• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Conjugate Gradient Method in Random Variables

    2021-07-05 07:11:42

    (1.College of Mathematics and Physics,Wenzhou University,Wenzhou 325035,China;2.School of Mathematics and Statistics,Henan University,Kaifeng 475004,China)

    Abstract:We study the conjugate gradient method for solving a system of linear equations with coefficients which are measurable functions and establish the rate of convergence of this method.

    Keywords:Riesz algebra;Matrices;Measurable functions;Ordered structures;Conjugate gradient methods;Computational methods in function algebras

    §1.Introduction

    Consider a computer program used to give numerical solutions of stochastic differential equations which are the backbones of financial mathematics today.The input data are supposed to be the values at certain points of the input random variable and the output which will also believe to be the values of the output random variable,in fact the output data points are correlated to give an random variable which is then used to calculate the values at other intermediate points.If the program used for this computation contains subroutines based on certain numerical methods which may corrupt random variables,then when we input a random variable we are no longer certain the output is still a random variable.Though we all know a trader at the desk only cares about the numbers but a quantitative analyst would certainly feel better if he knows at least theoretically that,when the input is a random variable,the computer programs do output a random variable and not just a function pretending to be an instance of a random variable.We show in this paper that a numerical computation of random variables using the conjugate gradient method is robust-input a random variable it will output a random variable.This is the raison d’?etre of this paper.We can give the same arguments for quantum mechanics where we deal with wave functions which are random variables.

    Take another example-let us consider the control problem for correction of the positions of satellites.A radio command signal from an earth station in position takes 0.13 seconds to reach a communication satellite in a geostationary orbit above the equator at an altitude of 38,000 km.Thus we can say a feed back control procedure based on numerical computation by a fast computer is almostinstantaneous.This is no longer so for a landing module orbiting the moon simply because the radio signal propagation time from the Earth to the Moon is about 1.28 seconds-10 times slower than that of an earth orbiting satellite.We can extrapolate from the last observed data hoping that all our calculations actually produced a bona fide function.Even though we tend to think of all the data involved is a function describing a rigid body problem,the complexity of the entire engineering system would build in so many correction errors that it is perhaps better to consider the data of the position for example are just point values of a random variable.In that case,if we know all our numerical programs for satellite positioning actually preserve random variables so that our outputisa random variable we can proceed to calculate this random variable and not just to extrapolate-we can be ahead of the time-lag due to signal delay.For a mission to Mars,the signal distance is the largest when the Mars and the Earth are at the opposite sides of the Sun,and in this case the time needed for an radio command signal from earth to Mars is approximately 21 minutes.It is hopeless to expect an instantaneous feed back control sequence to work and your confidence level by extrapolation also drops.However if we accept that our position is a random variable and our computations preserve random variables,our output data is the random variable that actually gives the probability of the position,then we can confidently use this random variable to calculate without worrying about the signal delay.

    In scientific or financial computations the relation of the input data set to the output data set is often a probability distribution or a random variable.Due to the inability to make precise measurements even the input data set is sometimes itself a random variable.So the natural question that arises is whether the standard numerical methods can take a random variable input to give a random variable output.In this paper we give a new theoretical foundation to justify a random variable approach to the most commonly used method in numerical linear algebra,namely the conjugate gradient method.

    This is indeed not the first attempt at this question,in[12],[13]we have studied the preconditioning of Toeplitz systems.Recently Cheng,Fang and Zhu studied random model of non-selfadjoint,bounded linear operators in[6].

    The conjugate gradient method(CGM)is one of the most important iterative methods used to solve a numerical linear systemAx=b([9],[2]).Couple with preconditioning it is often the most efficient method[5],[18].Function space analogues of the conjugate gradient methods was considered by[7],[16].

    In this paper we take a different approach,we construct a new structure-a theory ofRiesz algebraand apply it to deal with measure theoretical questions when we run conjugate gradients on random variables.We shall see in the course of this paper that the Riesz algebra is not there just to be fancy but it is necessary in order to have a theory of inequalities for functions.

    When the coefficient matrixAof the system is not numerical but of the formC+EwhereCis a matrix with entries in complex numbers whileEis a matrix with entries which are random variables,much work have been on the statistical analysis of such systems.

    We shall go in a different direction.The goal of this paper is to study the algebraic aspects of the computation.We want to apply CGMdirectlyto a linear systemAx=bin whichA,x,bhave entries which are real valued measurable functions.From a computational point of view we are in a totally new direction.We are proposing to calculate the functions as elements of a ring and try to obtain solutions to very large systems as functions and not to evaluate the system at a few selected points,compute numerically a solution at a these selected points and pretend that these few numerical values give in fact the whole function which is the solution of the given system.As it is usual to work with measurable functions equivalent up to sets of measure zero and we need to invert strictly positive elements in order that CGM works,we replace the ring of measurable functions with a commutative real algebraRconstructed from it by taking quotient[20]and localization[4].We give an abstract characterization ofRand call it a Riesz algebra(to compare it with a similar structure[8]).In order to establish the rate of convergence of CGM by Krylov’s method in this case we shall see that we need all the rich structures of a Riesz algebra to get results on positive definite quadratic forms and min-max estimates which are standard over fields.This will show that the Riesz algebra is the right place for computational linear algebra for functions.

