• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Populating 229mTh via two-photon electronic bridge mechanism

    2021-07-02 09:31:52NengQiangCaiGuoQiangZhangChangBoFuYuGangMa
    Nuclear Science and Techniques 2021年6期

    Neng-Qiang Cai · Guo-Qiang Zhang· Chang-Bo Fu· Yu-Gang Ma,

    Abstract The isomer 229mTh is the most promising candidate for clocks based on the nuclear transition because it has the lowest excitation energy of only 8.10±0.17 eV.Various experiments and theories have focused on methods of triggering the transition between the ground state and isomeric state, among which the electronic bridge (EB) is one of the most efficient. In this paper, we propose a new electronic bridge mechanism via two-photon excitation based on quantum optics for a two-level nuclear quantum system. The long-lived 7s1/2 electronic shell state of 229mTh3+,with a lifetime of approximately 0.6 s,is chosen as the initial state and the atomic shells (7s-10s) could be achieved as virtual states in a two-photon process. When the virtual states return to the initial state 7s1/2, there is a chance of triggering the nucleus 229Th3+ to its isomeric state 229mTh3+ via EB. Two lasers at moderate intensity((1010-1014)W/m2),with photon energies near the optical range, are expected to populate the isomer at a saturated rate of approximately 109 s-1, which is much higher than that due to other mechanisms. We believe that this twophoton EB scheme can help in the development of nuclear clocks and deserves verification via a series of experiments with ordinary lasers in laboratories.

    Keywords Electronic bridge · 229Th · Nuclear clocks ·

    1 Introduction

    Since ancient times, humans have pursued the development of more accurate clocks to arrange social activities and elucidate the secrets of the universe. One of the most important applications of an accurate clock is in global navigation satellite systems, such as the global positioning system (GPS) or BeiDou navigation satellite system(BDS), but they are also used in basic scientific research.Some important units, such as the meter, are defined in relation to a second. Even the time measurement itself would be meaningful, a more precise clock might reveal the intrinsic properties of space and time at the quantum level; e.g., it might be discrete instead of continuous, per the hypothesis of relativity theory.

    Currently,atomic or optical clocks are the most accurate time and frequency standards[1].In 1967,the International System of Units (SI) second was officially redefined based on the isotope atom133Cs: ‘The second is the duration of 9192631770 periods of radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.’In the following decades,the accuracy of this standard was improved from 10-12(around 100 ns per day) to 10-16[2] because of the significant reduction in the noise-to-signal ratio,with the help of laser cooling. In 2019, scientists from the National Institute of Standards and Technology (NIST) demonstrated an Al+clock with a total uncertainty of 9.4×10-19[3], which is the first demonstration of a clock with an uncertainty of less than 10-18. Recently, atomic clocks based on optical rather than microwave transitions have achieved higher accuracy (2.5×10-19) and stability performance (within 15 s) [4],which might lead to redefining the current cesium microwave-based SI second in the near future.

    Despite the great accuracy that atomic and optical clocks have achieved, clocks based on a nuclear transition rather than atomic electron transitions could be more steady and accurate because of their smaller size, with the shielding effects of the surrounding electrons and their higher frequencies.However,nuclei are difficult to control owing to their higher excitation energies (keV to MeV),which have already exceeded those (eV) from modern microwave or laser technologies. Fortunately, two nuclei with excited states lower than 100 eV-i.e.,229mTh (8.10 eV) and235mU (76 eV)-have been determined thus far.The former has attracted more attention because its transition frequency is closer to the optical range. In 2003, a nuclear optical clock based on a single229Th3+was first proposed by Peik and Tamm [5], although a nuclear transition with an energy of 3.5 eV was much lower than the mean experimental value of 8.10 eV. In their pioneering work, a double-resonance method was proposed with two lasers to excite the nuclear shell and the atomic shell of229Th3+, respectively. In 2012, the single229Th3+ion nuclear clock was further investigated by Campbell et al.[6],with a total fractional inaccuracy of 1.0×10-19,which is approximately an order of magnitude higher than that achieved by the best optical atomic clocks at the time.Instead of exciting an electronic shell state, the nuclear clock proposed by Campbell et al. uses a stretched pair of nuclear hyperfine states in the electronic ground-state configuration,which demonstrates advantages with respect to the achievable quality factor and suppression of the quadratic Zeeman shift.

