• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Four Complexes of Mn(II), Co(II), Ni(II) and Cu(II) Based on 2-Morpholine-4-yl-4,6-di-pyrazol-1-yl-1,3,5-triazine

    2021-07-06 09:05:34TIANWenYuCHUJinFeng
    結構化學 2021年6期

    TIAN Wen-Yu CHU Jin-Feng

    (State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology, Beijing 100029, China)

    ABSTRACT Three azide bridged complexes, namely, [Mn2L2(N3)4(H2O)2] (1), [Co2L2(N3)4]·(H2O)3 (2) and[Ni2L2(N3)3(H2O)]N3·(H2O)4 (3) (L = 2-morpholine-4-yl-4,6-di-pyrazol-1-yl-1,3,5-triazine), were synthesized by the reaction of L ligand, sodium azide with Mn(II), Co(II) and Ni(II) chlorides. The copper(II) chloride combined with thiocyanate and L ligand to form a mononuclear complex [CuL(CH3OH)(SCN)(NCS)] (4). Complexes 1~4 were characterized by IR, elemental analysis and X-ray crystallographic analysis. It was worth noting that two Mn(II) atoms were connected by the end-to-end mode in 1, while Co(II) and Ni(II) atoms were connected by the end-on mode in 2 and 3. In complex 4, the central copper atom was coordinated with a sulfur atom and a nitrogen atom of the two thiocyanate ligands, respectively. Hydrogen bonds, π-π stacking interactions, thermogravimetric analysis and fluorescence properties of 1~4 were studied.

    Keywords: azide bridged complexes, supramolecular, crystal structure, thiocyanate;

    1 INTRODUCTION

    Metal coordination complexes have broad application prospects in the fields of chemistry, biology and medicine[1].In recent years, great efforts have been devoted to the rational design and synthesis of new coordination complexes,resulting in fascinating structures and novel applications such as catalysis[2], optoelectronic devices[3], energy storage[4],adsorption[5], magnetic materials[6,7]and so on. As we all know,s-triazine ring is a symmetric nitrogen-containing heterocyclic ring, and nitrogen atoms are evenly distributed on the benzene ring. Combined with the introduction of other nitrogen-containing heterocycles, a coordination pattern from monodentate to multidentate can be formed to assemble structure-rich complexes. They play a vital role in energetic materials[8], multi-functional spin-crossover complexes[9],supramolecular materials[10], etc.

    Azide anion is a common bridging ligand, which can provide different coordination modes and reflect the versatility of azide ligand[11]. Depending on the space and electronic requirements of other ligands in the complex, the azide can form bridges in end-to-end (μ1,3-N3, EE) and end-on (μ1,1-N3, EO) modes[12]. The literatures have reported the synthesis of azide multinuclear complexes of Ni(II)[13],Cu(II)[14], Mn(II, III)[15], Co(II, III)[16]and other metals.

    Noncovalent interactions includingπ-πstacking and hydrogen bonds play important roles in the construction of different supramolecular structures. In our previous study, we synthesized 2-morpholine-4-yl-4,6-di-pyrazol-1-yl-1,3,5-triazine (L) ligand, and studied its reactivity with transitional metals and structures of a series of copper(II) and nickel(II)complexes of this ligand[17-19]. When we further study the supramolecular complexes of L ligand, three azide bridged binuclear complexes with Mn(II), Co(II) and Ni(II) ions were obtained. In addition, when using SCN-instead of N3-, a mononuclear copper(II) complex was prepared.

    2 EXPERIMENTAL

    2. 1 Materials and methods

    All raw materials and solvents were purchased from Alfa-Aesar. The ligand L was prepared according to the literature[18]. The synthetic routes of complexes 1~4 are shown in Scheme 1. C, H and N analyses were performed using Perkin-Elmer 2400-II CHN analyzer. A Bruker Vector 22 infrared spectrometer was used to record FT-IR spectra from KBr particles. The emission spectra were measured with FLS 980 Edinburgh Analyzer.

    Scheme 1. Synthetic routes of complexes 1~4

    2. 2 Synthesis of 1

    L ligand (80 mg, 0.27 mmol) and MnCl2·2H2O (52.8 mg,0.27 mmol), dissolved respectively in 5 and 15 mL of acetone,were mixed with 4 mL water solution of NaN3(104.5 mg,1.61 mmol). The mixed solution was stirred at room temperature overnight and filtered to obtain an orange solution. After standing for about 3 days, light yellow crystals suitable for X-ray diffraction were obtained from the filtrate.Yield: 31.8 mg, 26%. Anal. Calcd. for C26H32Mn2N28O4(Mr= 910.68): C, 34.29; H, 3.54; N, 43.07%. Found: C, 34.02; H,3.15; N, 42.75%. IR (KBr pellet, cm-1): 3310(w), 3106(w),2924(w), 2869(w), 2088(s), 2049(s), 1631(s), 1592(s),1503(s), 1488(s), 1463(s), 1398(s), 1334(w), 1311(w),1270(m), 1177(w), 1114(m), 1078(w), 1067(w), 1044(m),1006(m), 962(w), 936(w), 910(w), 854(w), 810(w), 776(m),644(m), 598(w), 551(w).