    Professor Wong Yau Chuen(1935-1994)was an excellent functional analyst who taught at the Chinese University of Hong Kong;Professor Wong Ngai Ching was his student and he in turn taught Hsu Ming Hsiu.Lai always remember Professor Wong Yau Chuen as a good friend and colleague.We would like to thank the referee for his perspicacious reading and useful suggestions.

    §2.Riesz algebra

    We give the definition of a Riesz algebra.

    By apartially ordered ringwe mean a ringRwith identity equipped with a partial order≤such that(1)forx,y∈R,ifx≤ythenx+a≤y+afor anya∈R,(2)ifx≥0 andy≥0 thenxy≥0 and(3)a2≥0 for alla∈R.Writea≤bifb-a≥0.We refer to[4]for more information.

    Let R be the field of real numbers.A partially ordered R-algebraRis a partially ordered ring such that(1)ifa≥0 inRandαis a non-negative real number thenαa≥0(i.e.Ris a partially ordered vector space,see[8]§12),and(2)the order ofRextends that of the real numbers R.i.e.ifα≥0 is a real number and 1 is the identity inRthenα1≥0 inR.We shall writeαforα1.

    Say an elementain a partially ordered ringRis positive and writea>0 ifa≥0 anda/=0.We sayaisstrictly positiveand writea﹥0 ifa>0 andais invertible inR.We say that a partially ordered R-algebraRisstrictly archimedeanif for anya,b∈R,the conditionrb?aholds for anyr∈R implies thatb=0.

    Alatticeis a partially ordered set(A,≤)such that the supremum sup{a,b}and infinmum inf{a,b}exist for any pair of elementsa,b∈A.We write|a|for sup{a,-a}.A partially ordered ring(R,+,·)which is also a lattice is called a lattice-ordered ring([20]§3.1).A partially ordered vector space which is also a lattice is called aRiesz space([8]§14A).

    Definition 2.1.We shall call a partially ordered strictly archimedeanR-algebra R which is also a lattice a Riesz algebra.If for every a﹥0in R there exists in R an element b﹥0suchthat b2=a,we say that R is a real Riesz algebra.Write b as(cf.[11]I p.308).When R isalso commutative we call it a commutative real Riesz algebra.

    We say an×nsymmetric matrixAwith entries in a commutative real Riesz algebraRis positive definite if for any non zero vectoryin theR-moduleRnof columnn-vectors we haveyT Ay﹥0 inR.Forx,y∈Rnwe write〈x,y〉A(chǔ)forxT Ay.Say two vectorsx,yareconjugateorA-conjugate orAperpendicular if〈x,y〉A(chǔ)=0.Ifx/=0 put‖x‖A=and set‖0‖A=0.

    Proposition 2.1.(Schwarz inequality)Let A be a positive definite symmetric matrix with entries in a commutative real Riesz algebra R.For any non zero vectors x,y∈Rn then we have in R

    Proof.As‖x‖Ais inRwe have

    AsAis positive definite we get 2‖x‖A‖y‖A〈x,y〉A(chǔ)?.As strictly positive elements are invertible in a Riesz algebra,2,‖x‖A,‖y‖Aare invertible and it follows that

    A similar calculation of〈‖x‖Ay+‖y‖Ax,‖x‖Ay+‖y‖Ax〉A(chǔ)shows that-〈x,y〉A(chǔ)?‖x‖A‖y‖A.

    Corollary 2.1.(Triangle inequality)For non zero vectors x,y∈Rn we have

    We continue to writeRfor a commutative real Riesz algebra andR×for the subgroup of invertible elements inR.We have just seen that〈x,y〉A(chǔ)is a symmetric bilinear form on theR-moduleRn.In general we can consider a symmetric bilinear formb:M×M→Ron a finitely generatedR-moduleM.For a submoduleSofMwe writeb|Sfor the restriction ofbtoSand For aR-moduleMlet us write HomR(M,R)for the theR-module ofR-linear module homomorphisms fromMtoR.We say a symmetric bilinear formbon a finitely generatedR-moduleMis non-degenerate if

    1.b(x,y)=0 for ally∈M?x=0,

    2.iff∈HomR(M,R)then there existsxf∈Msuch thatf(y)=b(xf,y)for anyy∈M.

    Just as in the case over fields it can be proved that a symmetric bilinear form on a finite rank freeR-module is non-degenerate if and only if its matrix associated to any basis is invertible.Moreover the following results are standard.

    Proposition 2.2.Let b be a symmetric bilinear form on a finitely generated R-module M.Then

    1.M=S⊥S⊥meaning M=S⊕S⊥and b=b|S⊕b|S⊥,that is for x,y∈S and u,v∈S⊥we have

    2.Put N={x∈M:b(x,x)/∈R×}.Then N is a R-submodule of M.