    To obtain more precise clocks, an increasing number of proposals for nuclear clocks based on the isomeric isotope229mTh have been suggested, where the key is how to populate the isomeric state. During the last two decades,various theories have been proposed for populating229Th to its isomeric state,which can be grouped into laser direct photon excitation, nuclear excitation by electron capture(NEEC), nuclear excitation by electron transition (NEET),and electronic bridges (EB) (see Ref. [7] for a detailed review). Laser direct excitation relies on the precision of the isomeric energy, which has not yet been sufficient.Therefore, indirect excitation schemes-such as NEET,NEEC, and EB-were investigated in alternative ways.NEEC requires a plasma environment to provide free electrons, which seems too harsh to guarantee a low noise level for nuclear clocks.Conversely,NEEC may be a good method for nuclear batteries,such as93Mo and178Hf.In the NEET process, a nucleus is excited and a real electronic shell state is simultaneously deexcited, which is a thirdorder process [7]. Sometimes, it is difficult to distinguish the difference between NEET and EB because they share a similar physics scheme.In Ref.[8],Karpeshin claimed that during NEET processes the virtual level is populated after nuclear excitation, whereas in EB processes, a virtual electronic level is populated before nuclear excitation.Considering all of the theories, it seems that the EB is the most promising for nuclear clocks because of its highly efficient transition rate. Thus far, the uncertainty of the energy isomeric state has seriously hindered the development of nuclear clocks based on229Th. In the 1970s, the energy was found to be below 100 eV [9] and then below 10 eV in the late 1980s [10]. The energy has shifted from 4.5±1 eV[11]to now 8.10±0.17 eV[12].Therefore, it was difficult to observe a clear signal from the laser direct excitation experiments. During the EB process, the virtual electronic level tolerates a larger uncertainty of the energy.The EB becomes an important method of populating the229Th to its isomeric state. Thus, methods based on EB excitation have been proposed during the last decade. In particular, the EB excitation scheme for highly charged229Th35+ions in an EBIT trap was given by Bilous et al.[13].

    In this paper, we propose a new theory for calculating the EB excitation rate with two photons for229Th3+. We apply the optical Bloch equation for a two-level nuclear system based on an open quantum system and nuclear quantum optics.Taking electrons and nuclei as an effective two-level system during interaction with laser beams and assuming that the system is at equilibrium, we deduce the general formulae for the excitation rate Γeband electron bridge enhancement R, respectively. Then, we choose specific atomic shells (7s-10s) as the virtual electronic levels to calculate the transition rates for Th3+. We find that the excitation rate Γeband electron bridge enhancement R both reach their maxima when the intensities of the lasers approach the critical value. Moreover, the electron bridge enhancement R should,eventually, be less than one under a relativity intense laser, indicating that populating the isomeric isotope using a two-photon electronic bridge is not an effective method.

    2 Theoretical descriptions

    In this section, we deduce a general formalism for twophoton EB excitation. Figure 1a shows the Feynman diagram of a two-photon EB excitation process, where the lower case letters a, b, d, and c denote the atomic shells and g and m indicate the ground and excitation(isomeric)states of the nuclei, respectively. To obtain its expression,one can use the connection between the EB excitation process and the corresponding inverse process of the bound internal conversion (BIC) process [14], as shown in Fig.1b.This two-photon BIC process can be regarded as a combination of a subprocess one-photon BIC from (a) to(d)and the decay from(d)to(c).Thus,the two-photon BIC rate can be expressed as:

    Fig. 1 a A two-photon EB process, which absorbs two photons before excitation of the nuclei. b A two-photon bound internal conversion(BIC)process,which emits two photons after deexcitation of the nuclei

    One can now obtain the expression of the two-photon EB excitation using the connection between excitation and natural decay rate [14],

    Inserting Eq. (4) into Eq. (5) and exchanging (b) and (d),we obtain)

    In this study, we follow Ref. [7], which takes the nuclear ground and excited states as a two-level quantum system in an external laser field.The corresponding evolution density matrix for this system is

    Here, |g〉 and |e〉 are the ground and excited states,respectively.The population density ρexc(t)under resonant laser irradiation can be modeled using Torrey’s solution of the optical Bloch equations [16]. The Rabi frequency Ωegfor the nuclear transition is introduced as in [16]

    2.1 Low saturation limit

    Assuming that the intensity of the laser is sufficiently low (so that the excited state is far less populated than the ground state),the solution for the optical Bloch equation is[16]

    Given sufficient time, t, the system evolves; when the population of the excited state is in equilibrium, i.e., the excitation rate is equal to the total decay rate, the total decay rate can be expressed as a product of the population density and the natural decay rate:

    here the (c) index was dropped for easier notation and Δres=Ω2-Ωres=Ω2-Ωn-Ωc+Ωb.

