三区的特点 | 免费观看精品视频网站| 久久精品国产亚洲av高清一级| 老汉色∧v一级毛片| 校园春色视频在线观看| 国产三级黄色录像| 九色亚洲精品在线播放| 国产精品秋霞免费鲁丝片| 18禁国产床啪视频网站| 一本综合久久免费| 久久九九热精品免费| 亚洲国产精品999在线| 巨乳人妻的诱惑在线观看| 久久草成人影院| 在线视频色国产色| 国产精品 欧美亚洲| 久久精品国产清高在天天线| 久久人妻av系列| 国产三级黄色录像| 91九色精品人成在线观看| 51午夜福利影视在线观看| 国产精品1区2区在线观看.| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 成人黄色视频免费在线看| av天堂在线播放| 精品午夜福利视频在线观看一区| 国产欧美日韩一区二区三| 国产99久久九九免费精品| 亚洲狠狠婷婷综合久久图片| 欧美 亚洲 国产 日韩一| 一级片免费观看大全| 欧美日韩黄片免| x7x7x7水蜜桃| 精品国产一区二区三区四区第35| 天堂影院成人在线观看| 成人免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看 | 成人手机av| 婷婷精品国产亚洲av在线| 老司机午夜十八禁免费视频| 天天影视国产精品| 国产精品 欧美亚洲| 中文字幕人妻丝袜一区二区| 国产精品电影一区二区三区| 91成年电影在线观看| 成人永久免费在线观看视频|