    2. 3 Synthesis of 2

    L ligand (80 mg, 0.27 mmol) and CoCl2·6H2O (63.7 mg,0.27 mmol) dissolved respectively in 5 and 15 mL of acetone were mixed with 4 mL water solution of NaN3(104.5 mg,1.61 mmol). The mixed solution was stirred at room temperature overnight and filtered to obtain a purple solution.After standing for about 1 day, purple plate crystals suitable for X-ray diffraction were obtained from the filtrate. Yield:31.3 mg, 25%. Anal. Calcd. for C26H34Co2N28O5(Mr=936.67): C, 33.34; H, 3.66; N, 41.87%. Found: C, 33.19; H,3.54; N, 41.86%. IR (KBr pellet, cm-1): 3423(w), 3099(w),2853(w), 1638(s), 1606(m), 1503(s), 1489(s), 1470(s),1396(s), 1307(m), 1267(m), 1182(w), 1111(w), 1071(w),1043(w), 1014(w), 960(m), 938(w), 908(w), 848(w), 809(w),797(w), 770(w), 638(w), 592(w), 563(w).

    2. 4 Synthesis of 3

    NiCl2·6H2O (78 mg, 0.27 mmol) and NaN3(104.5 mg,1.61 mmol) dissolved respectively in 4 mL of water were mixed with 20 mL acetone solution of L ligand (80 mg, 0.27 mmol). The mixed solution was filtered to obtain a light green solution. After standing for about 1 day, green bulk crystals suitable for X-ray diffraction were obtained from the filtrate. Yield: 59 mg, 45%. Anal. Calcd. for C26H38N28Ni2O7(Mr= 972.20): C, 32.12; H, 3.94; N, 40.34%. Found: C,31.96; H, 3.88; N, 40.13%. IR (KBr pellet, cm-1): 3427(w),3098(w), 2848(w), 2061(s), 1648(s), 1609(s), 1477(vs),1402(s), 1307(w), 1270(m), 1186(w), 1107(w), 1076(w),1048(w), 1020(w), 964(m), 910(w), 845(w), 793(m), 778(w),662(w), 633(w), 593(w), 568(w), 501(w), 475(w).

    2. 5 Synthesis of 4

    L4 (20 mg, 0.067 mmol) and CuCl2·2H2O (11.4 mg, 0.067 mmol) were dissolved in 3 mL of methanol and then mixed with 2 mL methanol of KSCN (45.7 mg, 0.47 mmol). The resulting solution was filtered to obtain a brown solution.After about 24 hours, red plate-like crystals were obtained.Yield: 10.6 mg, 31%. Anal. Calcd. for C16H18CuN10O2S2(Mr= 510.06): C, 37.68; H, 3.56; N, 27.46%. Found: C, 37.71; H,3.52; N, 27.13%. IR (KBr pellet, cm-1): 3425(w), 3123(w),2922(w), 2866(w), 2134(m), 2078(m), 1624(m), 1589(m),1499(m), 1483(m), 1463(m), 1397(m), 1307(m), 1263(m),1177(w), 1116(w), 1074(w), 1040(w), 1011(w), 955(m),934(w), 908(w), 857(w), 802(m), 769(m), 594(w), 556(w).

    2. 6 Crystal structure determination

    The crystal data of four complexes were measured with MoKαradiation (λ= 0.71073 ?) at 95~107 K on a multi-metal ratio diffractometer. Using OLEX2[20], the structures were solved by direct methods with SHELXS program[21]and refined by full-matrix least-squares techniques onF2with SHELXL[22]. All non-hydrogen atoms were anisotropically refined, and the hydrogen atoms included in calculation are generated into riding modes at the ideal positions. Table 1 summarizes the crystallographic data of the corresponding molecular structures 1~4. In complex 2, the occupancy rates of O(2) and N(12), O(4) and N(15),O(5) and N(17) are each 50%. A class B warning appears in the checkcif report of complex 2 due to the disorder of hydrogen atoms between O(2) and O(3) atoms and the failure to lock their positions. In complex 3, the occupancy rates of O(2), O(4), O(5) and N(12)~N(17) are each 50%.

    Table 1. Crystallographic Data for Complexes 1~4

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structural description of [Mn2L2(N3)4(H2O)2] (1)

    X-ray crystal structure determination reveals that complex 1 crystallizes inPspace group. The complex was characterized by an azide bridged Mn(II) dimer complex, as shown in Fig. 1. In the structure, the two Mn(II) centers are interlinked through two end-to-end bridges. The central Mn(II) adopts a distorted pentagonal seven-coordinated bipyramidal environment. The corresponding bond lengths and bond angles are listed in Table S1. The pentagonal basal plane is constructed by N(1), N(3) and N(5) from the L ligand, N(12) from the EE bridge and O(2) from the coordinated water molecule where the basal cisoid angles(The ideal angle in pentagon is 72°) range from 65.88(6)° to 78.03(7)°. The axial position of Mn(II) in the pentagonal double cone is occupied by N(9) and N(14) from the terminal N3-and anotherμ1,3-azido bridge anion respectively, and its span angle is 175.31(8)°. The axial bond lengths of Mn(1)–N(9) and Mn(1)–N(14) are 2.2114(18) and 2.178(2) ?,respectively. The twoμ1,3-azido bridges are parallel to form a plane, which is characteristic of almost all multinuclear complexes with double EE azide bridges. Due to the bisymmetricμ1,3-azido bridges, the distance between the two Mn(II) is 5.473(7) ? and the inversion center is at the center of two Mn atoms.