    Here, ~Γn=(Γn+Γl)/2. Inserting Eqs. (14) and (16) into Eq. (15), one can obtain the enhancement coefficient for two-photon EB excitation at a low saturation limit:

    Here,the(c)index was dropped for easier notation and the subscript ‘ls’ indicates the low saturation limit. At resonance Δs=0, Δres=0, and we obtain

    2.2 General case

    When the laser beam is sufficiently large or there is a double resonance effect, the excitation rate is large.In this case,the low saturation limit can no longer provide a good prediction. Then, the general steady-state solution of the optical Bloch equation is adopted [16]

    At resonance, Δres=0,Δs1=0,and the electronic excited state (b) is fixed. Considering I1=I2≡I, we obtain

    where superscript ‘g’ indicates general excitation and

    3 Results and discussion

    First, we set up some parameters before performing the calculations. Recently, an energy of 8.10±0.17 eV for229mTh was obtained[12],which has the same precision as the value obtained from IC spectroscopy [17]. Generally,the radiative decay rate ΓΓ=1/τΓof magnetic multipole transitions can be expressed in terms of the energy-independent reduced transition probability B↓(ML), as in [18]

    3.1 Small laser

    Fig.2 a Two-photon EB process enhancement factor R as a function of laser intensity I for different atomic shells(b), (c).The dashed line indicates a factor of one. b Three cases for the laser intensity at different atomic shells ((b), (c). The y value in subplot(2) is normalized to 109

    Fig. 3 Relationship between two-photon EB excitation rate Γeb and laser intensity I for different atomic shells (b) (c)

    Figure 2a shows the relationship between the two-photon EB enhancement R and laser intensity I.The diagram in Fig. 2b is divided into three parts, i.e., the small laser((104-1010) W/m2), moderate laser ((1010-1014) W/m2),and strong laser (≥1018W/m2). Figure 3 shows the twophoton EB excitation rate Γebas a function of the laser intensity I. Here, R1indicates EB enhancement using atomic shell a =7s,b =7p1/2,c =7s. R2stands for a =7s,b =7p3/2,c =7s, R3is a =7s,b =7p1/2,c =8s.R4is a =7s,b =7p3/2,c =8s, R5is a =7s,b =8p1/2,c =8s, and R6is a =7s,b =8p3/2,c =8s.These notations are the same for Γeb. We see that both R and Γebincrease with increasing laser intensity. Surprisingly, from Fig. 3, we note that the excitation rate of the nuclei is only large for a moderate intensity laser, e.g., I ~108W/m2. For example, when we choose a =7s,b =7p1/2,c =7s as our atomic shell, from Table 1, the photon energies of the two laser beams are Ω1=4.6008 eV and Ω2=3.4992 eV, respectively. The wavelengths are λ1=269.02 nm, λ2=353.57 nm, which are close to the optical range. Assuming equilibrium, the corresponding EB enhancement R1and excitation rate Γeb1are Choosing I =107W/m2, from Eqs.(26) and (27), one can obtain R1=3.22×105,Γeb1=92.9 s-1,which is similar to the result 10 s-1for Th+in Ref. [14],where a laser pulses with 10 mJ energy and a spectral width of ΔΩ = 2π× 3 GHz, at a repetition rate of 30 Hz and focusing to a spot size of 0.1 mm;hence,their excitation rate of Γeb=10 s-1.Alternatively, if we let I =9×105W/m2, then we obtain Γeb1=0.75 s-1,R1=2.89×104,and in[8]the excitation rate Γeb= 0.0281 s-1for Th+. It is interesting to note that the result R1= 3.22× 105is comparable with the result of 10 →106of one-photon EB in the low saturation case[7].

    Table 1 Laser intensity I0 when the two-photon EB excitation enhancement factor R reaches its maximum with corresponding excitation Γeb,incident laser energies Ω1,Ω2 at different atomic shells(b), (c) but for the same initial state (a)=7s

    3.2 Moderate laser

    In this case, it is quite clear that the threshold will be 1010times larger than the low saturation limit, as shown in Eq.(18),indicating that a stronger laser field is required to reach a larger EB excitation rate.