    3.If N/=M then there exist x1,···,xk∈M such that b(xi,xi)∈R×and

    ([11]I Theorem 6.1,[3],[15]).

    §3.Algebra of measurable functions

    We fix a measure space(X,Σ,μ);hereΣis aσ-algebra of subsets ofXand we assume thatμ(X)is finite.We write a.e.for almost everywhere.

    The setMof all real valued measurable functions onXis a commutative R-algebra.The setNconsisting of functions which are zero a.e.is an ideal inM.LetRdenote the quotient ringM/N.Write〈f〉for the image off∈MinR.

    Set〈f〉≥0 ifμ{f<0}=0.ThenRis a partially ordered ring and a Riesz space(see[8]§62F(c)§62G,[20]§3.1).To say that〈f〉/=0 is sayingf/∈N,i.e.μ{f/=0}/=0.We write〈f〉>0 to mean〈f〉≥0 and〈f〉/=0.

    We shall write〈f〉﹥0 ifμ{f≤0}=0.LetSbe the set of all〈f〉inRsuch that either〈f〉﹥0 or〈-f〉﹥0.ThenSis a multiplicative set inR.We localizeSto get a ring of quotientsRin which every element inSis invertible([17]§4).We can represent an element ofRaswith〈g〉inRand〈f〉inS.We say≥0 if〈f〉〈g〉≥0.This defines a partial order makingRa partially ordered ring.Fora=we shall writea﹥0 if〈f〉〈g〉﹥0.Thena﹥0 if and only ifa>0 andais invertible inR.

    Supposea=and〈f〉﹥0.Forx∈Xwe seth(x)=0 iff(x)≤0 and equals tootherwise.Thenhis measurable([10]§11 Theorem 11.8)andh=a.e.We set sup{a,0}to be the image of sup{h,0}inR.Similar definition is given when〈-f〉﹥0.Clearly ifa∈Rthen this agrees with the definition of sup inR(as in[8]14G(c)).This defines the structure of a lattice inR.

    We summarize our discussion in the following proposition.

    Proposition 3.1.R is a real Riesz algebra.

    From now onRwill always denote this Riesz algebra.We also sayRis the Riesz algebra on the measure spaceX.

    LetAbe an×nmatrix with entries in the Riesz algebra of measurable functions on a measure spaceX.Then it is known that its eigenfunctions can be ordered[14],[1]

    Proposition 3.2.Let A be a n×n positive definite symmetric matrix with entries in the Riesz algebra R on the measure space X.Letyj(in Rn)be the eigenvector of A with eigenvalueλj.Then{yj}form a basis of Rn.

    Proof.IfAis positive definite then in the notation of the proposition 2.2 the spaceNassociated to the bilinear form〈·,·〉is zero.And so

    Thus,we complete the proof.

    LetAbe an×npositive definite symmetric matrix with entries in the Riesz algebraRon the measure spaceX.Writeλminfor its minimal eigenfunction andλmaxfor its maximal eigenfunction.Put

    Proposition 3.3.Notations as above.If q is a polynomial over R,andx∈Rn then in R we have

    Proof.Take yjas in the previous proposition,write x=then

    and

    Hence,‖q(A)x‖A≤MA(q)·‖x‖A.

    §4.Conjugate gradient method

    LetAbe an×npositive definite symmetric matrix with entries in the Riesz algebraRon a measure spaceXand b a vector inRn.We try to find iteratively a solution x∈Rnof the linear systemAx=b.

    We start with any point x0inRnand take r0=p0=b-Ax0.At thek-th step we compute

    The termαkis called the control term.Ifαkis in the setSof positive definite or negative definite elements we say it is acceptable and we continue.We shall also say in this case that the CGM isfeasiblefor the given system at thek-th step.Ifαkis not inSwe stop the program.The point is this.Ifαk(x)=0 atx∈Xwe can say(b-Axk)(x)=0 and we find a solution xk(x)of the systemA(x)x(b)=b(x)at the pointx.But this does not tell us if the function x gives the solution at other points in the spaceX.The problem being that the algebraRhas plenty of non-zero zero-divisors.This shows the difficulty of solving for functions.But if we do find a function solution we have a global solution rather than a solution at a point in the spaceX.This shows the convenience of working in an abstract Riesz algebra.

    This computation will have a failure set

    which is of measure zero by the choice ofA.As countable union of sets of measure zero has measure zero,we know that we can continue outside of∪kΥk,that is the computation of the conjugate gradient can be done a.e.

    By aKrylov moduleof then×nmatrixAwe mean aR-moduleK(A,y,k)spanned overRby the set{y,Ay,···,Aky}where y is a vector inRnandkis an integer.

    Theorem 4.1.In the above notations assuming that CGM is feasible for the linear systemAx=b.Then

    1.=0for0≤i<j≤k.

    2.=0for i/=j,0≤i,j≤k.

    3.〈pi,pj〉A(chǔ)=0for i/=j,0≤i,j≤k.

    4.K(A,r0,k)is spanned by{r0,···,rk}or by{p0,···,pk}.