    As shown in Fig. 2, the binuclear structure forms a 1D supramolecular structure along thec-axis of the crystal throughπ-πconjugation effect. The dihedral angle is 7.83(9)°and the distance between the centers of mass is 3.639 ?. It can also be seen from Fig. 2 and Table 2 that there are O(2)–H(2A)···N(12i) and O(2)–H(2B)···N(9i) (i = 1 –x, 2 –y, 1 –z) weak hydrogen bonds in the crystal lattice of complex 1, forming a two-dimensional supramolecular structure.

    Fig. 1. ORTEP drawing of 1 with atomic number labeling.Hydrogen atoms have been omitted for clarity. Symmetry code: (i)1–x, 2–y, 1–z

    Fig. 2. π-π stacking interactions (pink dashed lines) and intramolecular hydrogen bonds (green dashed lines) in 1

    Table 2. Hydrogen-bond Parameters for 1 (?, °)

    3. 2 Crystal structural description of [Co2L2(N3)4]·(H2O)3 (2)

    Single-crystal X-ray diffraction analysis indicates that complex 2 crystallizes in space groupP1. The labeled diagram for 2 is shown in Fig. 3. The Co2+atoms present identical deformed octahedral environment formed by the L ligand (N(1), N(3), N(5)), a N(9) atom from one bridging azide, a N(9i) (i = 1–x, –y, –z) atom from the symmetry-related bridging azide ligand, and a N(12) atom from the termina N3-. The L ligand coordinates the Co(II) ion in the equatorial plane through N(1), N(3), N(5) with bond distances (Table S2) similar to those observed in other related compounds[23]. The nitrogen atom (N(9)) of the azide bridge also participates in the formation of the octahedral basal plane where the basal angles (The ideal angle in quadrilateral is 90°) range from 73.42(10)° to 112.01(11)°. The axial positions of Co(II) in the octahedron are occupied by N(9i)and N(12) from the terminal N3-and another EO bridge anion,respectively, and its span angle is 174.18(13)°. The axial bond lengths of Co(1)–N(9i) and Co(1)–N(12) are 2.186(3)and 2.085(3) ?, respectively. The azide ions are nearly linear with a N(9)–N(10)–N(11) angle of 177.6(4)° and a N(12)–N(13)–N(14) angle of 179.5(5)°. The slightly asymmetric double azide bridges with Co–N(9) bond distances of 2.062(3) and 2.186(3) ? and a Co–N(9)–Co bond angle of 101.24(11)° separate the two Ni(II) ions by 3.285(8) ?, indicating the absence of any bond between them.

    As can be seen from Fig. 4, the pyrazolyl and triazine rings from the L ligands of two neighbouring molecules of 2 are basically parallel to each other with a center distance of 3.585 ? and a dihedral angle of 1.741°, showing the existence of significantπ-πstacking interactions.

    Fig. 3. ORTEP drawing of 2 with the atoms labeling. Hydrogen atoms and solvent molecules have been omitted for clarity. Symmetry code: (i) 1–x, –y, –z

    Fig. 4. π-π stacking interactions (pink dashed lines) in 2. Symmetry code: (i) 1–x, –y, –z

    3. 3 Crystal structural description of [Ni2L2(N3)3(H2O)]N3·(H2O)4 (3)

    Complex 3 crystallizes in monoclinic space groupP1. As shown in Fig. 5, the asymmetric unit of complex 3 consists of one Ni2+ion, one L ligand, oneμ1,1-azido bridge anion and a terminal N3-. The nickel center is best viewed as a distorted octahedral geometry. The Ni(1) atom is coordinated with three nitrogen atoms (N(1), N(3) and N(5)) from one L ligand,two nitrogen atoms (N(9), N(9i)) (i = 2 –x, 2 –y, 1 –z) from the symmetricalμ1,1-azido bridges and one nitrogen atom(N(12)) from the terminal N3-. The corresponding bond lengths and bond angles are listed in Table S3. The Ni–N distances fall in the ranges of 1.993(3)~2.195(3) ?.

    Fig. 6 shows that the pyrazolyl and triazine rings from L ligands of two neighbouring molecules of 3 are basically parallel to each other with a center distance of 3.721 ? and a dihedral angle of 0.482°, showing the existence of significantπ-πstacking interactions. In addition, as shown in Fig. 7 and Table 3, there are weak hydrogen bonding interactions in the crystal of 3. The molecules form a two-dimensional supramolecular structure throughπ-πconjugate interaction and hydrogen bonding.