    3.3 Strong laser

    4 Summary

    In summary, we propose a two-photon EB excitation scheme to populate the isomeric isotope229mTh3+. Based on the nuclear quantum optics for two-level open quantum systems, we deduce an expression for the two-photon EB excitation rate in an electron-nucleus system. The nuclear excitation rate Γeband its efficiency R were derived under equilibrium conditions. Using the experimentally-known energy levels of229Th3+, we obtained the EB excitation rate of229Th3+and the efficiency R as a function of laser intensity.Three cases of laser intensity were investigated:a small laser ((104-1010) W/m2), moderate laser near the critical ((1010-1014) W/m2), and strong laser (≥1018W/m2). We find that near the critical value ((1010-1014) W/m2), the nuclear excitation rate Γeb, and the electronic bridge efficiency R reach their maximum values under a strong laser (≥ 1018W/m2), the two-photon electronic bridge efficiency R will eventually be less than one.In this calculation, we do not consider the hyperfine structure due to electromagnetic splitting, which will be conducted in future work. We believe that this two-photon EB scheme can help to realize nuclear clocks and suggest verifying the scheme through a series of experiments with ordinary lasers in laboratories.

    天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲精品一区二区www | 搡老岳熟女国产| 一本久久精品| 午夜久久久在线观看| 18在线观看网站| 国产伦理片在线播放av一区| 亚洲欧美激情在线| 一级毛片女人18水好多| 视频区图区小说| 五月开心婷婷网| 黄色 视频免费看| 精品高清国产在线一区| 国产成人欧美在线观看 | 亚洲午夜理论影院| 成人三级做爰电影| 丝袜美腿诱惑在线| 亚洲第一av免费看| 国产精品一区二区精品视频观看| 久久热在线av| 热99re8久久精品国产| 亚洲成av片中文字幕在线观看| 999久久久精品免费观看国产| 亚洲精品av麻豆狂野| 成人国语在线视频| 久久亚洲真实| 宅男免费午夜| 精品国产超薄肉色丝袜足j| 曰老女人黄片| 久久久精品区二区三区| 色婷婷久久久亚洲欧美| 久久国产精品人妻蜜桃| 一级,二级,三级黄色视频| 欧美激情 高清一区二区三区| 国产欧美日韩一区二区三区在线| 精品国产国语对白av| 日韩大片免费观看网站| 夜夜爽天天搞| 亚洲精品国产精品久久久不卡| 一个人免费看片子| 欧美精品啪啪一区二区三区| svipshipincom国产片| 免费在线观看黄色视频的| 久9热在线精品视频| 免费av中文字幕在线| 免费一级毛片在线播放高清视频 | 不卡一级毛片| 黄色 视频免费看| 日韩 欧美 亚洲 中文字幕| 国产精品自产拍在线观看55亚洲 | 