    Proof.We prove the induction step fromktok+1.

    For part(1)-from the definition of rkwe get

    From this and the definition ofαkit follows that=0 and also by the induction hypothesis for parts(1)and(3),=0 for 0≤i≤k-1.

    For part(2)-we get from part(1)that=0 for 0≤i≤k.By the induction hypothesis of part(4)which says that{r0,···,rk}and{p0,···,pk}span the same module,we conclude that=0 for 0≤i≤k.

    For 0≤i<kassuming that the program can continue and theαi(0≤i≤k-1)are acceptable,from part(2)proved above and by the induction hypothesis of part(3)it follows that=0.By construction=0.

    For part(4)-we start with the induction hypothesis that either{r0,···,rk}or{p0,···,pk}spansK(A,r0,k).Then the formulas rk+1=rk-αkApk,and pk=rk-βkpk-1,tell us that rk+1,pk+1are inK(A,p0,k+1).

    ForAkr0inK(A,r0,k)we can writewithγi∈R.ThenAk+1r0=From piinK(A,r0,k)we getApiand soAk+1r0is inK(A,r0,k+1).

    Moreover parts(2)tells us that the vectors r0,···,rk+1are linearly independent so are p0,···,pk+1.ThusK(A,p0,k+1)is free of rankk+1 overR.

    Remark 4.1.The theorem tells us that the CGM stops before the n+1step either when it is successful or when it is not feasible.

    Proposition 4.1.In the above notations assuming that CGM is feasible for the linear system Ax=bx?.Then for k<we have

    Proof.From the construction we have xk=xk-1+αk-1pk-1.It follows that(i)xk=x0+α0p0+···+αk-1pk-1,and(ii)x?=xk+αkpk+···+α?-1p?-1.

    From(i)we see that xk∈x0+K(A,r0,k-1)and so for any x∈x0+K(A,r0,k-1)we get xk-x is inK(A,r0,k-1)which is spanned by p0,···,pk-1.While(ii)says x?-xkis in the submodule spanned by pk,...,p?-1.By theorem 4.1(3)that,〈x?-xk,xk-x〉A(chǔ)=0 and so the proposition follows from

    Consequently,the proof is completed.

    §5.Rate of convergence

    We continue to writeRfor the Riesz algebra on the measure spaceX.We are interested in the setof polynomials in the variableToverRof degree≤kwith constant term 1.Let us consider an elementp=1+a1(x)T+···+ak(x)Tkinas a function onX×[a,b]for some 0<a<b.Then we can consider the real valued mapMongiven by

    We can apply the standard result in approximation theory at least pointwise inXto find a lower bound forM.Namely let

    denotes the Chebyshev polynomial of degreek[19].And put

    This is a polynomial inTwith real coefficients.Letdenote the set of polynomials over R of degree≤kwith constant term 1.For a real polynomialpwrite

    Then by approximation theory([19],[2]Appendix B)we have

    But

    So

    NowAnd forwe have M(p)=m(p).Thus

    Theorem 5.1.Let A be a n×n matrix with entries in the Riesz algebra of a measure space X.Writeλminfor its minimal eigenfunction andλmaxfor its maximal eigenfunction.Put

    andκ=Assume that the conjugate gradient method for the linear system Ax=bissuccessful and yields an exact solutionx*.Then the k-th feasible outputxk satisfies the followingestimate

    Proof.From theorem 4.1(4)we know that for any x∈x0+K(A,r0,k-1)there exists a polynomialpk(T)inR[T]of degreek-1 such that x=x0+pk(A)r0.Recall that r0=b-Ax0.Hence

    whereqk(T)=1-Tpk(T)is a polynomial of degreekandqk(0)=1.

    Applying proposition 4.1 we get

    Using proposition 3.3 we have

    This theorem is proved.

    This is the same estimate as in the numerical case as given in([2]§13.2.1).

    §6.Conclusions

    We have seen to what extent CGM can be used to solve a large linear system over the algebra of measurable functions on a measure space.The aim is to try to find a function which is a solution of the system rather than just doing a point-wise computation and getting only the values of the solution function at a few selected points.In the process we see that we need the theory of quadratic forms over rings and an order structure on the ring of measurable functions for estimates.The result is a Riesz algebra.It is clear that much can be done about computational linear algebra over a Riesz algebra-for example we can develop preconditioning methods for Wiener-Hopf integral equations in this context.We hope to extend the work of Lasdon,Mitter and Waren to the conjugate gradient method for optimal control problems in random variables.