    Fig. 5. ORTEP drawing of 3 with atom labeling. Hydrogen atoms and solvent molecules have been omitted for clarity. Symmetry code: (i) 2–x, 2–y, 1–z

    Fig. 6. π-π stacking interactions (pink dashed lines) in 3. Symmetry code: (i) 2–x, 2–y, 1–z

    Fig. 7. Intermolecular hydrogen bonds (green dashed lines) in 3

    Table 3. Hydrogen-bond Parameters for 3 (?, °)

    3.4 Crystal structural description of [CuL(CH3OH)(SCN)(NCS)] (4)

    X-ray diffraction analysis of complex 4 shows that it crystallizes in monoclinic space groupP21/n. As shown in Fig. 8, the copper(II) atom presents a deformed octahedral environment consisting of an L ligand (N(1), N(3), N(5)), an oxygen atom (O(2)) of methanol, a nitrogen atom (N(9)) and a sulfur atom (S(2)) of two thiocyanate anions. Interestingly,the central copper atom was coordinated with a sulfur atom and a nitrogen atom of two thiocyanate ligands, respectively.Selected bond distances and bond angles are listed in Table S4. The L ligand and a thiocyanate ligand coordinate with Cu(II) ion on the equatorial plane through N(1), N(3), N(5)and N(9), and the bond distance range is 1.929(3)~2.415(3)?. The basal cisoid angle of the octahedral basal plane ranges from 72.19(10)° to 113.87(10)°. The axial positions of Cu(II)in the octahedron are occupied by S(2) and O(2) from the thiocyanate and coordinated methanol, respectively, and its span angle is 176.29(6)°. The axial bond lengths of Cu(1)–S(2) and Cu(1)–O(2) are 2.4515(8) and 2.117(2) ?.Thiocyanate ions are almost linear, with angles of 179.3(3)°for N(10)–C(15)–S(2) and 179.4(3)° for N(9)–C(14)–S(1).

    As can be seen from Fig. 9, the pyrazolyl and triazine rings of the L ligand from two adjacent molecules are parallel to each other, with a center distance of 3.985 ? and a dihedral angle of 8.457°, indicating the significantπ-πstacking effect.There is an O(2)–H(2)·N (10) weak hydrogen bond force in the crystal of complex 4, forming a two-dimensional network structure (Fig. 9 and Table 4).

    Fig. 8. ORTEP drawing of 4 with atom labeling. Hydrogen atoms have been omitted for clarity

    Fig. 9. 2D supramolecular structure with π-π stacking interactions (purple dashed lines)and intermolecular hydrogen bond (green dashed line) in 4

    Table 4. Hydrogen-bond Parameters for 4 (?, °)

    3. 5 Coordination modes of azide and thiocyanate

    Azide-crosslinked anions are multifunctional and provide different coordination modes depending on the spatial and electronic requirements of other ligands in the complex. The azide bridging mode is influenced by many factors such as the solvent system, the ratio of metal to ligand, crystallization temperature, the valence state of the central atom and so on[24-26]. It is worth noting that the azide bridged complexes of the same metal can have different bridged coordination modes. However, no correlation has been found between the properties of the L ligand and the coordination mode of the azide bridge[27].In this article, experimental conditions for the preparation of complexes 1~3 including raw materials,experimental temperature and solvents are the same or similar.Interestingly, the bridging methods of azide in the three compounds are different. Among them, the Mn(II) atoms of compound 1 are connected by EE bridges, while the Co(II)and Ni(II) atoms of compounds 2 and 3 are connected by EO bridges. Therefore, the different bridging modes of the three complexes may be attributed to the difference of the central atoms and their coordination environments, in which complex 1 is a seven-coordinated pentagonal bipyramidal structure, while 2 and 3 have octahedral coordination environments around the central metal ion.

    In addition, the coordination modes of thiocyanate are various[28-33]. As we all know, when the thiocyanate ion is the only ligand in the complex, its bonding method usually follows the hard (M-NCS) or soft (M-SCN) mode throughout the cycle. However, the presence of other ligand also obviously affects whether the thiocyanate ions are bound via N or S bonds. In this work, we successfully synthesized a mononuclear complex of Cu(II) combined with thiocyanate and L ligand. Interestingly, the coordination of the two thiocyanate ions in the complex is different. One nitrogen atom is coordinated and the other is a sulfur atom. In addition,the delicate balance of electronic, space and solvent force also affects the coordination mode of thiocyanate in 4[34].

    3. 6 TG studies

    In order to characterize the thermal stability of compounds more comprehensively, TG curves of complexes 1~4 were measured in a nitrogen atmosphere with a temperature range of 25~800 ℃ (Fig. S1). For complex 1, a weight loss of 4.3% can be observed below 175 ℃ because of the departure of two coordination water molecules. As the temperature continued to rise, the compound degraded rapidly. The TG curve of complex 2 showed that the weight loss rate was 5.9% before 169 ℃ due to the removal of three lattice water molecules. With the increase of temperature, the compound also degraded rapidly. The first weight loss of 8.7% could be observed for complex 3 before 165 ℃assigned to the water molecules in the structure. Complex 4 exhibited the first step weight loss of 4.8% below 110 ℃owing to the release of coordinated methanol molecule.When higher than 260 ℃, it decomposed rapidly.

    3. 7 Fluorescence properties

    Considering that the four complexes are composed ofπ-conjugated ligands andd-electron metal centers, we speculate that they may be fluorescent materials. Therefore,the emission spectra of the free ligand L and the four complexes were recorded in solution at room temperature. As shown in Fig. 10, the L ligand and the four complexes exhibited an emission band ofλmaxabout 412 nm when excited at 258 nm. The order of fluorescence emission intensity from high to low is L>3>2>4>1. The fluorescence emission peak has a wavelength range of 350 to 500 nm. The emissions of complexes 1~4 can be attributed to intra-ligandπ→π* transitions of L, not to MLCT(metal-to-ligand charge transfer) or LMCT (ligand-to-metal charge transfer).