欧美日韩一级在线毛片| 人妻久久中文字幕网| 国产99久久九九免费精品| 黑人巨大精品欧美一区二区mp4| 免费黄频网站在线观看国产| 欧美老熟妇乱子伦牲交| 最近最新免费中文字幕在线| 日本vs欧美在线观看视频| 亚洲 欧美一区二区三区| 午夜两性在线视频| 少妇被粗大的猛进出69影院| 丝袜美腿诱惑在线| 国产欧美日韩一区二区精品| 亚洲国产中文字幕在线视频| 咕卡用的链子| 老司机靠b影院| 91成人精品电影| 亚洲五月色婷婷综合| 中文字幕高清在线视频| 亚洲精品国产一区二区精华液| 99香蕉大伊视频| 人成视频在线观看免费观看| 国产三级黄色录像| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆乱淫一区二区| 午夜91福利影院| 91老司机精品| 精品午夜福利视频在线观看一区 | 婷婷丁香在线五月| 操出白浆在线播放| 大香蕉久久成人网| 99国产综合亚洲精品| 久久精品熟女亚洲av麻豆精品| 999精品在线视频| 曰老女人黄片| 成人精品一区二区免费| 国产日韩一区二区三区精品不卡| 欧美黄色淫秽网站| 在线观看免费日韩欧美大片| 亚洲av电影在线进入| 日韩欧美一区二区三区在线观看 | 国产人伦9x9x在线观看| 精品国产一区二区久久| 高清毛片免费观看视频网站 | 日韩欧美国产一区二区入口| 日韩一区二区三区影片| 热99国产精品久久久久久7| 久久影院123| 国产成人免费观看mmmm| tocl精华| 免费看十八禁软件| 国产福利在线免费观看视频| 色94色欧美一区二区| 他把我摸到了高潮在线观看 | 欧美日韩成人在线一区二区| 亚洲人成77777在线视频| 国产精品久久久人人做人人爽| 久久久国产欧美日韩av| 亚洲国产欧美日韩在线播放| 一级a爱视频在线免费观看| 亚洲国产欧美网| 中文字幕最新亚洲高清| 可以免费在线观看a视频的电影网站| 国产国语露脸激情在线看| 国产黄频视频在线观看| 欧美精品人与动牲交sv欧美| 女性生殖器流出的白浆| 另类亚洲欧美激情| 少妇精品久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 日本黄色视频三级网站网址 | av国产精品久久久久影院| 午夜久久久在线观看| 一本色道久久久久久精品综合| 亚洲人成伊人成综合网2020| 亚洲熟女精品中文字幕| cao死你这个sao货| 亚洲人成77777在线视频| 日本精品一区二区三区蜜桃| av视频免费观看在线观看| 国产精品久久久av美女十八| 成人国产一区最新在线观看| 黑人巨大精品欧美一区二区mp4| 老司机深夜福利视频在线观看| 色播在线永久视频| 中文字幕av电影在线播放| 50天的宝宝边吃奶边哭怎么回事| 熟女少妇亚洲综合色aaa.| 极品人妻少妇av视频| 亚洲一卡2卡3卡4卡5卡精品中文| 大香蕉久久成人网| 高清毛片免费观看视频网站 | 国产成人av教育| 如日韩欧美国产精品一区二区三区| 日韩大码丰满熟妇| a级毛片在线看网站| 最近最新中文字幕大全免费视频| 90打野战视频偷拍视频| 99re6热这里在线精品视频| 他把我摸到了高潮在线观看 | 久久久精品国产亚洲av高清涩受| 精品熟女少妇八av免费久了| 美女主播在线视频| 亚洲色图 男人天堂 中文字幕| 男女边摸边吃奶| 一夜夜www| 国产伦人伦偷精品视频| 国产精品自产拍在线观看55亚洲 | 搡老岳熟女国产| tube8黄色片| 在线观看人妻少妇| 亚洲精品在线观看二区| 亚洲国产成人一精品久久久| 亚洲中文字幕日韩| 亚洲成人免费电影在线观看| 国产亚洲av高清不卡| 亚洲精品成人av观看孕妇| 亚洲一区中文字幕在线| 热99国产精品久久久久久7| 在线十欧美十亚洲十日本专区| 国产亚洲精品一区二区www | 高清在线国产一区| 正在播放国产对白刺激| 国产激情久久老熟女| 欧美日韩亚洲国产一区二区在线观看 | 国产激情久久老熟女| 多毛熟女@视频| 国产成人啪精品午夜网站| 久久精品国产99精品国产亚洲性色 | 日韩一区二区三区影片| 欧美激情久久久久久爽电影 | 丰满人妻熟妇乱又伦精品不卡| 国产男女内射视频| 欧美中文综合在线视频| 伦理电影免费视频| √禁漫天堂资源中文www| 少妇的丰满在线观看| 色综合欧美亚洲国产小说| 精品午夜福利视频在线观看一区 | 午夜免费鲁丝| 看免费av毛片| 在线观看免费高清a一片| 亚洲av片天天在线观看| 99国产精品99久久久久| 精品国内亚洲2022精品成人 | 欧美在线一区亚洲| 