    亚洲天堂av无毛| 老司机深夜福利视频在线观看 | 美女午夜性视频免费| 亚洲精品国产色婷婷电影| 国产精品 国内视频| 韩国精品一区二区三区| 亚洲成人手机| 亚洲国产欧美在线一区| 成人亚洲精品一区在线观看| 美女中出高潮动态图| 中文乱码字字幕精品一区二区三区| 国产成人91sexporn| 久久天躁狠狠躁夜夜2o2o | 一级a爱视频在线免费观看| 丁香六月欧美| 免费久久久久久久精品成人欧美视频| 最近最新中文字幕免费大全7| 成人午夜精彩视频在线观看| 国产精品熟女久久久久浪| 午夜久久久在线观看| 亚洲av日韩在线播放| 日韩视频在线欧美| av国产久精品久网站免费入址| 久久久久精品久久久久真实原创| 捣出白浆h1v1| 亚洲国产欧美日韩在线播放| 综合色丁香网| 日本vs欧美在线观看视频| 高清视频免费观看一区二区| 亚洲精品第二区| 观看美女的网站| 国产极品天堂在线| 国产精品国产av在线观看| 黑人巨大精品欧美一区二区蜜桃| 日本午夜av视频| 欧美老熟妇乱子伦牲交| 妹子高潮喷水视频| 女性被躁到高潮视频| 成人影院久久| 日本午夜av视频| 电影成人av| 叶爱在线成人免费视频播放| 午夜免费观看性视频| 久久97久久精品| 精品一区二区三区四区五区乱码 | 亚洲成色77777| 乱人伦中国视频| 天天躁日日躁夜夜躁夜夜| 午夜激情久久久久久久| 亚洲激情五月婷婷啪啪| a级片在线免费高清观看视频| 新久久久久国产一级毛片| 五月天丁香电影| 观看美女的网站| 国产成人欧美在线观看 | 午夜日本视频在线| 亚洲少妇的诱惑av| 人妻人人澡人人爽人人| 丰满迷人的少妇在线观看| 熟女少妇亚洲综合色aaa.| 国产欧美日韩综合在线一区二区| 亚洲第一区二区三区不卡| 国产亚洲av片在线观看秒播厂| 九色亚洲精品在线播放| 久久 成人 亚洲| 高清av免费在线| 哪个播放器可以免费观看大片| 汤姆久久久久久久影院中文字幕| 深夜精品福利| 青春草视频在线免费观看| av线在线观看网站| 九色亚洲精品在线播放| 91老司机精品| 日韩伦理黄色片| 欧美日韩亚洲综合一区二区三区_| 国产又爽黄色视频| 侵犯人妻中文字幕一二三四区| 欧美少妇被猛烈插入视频| 久久99精品国语久久久| 国产一区二区三区综合在线观看| 亚洲精品在线美女| 中文字幕精品免费在线观看视频| √禁漫天堂资源中文www| 一级毛片 在线播放| 别揉我奶头~嗯~啊~动态视频 | 亚洲,欧美精品.| 美女中出高潮动态图| 免费黄频网站在线观看国产| 亚洲精品在线美女| a级毛片黄视频| 一本大道久久a久久精品| 啦啦啦视频在线资源免费观看| 免费av中文字幕在线| 亚洲一码二码三码区别大吗| 成人国语在线视频| 国产av码专区亚洲av| kizo精华| 男女午夜视频在线观看| 欧美日韩国产mv在线观看视频| 国产精品亚洲av一区麻豆 | 亚洲精品日韩在线中文字幕| 免费观看人在逋| 亚洲人成77777在线视频| 十八禁网站网址无遮挡| 一区福利在线观看| 搡老岳熟女国产| 亚洲图色成人| 欧美亚洲日本最大视频资源| 99热全是精品| 国产 精品1| 一边摸一边抽搐一进一出视频| 国产亚洲最大av| av福利片在线| 最近中文字幕2019免费版| 欧美激情极品国产一区二区三区| 久久婷婷青草| 中文字幕制服av| 97精品久久久久久久久久精品| 国产日韩一区二区三区精品不卡| 国产成人免费观看mmmm| 制服诱惑二区| 久久久久久久久久久久大奶| 美女脱内裤让男人舔精品视频| 免费黄频网站在线观看国产| 欧美人与性动交α欧美软件| 久久久久人妻精品一区果冻| 色婷婷av一区二区三区视频| 母亲3免费完整高清在线观看| 成年动漫av网址| 国产爽快片一区二区三区| 下体分泌物呈黄色| 国产成人免费无遮挡视频| www.精华液| 精品久久久久久电影网| 日韩一本色道免费dvd| 久久久久久久久久久免费av| 欧美97在线视频| 亚洲图色成人| 丰满迷人的少妇在线观看| 国产精品欧美亚洲77777| 免费久久久久久久精品成人欧美视频| 纵有疾风起免费观看全集完整版| 久久天堂一区二区三区四区| 成年av动漫网址| 男人舔女人的私密视频| 精品亚洲乱码少妇综合久久| 如何舔出高潮| 久久久久网色| netflix在线观看网站| 青青草视频在线视频观看| 久久久久久久久免费视频了| 国产成人免费无遮挡视频| √禁漫天堂资源中文www| 一级片'在线观看视频| 最黄视频免费看| 麻豆av在线久日| 母亲3免费完整高清在线观看| 婷婷色麻豆天堂久久| 青草久久国产| 十八禁人妻一区二区| 美女高潮到喷水免费观看| 日本欧美视频一区| 国产深夜福利视频在线观看| 久久久久久久大尺度免费视频| 国产精品一二三区在线看| 黄网站色视频无遮挡免费观看| 中文乱码字字幕精品一区二区三区| 青春草亚洲视频在线观看| 国产成人欧美在线观看 | 亚洲男人天堂网一区| 国产成人午夜福利电影在线观看| 欧美成人精品欧美一级黄| 丰满少妇做爰视频| 午夜日韩欧美国产| 一区二区三区乱码不卡18| av天堂久久9| 熟女少妇亚洲综合色aaa.