    Fig. 10. Fluorescence spectra of L ligand and complexes 1~4

    4 CONCLUSION

    The azide bridged complexes of Mn(II), Co(II) and Ni(II)were prepared in the similar experimental conditions and their structures were characterized. Interestingly, the bridging modes of the three compounds are different. Among them,the Mn(II) atoms of compound 1 are connected by the EE bridge, while the Co(II) and Ni(II) atoms of compounds 2 and 3 are connected by the EO bridge. In addition, the mononuclear complex 4 of Cu(II) combined with thiocyanate and L ligand was successfully synthesized and the coordination of the two thiocyanate ions in 4 is different.Additionally,π-πstacking interactions and hydrogen bonds were observed in the structures of 1~4 and the TG and fluorescence properties of them were studied.

    日韩中文字幕视频在线看片| 亚洲国产成人一精品久久久| 国产又色又爽无遮挡免| 国产精品 国内视频| 亚洲欧洲国产日韩| 好男人视频免费观看在线| 亚洲精品中文字幕在线视频| 国产精品二区激情视频| 国产 一区精品| 精品一区二区三卡| 1024香蕉在线观看| 国产成人精品在线电影| 老汉色av国产亚洲站长工具| 国产1区2区3区精品| 亚洲欧洲精品一区二区精品久久久 | 欧美少妇被猛烈插入视频| 熟女少妇亚洲综合色aaa.| 中文字幕最新亚洲高清| 男女高潮啪啪啪动态图| 亚洲精品av麻豆狂野| 中文字幕精品免费在线观看视频| 99久久综合免费| 老司机影院成人| 国产精品久久久久久精品古装| 欧美在线黄色| 国产又色又爽无遮挡免| 中文字幕人妻丝袜一区二区 | 午夜av观看不卡| 1024视频免费在线观看| 亚洲精品一区蜜桃| 午夜影院在线不卡| avwww免费| 欧美黄色片欧美黄色片| 久久久久久久久久久免费av| 满18在线观看网站| 交换朋友夫妻互换小说| 久久精品久久久久久噜噜老黄| 国产成人欧美在线观看 | 超碰97精品在线观看| 亚洲欧美激情在线| www.自偷自拍.com| 一级爰片在线观看| 成人午夜精彩视频在线观看| 男女床上黄色一级片免费看| 亚洲成人av在线免费| 这个男人来自地球电影免费观看 | 欧美老熟妇乱子伦牲交| 香蕉国产在线看| 国产精品一区二区在线不卡| 国产精品免费视频内射| 久久久精品免费免费高清| 欧美精品一区二区大全| 一级毛片电影观看| 亚洲精品中文字幕在线视频| 久久女婷五月综合色啪小说| 极品人妻少妇av视频| 在线观看免费高清a一片| 国产精品久久久久久久久免| 国产精品一区二区在线观看99| 人人妻人人澡人人看| 人人妻人人添人人爽欧美一区卜| 嫩草影院入口| av女优亚洲男人天堂| 97人妻天天添夜夜摸| 久久久久久久国产电影| 成年动漫av网址| 黄色视频不卡| 欧美日韩综合久久久久久| 老鸭窝网址在线观看| 亚洲天堂av无毛| 午夜激情久久久久久久| 一区二区三区乱码不卡18| 国产老妇伦熟女老妇高清| 欧美 日韩 精品 国产| 国产在线视频一区二区| 亚洲伊人久久精品综合| 亚洲成人手机| 狂野欧美激情性bbbbbb| 韩国高清视频一区二区三区| 久久人人97超碰香蕉20202| 亚洲成人免费av在线播放| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩在线中文字幕| 色婷婷av一区二区三区视频| 久久精品人人爽人人爽视色| 极品人妻少妇av视频| 美国免费a级毛片| av在线老鸭窝| 满18在线观看网站| 精品第一国产精品| 九九爱精品视频在线观看| 久久久久久久久久久免费av| 久久久国产一区二区| 男人爽女人下面视频在线观看| 日韩精品免费视频一区二区三区| 久久性视频一级片| 大片免费播放器 马上看| 国产野战对白在线观看| 日韩av不卡免费在线播放| av一本久久久久| 日韩中文字幕欧美一区二区 | 精品福利永久在线观看| 国产日韩一区二区三区精品不卡| 黄色 视频免费看| 亚洲中文av在线| 午夜老司机福利片| a级毛片黄视频| 日韩欧美一区视频在线观看| 亚洲色图 男人天堂 中文字幕| 黄色怎么调成土黄色| 女人被躁到高潮嗷嗷叫费观| 51午夜福利影视在线观看| 