| 日韩大片免费观看网站| 又大又黄又爽视频免费| av免费观看日本| 一级,二级,三级黄色视频| 在线观看免费视频网站a站| 久久久久久免费高清国产稀缺| 国产精品一区二区在线不卡| 熟女少妇亚洲综合色aaa.| 免费不卡黄色视频| 久久精品亚洲av国产电影网| 国产av码专区亚洲av| 午夜免费观看性视频| 午夜影院在线不卡| 午夜福利一区二区在线看| 亚洲精品美女久久久久99蜜臀 | 美女高潮到喷水免费观看| 亚洲人成网站在线观看播放| 国产毛片在线视频| 热99久久久久精品小说推荐| 午夜福利乱码中文字幕| 亚洲精品一二三| 亚洲国产日韩一区二区| 国产成人精品在线电影| 肉色欧美久久久久久久蜜桃| 少妇被粗大的猛进出69影院| 一级爰片在线观看| 欧美在线黄色| av在线老鸭窝| 国产精品一二三区在线看| 国产精品久久久久成人av| 在线观看国产h片| 日本色播在线视频| 男女下面插进去视频免费观看| 交换朋友夫妻互换小说| 婷婷色麻豆天堂久久| 在线观看免费午夜福利视频| 观看av在线不卡| 成人国产麻豆网| 午夜av观看不卡| 99精品久久久久人妻精品| 久久久久精品久久久久真实原创| 人人妻人人澡人人看| 最新在线观看一区二区三区 | 美女扒开内裤让男人捅视频| 亚洲av成人精品一二三区| 亚洲av福利一区| 欧美久久黑人一区二区| 日本色播在线视频| 日本色播在线视频| 精品国产一区二区三区四区第35| 九九爱精品视频在线观看| 久久狼人影院| 久久久国产欧美日韩av| 欧美在线黄色| 国产又色又爽无遮挡免| 99国产精品免费福利视频| 伦理电影大哥的女人| 亚洲av日韩在线播放| 欧美日韩综合久久久久久| 最近中文字幕2019免费版| 叶爱在线成人免费视频播放| 岛国毛片在线播放| videosex国产| videosex国产| 精品人妻熟女毛片av久久网站| 国产精品二区激情视频| 看免费成人av毛片| 成人免费观看视频高清| 女性生殖器流出的白浆| 欧美黑人欧美精品刺激| 女人高潮潮喷娇喘18禁视频| 一个人免费看片子| 久久国产精品男人的天堂亚洲| 日韩视频在线欧美| 日韩一区二区视频免费看| 国产午夜精品一二区理论片| 国产亚洲av片在线观看秒播厂| 少妇精品久久久久久久| 精品亚洲成a人片在线观看| 久久精品国产a三级三级三级| 亚洲国产看品久久| 国产日韩欧美在线精品| 国产成人精品福利久久| 美女大奶头黄色视频| 如日韩欧美国产精品一区二区三区| 国产精品秋霞免费鲁丝片| 菩萨蛮人人尽说江南好唐韦庄| 十分钟在线观看高清视频www| 精品午夜福利在线看| 9色porny在线观看| 中文字幕av电影在线播放| 在现免费观看毛片| 下体分泌物呈黄色| 成年av动漫网址| 少妇被粗大的猛进出69影院| 亚洲中文av在线| 在线天堂中文资源库| 18禁国产床啪视频网站| 亚洲欧美精品综合一区二区三区| 久久人人爽人人片av| 天天躁夜夜躁狠狠躁躁| 欧美 日韩 精品 国产| 久久婷婷青草| 国产成人精品福利久久| 肉色欧美久久久久久久蜜桃| 日韩大码丰满熟妇| 日本wwww免费看| 欧美久久黑人一区二区| 国产成人免费无遮挡视频| 777久久人妻少妇嫩草av网站| 国产在线一区二区三区精| 欧美变态另类bdsm刘玥| 看十八女毛片水多多多| 别揉我奶头~嗯~啊~动态视频 | 国产精品三级大全| 中文字幕高清在线视频| 久热爱精品视频在线9| 晚上一个人看的免费电影| 男人添女人高潮全过程视频| 蜜桃在线观看..| 最近中文字幕2019免费版| 亚洲精品视频女| 国产一区二区三区av在线| 美女扒开内裤让男人捅视频| 美女福利国产在线| 在线亚洲精品国产二区图片欧美| 亚洲国产看品久久| 久久国产精品大桥未久av| 如日韩欧美国产精品一区二区三区| 国产亚洲午夜精品一区二区久久| 女人爽到高潮嗷嗷叫在线视频| 妹子高潮喷水视频| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| 51午夜福利影视在线观看| 亚洲av成人精品一二三区| 天美传媒精品一区二区| 秋霞在线观看毛片| 亚洲视频免费观看视频| 制服丝袜香蕉在线| av福利片在线| 国产日韩一区二区三区精品不卡| 好男人视频免费观看在线| 国产精品久久久久久精品古装| 免费看av在线观看网站| 欧美变态另类bdsm刘玥| 亚洲国产日韩一区二区| 亚洲欧美精品自产自拍| 汤姆久久久久久久影院中文字幕| 亚洲精品aⅴ在线观看| 又大又爽又粗| 亚洲欧美清纯卡通| 国产女主播在线喷水免费视频网站| 中文字幕色久视频| 黄色毛片三级朝国网站| 精品一品国产午夜福利视频| 91aial.com中文字幕在线观看| 一二三四中文在线观看免费高清| 纯流量卡能插随身wifi吗| 香蕉丝袜av| 久久热在线av| 亚洲精品国产区一区二| 欧美日本中文国产一区发布| 日韩中文字幕视频在线看片| www日本在线高清视频| 亚洲熟女精品中文字幕| 欧美另类一区| 国产黄色视频一区二区在线观看| 我的亚洲天堂| 日韩免费高清中文字幕av| 人妻 亚洲 视频| 久久免费观看电影| svipshipincom国产片| 国产成人精品久久久久久| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 精品国产一区二区三区四区第35| 美女高潮到喷水免费观看| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 亚洲图色成人| 日韩,欧美,国产一区二区三区| 电影成人av| 亚洲 欧美一区二区三区| 久久久久久久大尺度免费视频| 19禁男女啪啪无遮挡网站| 欧美日韩一级在线毛片| 日日爽夜夜爽网站| 韩国精品一区二区三区| 欧美激情极品国产一区二区三区| 在线观看免费日韩欧美大片| 狂野欧美激情性xxxx| 91精品伊人久久大香线蕉| 久久国产亚洲av麻豆专区| 九色亚洲精品在线播放| 午夜免费观看性视频| 亚洲激情五月婷婷啪啪| av天堂久久9| 在线观看www视频免费| 中文字幕人妻丝袜一区二区 | 桃花免费在线播放| 高清欧美精品videossex| 久久久久网色| 精品人妻一区二区三区麻豆| 女人高潮潮喷娇喘18禁视频| 欧美精品高潮呻吟av久久| 一区二区三区精品91| 欧美日韩视频高清一区二区三区二| 蜜桃国产av成人99| 99re6热这里在线精品视频| 免费观看a级毛片全部| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放| 久久av网站| 只有这里有精品99| 亚洲欧洲精品一区二区精品久久久 | 亚洲av日韩精品久久久久久密 | 亚洲国产成人一精品久久久| 亚洲久久久国产精品| 一区在线观看完整版| 中文字幕av电影在线播放| 妹子高潮喷水视频| 亚洲久久久国产精品| 成人黄色视频免费在线看| 看免费av毛片| 欧美亚洲日本最大视频资源| 国产又色又爽无遮挡免| 久久久久久久久久久久大奶| 国产精品欧美亚洲77777| 精品少妇一区二区三区视频日本电影 | 在线观看免费高清a一片| www.自偷自拍.com| 国产极品天堂在线| 一区二区三区四区激情视频| 日韩制服丝袜自拍偷拍| 欧美激情高清一区二区三区 | 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 国产成人系列免费观看| 亚洲欧美一区二区三区黑人| 日日摸夜夜添夜夜爱| 男人舔女人的私密视频| 成人亚洲精品一区在线观看| 亚洲欧洲国产日韩| 亚洲五月色婷婷综合| 肉色欧美久久久久久久蜜桃| 亚洲,一卡二卡三卡| 999久久久国产精品视频| 亚洲av电影在线进入| 一本色道久久久久久精品综合| 日韩免费高清中文字幕av| 建设人人有责人人尽责人人享有的| 日韩欧美一区视频在线观看| 亚洲av日韩在线播放| 成人影院久久| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频| 69精品国产乱码久久久| 毛片一级片免费看久久久久| 国产亚洲av片在线观看秒播厂| 国产男女超爽视频在线观看| 亚洲精品aⅴ在线观看| 日韩一卡2卡3卡4卡2021年| 高清欧美精品videossex| 亚洲精华国产精华液的使用体验| 亚洲天堂av无毛| netflix在线观看网站| 美女午夜性视频免费| 成人国产麻豆网| www日本在线高清视频| 亚洲精华国产精华液的使用体验| 欧美日韩一级在线毛片| 午夜激情久久久久久久| 老司机在亚洲福利影院| 99re6热这里在线精品视频| 观看av在线不卡| 日韩欧美精品免费久久| 午夜免费观看性视频| 久久99精品国语久久久| 午夜日韩欧美国产| 国产色婷婷99| 丝袜人妻中文字幕| 亚洲精品av麻豆狂野| 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久男人| 