又粗又硬又长又爽又黄的视频| 国产 精品1| 亚洲欧美成人精品一区二区| 一区二区av电影网| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| 这个男人来自地球电影免费观看 | 如何舔出高潮| 久久影院123| 亚洲精品av麻豆狂野| 国产av国产精品国产| 曰老女人黄片| 免费久久久久久久精品成人欧美视频| xxx大片免费视频| 日本av手机在线免费观看| 国产老妇伦熟女老妇高清| 国产精品 国内视频| 一区在线观看完整版| 黑人猛操日本美女一级片| 午夜91福利影院| 久久精品久久久久久久性| 久久精品熟女亚洲av麻豆精品| 少妇精品久久久久久久| 欧美成人午夜精品| av在线老鸭窝| 国产成人精品福利久久| 天天躁夜夜躁狠狠久久av| 日韩不卡一区二区三区视频在线| 校园人妻丝袜中文字幕| 日韩 亚洲 欧美在线| 日本欧美视频一区| 五月开心婷婷网| 一级片免费观看大全| 女人精品久久久久毛片| 亚洲 欧美一区二区三区| 韩国av在线不卡| 青春草视频在线免费观看| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9 | 久久精品国产综合久久久| 亚洲欧美色中文字幕在线| 婷婷色麻豆天堂久久| 久久精品久久精品一区二区三区| 日韩电影二区| 久久精品久久久久久噜噜老黄| 亚洲自偷自拍图片 自拍| 久久毛片免费看一区二区三区| av免费观看日本| 一级毛片我不卡| 欧美黑人精品巨大| 国产精品秋霞免费鲁丝片| 欧美 亚洲 国产 日韩一| 人妻 亚洲 视频| 亚洲色图 男人天堂 中文字幕| netflix在线观看网站| 亚洲国产看品久久| 久久久精品国产亚洲av高清涩受| 国产精品熟女久久久久浪| 赤兔流量卡办理| 国产 一区精品| 日韩免费高清中文字幕av| 久久毛片免费看一区二区三区| 操出白浆在线播放| 侵犯人妻中文字幕一二三四区| 老汉色av国产亚洲站长工具| 国产精品免费大片| 日日啪夜夜爽| 青草久久国产| 色婷婷久久久亚洲欧美| 黄色视频不卡| 国产亚洲午夜精品一区二区久久| a级毛片黄视频| 久久国产精品男人的天堂亚洲| 伦理电影大哥的女人| 香蕉国产在线看| 天堂8中文在线网| 丰满饥渴人妻一区二区三| 欧美黄色片欧美黄色片| 国产成人免费观看mmmm| 亚洲精品第二区| 国产成人精品在线电影| 精品一区二区三区av网在线观看 | 免费高清在线观看视频在线观看| 色吧在线观看| 国产av国产精品国产| 久久久久久久大尺度免费视频| 成年美女黄网站色视频大全免费| 久久97久久精品| 日韩 欧美 亚洲 中文字幕| 亚洲精品日韩在线中文字幕| 777米奇影视久久| 久久99热这里只频精品6学生| 国产精品一二三区在线看| 午夜福利乱码中文字幕| 美女脱内裤让男人舔精品视频| 国产一区二区在线观看av| 亚洲精品av麻豆狂野| av线在线观看网站| 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 精品国产乱码久久久久久小说| www日本在线高清视频| 深夜精品福利| 国产精品欧美亚洲77777| 久久久久久久大尺度免费视频| 纵有疾风起免费观看全集完整版| 9191精品国产免费久久| 捣出白浆h1v1| av一本久久久久| 国产日韩欧美亚洲二区| av福利片在线| 国产黄色视频一区二区在线观看| 18禁美女被吸乳视频| 国产成人av激情在线播放| 亚洲自拍偷在线| 一本久久中文字幕| 欧美绝顶高潮抽搐喷水| 久久香蕉国产精品| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三区在线| 亚洲精品久久国产高清桃花| 色婷婷久久久亚洲欧美| 国产精品一区二区三区四区久久 | 亚洲成国产人片在线观看| 国产成+人综合+亚洲专区| 亚洲精品一区av在线观看| 久久精品国产亚洲av高清一级| 免费观看精品视频网站| 亚洲视频免费观看视频| 午夜福利成人在线免费观看| 一区二区三区高清视频在线| 国产精华一区二区三区| 九色亚洲精品在线播放| 久久精品国产亚洲av高清一级| 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 大型av网站在线播放| 99国产精品99久久久久| 中文字幕人妻丝袜一区二区| 日韩欧美国产在线观看| 男女下面进入的视频免费午夜 | 精品日产1卡2卡| 少妇粗大呻吟视频| 嫁个100分男人电影在线观看| 欧美乱色亚洲激情| 露出奶头的视频| 两个人看的免费小视频| 精品人妻在线不人妻| 国产区一区二久久| 久久久久久人人人人人| 一区二区三区精品91| 欧美激情久久久久久爽电影 | 久久久久国产精品人妻aⅴ院| 久久久久久国产a免费观看| 国产精品永久免费网站| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 欧美一级a爱片免费观看看 | 精品一区二区三区四区五区乱码| 在线国产一区二区在线| 精品久久久久久,| 国产成人精品久久二区二区91| 亚洲精品国产一区二区精华液| 成人国产综合亚洲| 男女下面进入的视频免费午夜 | 国产精品二区激情视频| 