如日韩欧美国产精品一区二区三区| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线| 久久性视频一级片| 97精品久久久久久久久久精品| 男女免费视频国产| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区国产| 另类亚洲欧美激情| 欧美日韩亚洲综合一区二区三区_| 日本av手机在线免费观看| 赤兔流量卡办理| 国产精品免费大片| 亚洲av在线观看美女高潮| 自拍欧美九色日韩亚洲蝌蚪91| 日本91视频免费播放| 久久精品亚洲av国产电影网| 老熟女久久久| 精品国产一区二区久久| 天天影视国产精品| 观看av在线不卡| 麻豆乱淫一区二区| 最黄视频免费看| 国产成人欧美| 精品国产乱码久久久久久男人| a 毛片基地| 欧美精品人与动牲交sv欧美| 超碰成人久久| 1024视频免费在线观看| 亚洲欧美精品综合一区二区三区| 男女下面插进去视频免费观看| 国产精品一二三区在线看| 国产黄色免费在线视频| av女优亚洲男人天堂| 亚洲美女黄色视频免费看| 日韩中文字幕欧美一区二区 | 这个男人来自地球电影免费观看 | 国产有黄有色有爽视频| 成人三级做爰电影| 免费黄网站久久成人精品| av免费观看日本| a 毛片基地| 国产女主播在线喷水免费视频网站| 黄网站色视频无遮挡免费观看| 久久天躁狠狠躁夜夜2o2o | 一区二区三区四区激情视频| 午夜福利一区二区在线看| 亚洲,一卡二卡三卡| 精品一区二区三卡| 男人操女人黄网站| 中文字幕高清在线视频| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 亚洲色图综合在线观看| 久久亚洲国产成人精品v| 久久久久国产一级毛片高清牌| 久久人人爽人人片av| 我要看黄色一级片免费的| 波多野结衣一区麻豆| 91老司机精品| 在线观看一区二区三区激情| 中文欧美无线码| 男男h啪啪无遮挡| 久久精品aⅴ一区二区三区四区| 亚洲欧美成人综合另类久久久| 少妇 在线观看| 90打野战视频偷拍视频| 一区二区av电影网| 国精品久久久久久国模美| 婷婷成人精品国产| 啦啦啦 在线观看视频| 激情五月婷婷亚洲| 精品亚洲成国产av| 18在线观看网站| 精品国产国语对白av| 国产又色又爽无遮挡免| 亚洲成国产人片在线观看| 久久久久久免费高清国产稀缺| 欧美黑人欧美精品刺激| 亚洲精品久久久久久婷婷小说| 啦啦啦中文免费视频观看日本| 无遮挡黄片免费观看| 精品国产一区二区久久| 亚洲成人一二三区av| 国产 一区精品| 亚洲三区欧美一区| 精品国产乱码久久久久久小说| 国产亚洲av片在线观看秒播厂| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区久久久樱花| 青春草国产在线视频| 成人国产av品久久久| 日韩欧美一区视频在线观看| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 最新在线观看一区二区三区 | 男女国产视频网站| 美女中出高潮动态图| 色综合欧美亚洲国产小说| 在线观看一区二区三区激情| 一本色道久久久久久精品综合| 丝袜喷水一区| 一边亲一边摸免费视频| 18禁国产床啪视频网站| 亚洲综合精品二区| 国产一区二区三区av在线| 巨乳人妻的诱惑在线观看| 日日爽夜夜爽网站| 久久久亚洲精品成人影院| 人人妻,人人澡人人爽秒播 | 亚洲一码二码三码区别大吗| 亚洲欧美一区二区三区久久| 国产在线免费精品| 最近中文字幕高清免费大全6| 久久鲁丝午夜福利片| 亚洲精品久久午夜乱码| 男女床上黄色一级片免费看| 色视频在线一区二区三区| 91精品三级在线观看| 黄色怎么调成土黄色| av有码第一页| 丝袜美足系列| 老司机影院毛片| 一本大道久久a久久精品| 久久天躁狠狠躁夜夜2o2o | 男女床上黄色一级片免费看| 不卡av一区二区三区| 少妇被粗大猛烈的视频| 午夜福利一区二区在线看| 久久精品国产综合久久久| 欧美精品一区二区大全| 亚洲国产精品成人久久小说| 只有这里有精品99| 亚洲精品国产av蜜桃| e午夜精品久久久久久久| 搡老岳熟女国产| 少妇的丰满在线观看| 亚洲精品一区蜜桃| 操美女的视频在线观看| 国产亚洲av高清不卡| 亚洲国产欧美一区二区综合| 天堂俺去俺来也www色官网| 最黄视频免费看| 韩国精品一区二区三区| 最近最新中文字幕免费大全7| 亚洲精品久久成人aⅴ小说| 9色porny在线观看| 国产免费现黄频在线看| 性色av一级| 国产成人啪精品午夜网站| 国产熟女欧美一区二区| 国产精品蜜桃在线观看| 中文字幕最新亚洲高清|