国产熟女午夜一区二区三区| 色老头精品视频在线观看| 露出奶头的视频| 午夜免费鲁丝| 日本精品一区二区三区蜜桃| 欧美大码av| 一a级毛片在线观看| 免费不卡黄色视频| 久久人人97超碰香蕉20202| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 满18在线观看网站| www日本在线高清视频| 成在线人永久免费视频| 伦理电影免费视频| 亚洲全国av大片| 黑丝袜美女国产一区| 在线观看日韩欧美| netflix在线观看网站| 在线观看一区二区三区| www.www免费av| 国产成人免费无遮挡视频| 精品国产美女av久久久久小说| 大码成人一级视频| 日韩成人在线观看一区二区三区| 十分钟在线观看高清视频www| 18禁观看日本| 99精品久久久久人妻精品| 久久香蕉精品热| 免费搜索国产男女视频| 日韩国内少妇激情av| 视频区欧美日本亚洲| 我的亚洲天堂| 亚洲久久久国产精品| 多毛熟女@视频| 欧美在线黄色| 校园春色视频在线观看| 欧美在线黄色| 亚洲avbb在线观看| 久久亚洲精品不卡| 久久草成人影院| 91成人精品电影| av福利片在线| 天天躁夜夜躁狠狠躁躁| 欧美日韩福利视频一区二区| 亚洲专区中文字幕在线| 热99re8久久精品国产| 亚洲成人久久性| 91国产中文字幕| 变态另类成人亚洲欧美熟女 | 亚洲熟女毛片儿| 亚洲精华国产精华精| 亚洲午夜精品一区,二区,三区| 少妇裸体淫交视频免费看高清 | 精品一区二区三区四区五区乱码| 波多野结衣高清无吗| 69精品国产乱码久久久| 午夜精品国产一区二区电影| 精品熟女少妇八av免费久了| 日韩免费av在线播放| 69精品国产乱码久久久| 日韩免费av在线播放| 69精品国产乱码久久久| ponron亚洲| tocl精华| 色哟哟哟哟哟哟| 给我免费播放毛片高清在线观看| 欧美亚洲日本最大视频资源| 欧美日韩一级在线毛片| 999久久久国产精品视频| 中文字幕人妻熟女乱码| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 神马国产精品三级电影在线观看 | 国产色视频综合| 麻豆成人av在线观看| 欧美激情高清一区二区三区| 夜夜躁狠狠躁天天躁| 日韩 欧美 亚洲 中文字幕| 在线观看免费日韩欧美大片| 日日夜夜操网爽| 色在线成人网| 麻豆av在线久日| 9191精品国产免费久久| 日韩欧美一区视频在线观看| 一区在线观看完整版| 欧美绝顶高潮抽搐喷水| 亚洲成av片中文字幕在线观看| 黄色片一级片一级黄色片| 一本综合久久免费| 国产一卡二卡三卡精品| 亚洲第一青青草原| 亚洲成av人片免费观看| 91在线观看av| 久久精品aⅴ一区二区三区四区| 国内精品久久久久久久电影| 曰老女人黄片| 久久久久久久午夜电影| 校园春色视频在线观看| 999久久久国产精品视频| 一级,二级,三级黄色视频| 看黄色毛片网站| www.999成人在线观看| 啦啦啦观看免费观看视频高清 | 黄色毛片三级朝国网站| 大陆偷拍与自拍| 亚洲一区二区三区不卡视频| 性色av乱码一区二区三区2| 不卡av一区二区三区| 最近最新中文字幕大全免费视频| 九色亚洲精品在线播放| av超薄肉色丝袜交足视频| 侵犯人妻中文字幕一二三四区| 在线观看午夜福利视频| 国产一区二区三区视频了| 久9热在线精品视频| 午夜福利高清视频| 18美女黄网站色大片免费观看| 好看av亚洲va欧美ⅴa在| 免费在线观看完整版高清| 成人国语在线视频| 午夜视频精品福利| 中国美女看黄片| 韩国av一区二区三区四区| 日韩欧美三级三区| 婷婷丁香在线五月| 一区二区日韩欧美中文字幕| 久久影院123| 十八禁网站免费在线| 黄色毛片三级朝国网站| 香蕉丝袜av| www日本在线高清视频| 亚洲黑人精品在线| 亚洲 欧美 日韩 在线 免费| 99精品久久久久人妻精品| 韩国精品一区二区三区| 欧美黄色淫秽网站| 亚洲精品久久成人aⅴ小说| 国产片内射在线| 欧美黑人欧美精品刺激| 91精品国产国语对白视频| 国产成人精品在线电影| 欧美国产精品va在线观看不卡| 亚洲一码二码三码区别大吗| 精品少妇一区二区三区视频日本电影| 欧美色视频一区免费| www.自偷自拍.com| 欧美成人免费av一区二区三区| 久热这里只有精品99| 精品第一国产精品| 成人免费观看视频高清| 亚洲一区二区三区不卡视频| 亚洲国产欧美一区二区综合| 亚洲精品中文字幕在线视频| aaaaa片日本免费| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区| 国产av一区二区精品久久| 国产精品一区二区免费欧美| 久久香蕉国产精品| 日韩国内少妇激情av| 亚洲精华国产精华精| 精品一区二区三区视频在线观看免费| 日本一区二区免费在线视频| 国产精品久久久av美女十八| 亚洲国产精品久久男人天堂| 欧美黑人欧美精品刺激| 亚洲午夜理论影院| 大型av网站在线播放| 国产精品亚洲一级av第二区| 国产精品久久久久久精品电影 | 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 99香蕉大伊视频| 日韩中文字幕欧美一区二区| 国产精品 国内视频| 国产精品乱码一区二三区的特点 | 亚洲 欧美一区二区三区| 宅男免费午夜| 成人亚洲精品av一区二区| 精品人妻1区二区| 亚洲人成电影免费在线| 精品少妇一区二区三区视频日本电影| 国产高清有码在线观看视频 | 国产av一区二区精品久久| 免费在线观看亚洲国产| 欧美一区二区精品小视频在线| tocl精华| 无遮挡黄片免费观看| 日本三级黄在线观看| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久人妻蜜臀av | 日日爽夜夜爽网站| 黄频高清免费视频| 黄网站色视频无遮挡免费观看| 国产精品美女特级片免费视频播放器 | 一个人观看的视频www高清免费观看 | 丰满的人妻完整版| 91精品国产国语对白视频| 18禁美女被吸乳视频| 久久香蕉精品热| bbb黄色大片| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| 国产一区二区三区在线臀色熟女| 亚洲av五月六月丁香网| 波多野结衣一区麻豆| 国产野战对白在线观看| 亚洲欧洲精品一区二区精品久久久| 在线天堂中文资源库| 国产免费男女视频| 在线观看免费日韩欧美大片| 涩涩av久久男人的天堂| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产精品久久久不卡| 久久精品亚洲精品国产色婷小说| 中国美女看黄片| 天天躁夜夜躁狠狠躁躁| 精品日产1卡2卡| 男女床上黄色一级片免费看| 亚洲专区字幕在线| 91国产中文字幕| 国产av在哪里看| 色尼玛亚洲综合影院| 亚洲精品粉嫩美女一区| 日韩精品中文字幕看吧| 69精品国产乱码久久久| 国产xxxxx性猛交| 一卡2卡三卡四卡精品乱码亚洲| 丁香欧美五月| 夜夜夜夜夜久久久久| 男女午夜视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 色精品久久人妻99蜜桃| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 美女免费视频网站| 国产区一区二久久| 精品久久久久久,| 老司机午夜福利在线观看视频| 国产又爽黄色视频| 国产亚洲欧美精品永久| 亚洲片人在线观看| 欧美丝袜亚洲另类 | 18禁观看日本| x7x7x7水蜜桃| 日本五十路高清| 十分钟在线观看高清视频www| 亚洲av成人不卡在线观看播放网| 女警被强在线播放| 婷婷精品国产亚洲av在线| av片东京热男人的天堂| 国产精品久久久av美女十八| 欧美日韩亚洲国产一区二区在线观看| 国产不卡一卡二| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 久久人妻av系列| 91精品三级在线观看| 久久 成人 亚洲| 国产精品自产拍在线观看55亚洲| 9191精品国产免费久久| 少妇裸体淫交视频免费看高清 | 免费女性裸体啪啪无遮挡网站| 女性被躁到高潮视频| 久久天躁狠狠躁夜夜2o2o| 一边摸一边做爽爽视频免费| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 欧美日韩一级在线毛片| 亚洲精品在线观看二区| 久久久久久亚洲精品国产蜜桃av| 久久国产乱子伦精品免费另类| 欧美中文日本在线观看视频| 男人舔女人下体高潮全视频| 日本三级黄在线观看| 亚洲,欧美精品.| 制服人妻中文乱码| 免费高清视频大片| 亚洲中文日韩欧美视频| 叶爱在线成人免费视频播放| 国产精品亚洲美女久久久| 18禁美女被吸乳视频| 国产乱人伦免费视频| 高清毛片免费观看视频网站| 国产成人欧美| 人人妻人人澡人人看| 久久久国产欧美日韩av| 亚洲第一欧美日韩一区二区三区| 午夜a级毛片| 久久午夜综合久久蜜桃| 国产黄a三级三级三级人| 男男h啪啪无遮挡| 国产精品日韩av在线免费观看 | 成在线人永久免费视频| 亚洲最大成人中文| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一欧美日韩一区二区三区| 亚洲片人在线观看| 最近最新中文字幕大全电影3 | 精品人妻在线不人妻| 国产在线精品亚洲第一网站| 久久久久久国产a免费观看| 欧美乱色亚洲激情| 久久天躁狠狠躁夜夜2o2o| 亚洲精品国产区一区二| 热99re8久久精品国产| 国产在线观看jvid| 国产片内射在线| 亚洲熟妇熟女久久| 亚洲国产欧美网| 亚洲一码二码三码区别大吗| 国产精品亚洲一级av第二区| 69精品国产乱码久久久| 午夜影院日韩av| 久久伊人香网站| 天堂√8在线中文| 香蕉久久夜色| 中国美女看黄片| 日本免费一区二区三区高清不卡 | 精品人妻1区二区| 成熟少妇高潮喷水视频| 精品国产美女av久久久久小说| 啦啦啦观看免费观看视频高清 | netflix在线观看网站| 久久久久久久精品吃奶| 在线观看www视频免费| 一进一出抽搐动态| 免费少妇av软件| 久久国产精品人妻蜜桃| 亚洲精品国产精品久久久不卡| 不卡av一区二区三区| 亚洲五月天丁香| 欧美日韩黄片免|