99国产精品一区二区蜜桃av | 亚洲性夜色夜夜综合| 色94色欧美一区二区| 大陆偷拍与自拍| 免费女性裸体啪啪无遮挡网站| 在线看a的网站| 在线看a的网站| 男女边摸边吃奶| 亚洲天堂av无毛| 国产极品粉嫩免费观看在线| 99久久国产精品久久久| 国产精品秋霞免费鲁丝片| 国产成人欧美在线观看 | 99精品久久久久人妻精品| 久久久精品国产亚洲av高清涩受| 国产精品亚洲av一区麻豆| 人妻久久中文字幕网| 国产成人啪精品午夜网站| av天堂久久9| 日日摸夜夜添夜夜添小说| 久久精品国产综合久久久| 99九九在线精品视频| 欧美 亚洲 国产 日韩一| 麻豆成人av在线观看| 成人av一区二区三区在线看| www.自偷自拍.com| av天堂在线播放| 久久久精品免费免费高清| 捣出白浆h1v1| 90打野战视频偷拍视频| 欧美日韩亚洲综合一区二区三区_| 国产免费福利视频在线观看| 18在线观看网站| 国产av又大| 国产一区二区在线观看av| 自拍欧美九色日韩亚洲蝌蚪91| 国产高清国产精品国产三级| 免费在线观看日本一区| 色播在线永久视频| 亚洲一区中文字幕在线| 超碰97精品在线观看| 精品亚洲成a人片在线观看| 国产日韩欧美在线精品| 另类亚洲欧美激情| 国产精品九九99| 18禁美女被吸乳视频| 久久免费观看电影| 一区在线观看完整版| 成人国产av品久久久| 欧美 亚洲 国产 日韩一| 一级a爱视频在线免费观看| 老熟妇仑乱视频hdxx| 国产一区有黄有色的免费视频| 久久久精品免费免费高清| 久久久水蜜桃国产精品网| 天堂中文最新版在线下载| 一级,二级,三级黄色视频| 欧美日韩视频精品一区| 国产一区二区在线观看av| 国产亚洲午夜精品一区二区久久| 国产高清国产精品国产三级| 一区二区三区国产精品乱码| 一边摸一边抽搐一进一出视频| 中文亚洲av片在线观看爽 | 老司机在亚洲福利影院| 午夜两性在线视频| 极品少妇高潮喷水抽搐| 国产精品国产av在线观看| 国产欧美日韩精品亚洲av| 欧美日韩亚洲综合一区二区三区_| 久久精品成人免费网站| 欧美日韩福利视频一区二区| 少妇的丰满在线观看| 制服人妻中文乱码| 无限看片的www在线观看| 久久久精品区二区三区| 99久久人妻综合| 国产av一区二区精品久久| 露出奶头的视频| 这个男人来自地球电影免费观看| 日韩欧美一区视频在线观看| 成人免费观看视频高清| 欧美日韩亚洲综合一区二区三区_| 99riav亚洲国产免费| 在线av久久热| 久久国产精品人妻蜜桃| 咕卡用的链子| 亚洲精品在线美女| 国产一区有黄有色的免费视频| 亚洲成人国产一区在线观看| 俄罗斯特黄特色一大片| 久久九九热精品免费| 成人国产av品久久久| 麻豆成人av在线观看| 涩涩av久久男人的天堂| 亚洲视频免费观看视频| 露出奶头的视频| 青草久久国产| 亚洲avbb在线观看| 一级毛片精品| 精品少妇一区二区三区视频日本电影| 精品人妻1区二区| 久久狼人影院| 久久国产精品大桥未久av| 久久九九热精品免费| 国产亚洲欧美精品永久| 日日夜夜操网爽| 亚洲欧美精品综合一区二区三区| 精品亚洲乱码少妇综合久久| 宅男免费午夜| 日本a在线网址| 午夜老司机福利片| 两个人看的免费小视频| 美国免费a级毛片| 午夜精品国产一区二区电影| 亚洲视频免费观看视频| 免费观看人在逋| 国产成人av教育| 人人澡人人妻人| 欧美精品啪啪一区二区三区| 好男人电影高清在线观看| 亚洲久久久国产精品| 国产精品久久久久久人妻精品电影 | 一本色道久久久久久精品综合| 黄色怎么调成土黄色| 久热爱精品视频在线9| 免费少妇av软件| 午夜福利免费观看在线| 国产av又大| 国产精品一区二区在线不卡| 免费日韩欧美在线观看| 91字幕亚洲| 成年人免费黄色播放视频| 久久精品成人免费网站| 可以免费在线观看a视频的电影网站| 国产免费视频播放在线视频| 天堂俺去俺来也www色官网| 啦啦啦免费观看视频1| 俄罗斯特黄特色一大片| 日韩有码中文字幕| 丰满迷人的少妇在线观看| 老熟妇乱子伦视频在线观看| 99国产极品粉嫩在线观看| 91精品三级在线观看| 欧美日韩成人在线一区二区| 国产亚洲欧美精品永久| 91九色精品人成在线观看| 男人舔女人的私密视频| 高清视频免费观看一区二区| 亚洲av欧美aⅴ国产| 久久久久国产一级毛片高清牌| 亚洲中文日韩欧美视频| 中文字幕制服av| 国产一区二区三区综合在线观看| 免费看十八禁软件| 国产精品免费大片| 无限看片的www在线观看| 韩国精品一区二区三区| 日韩三级视频一区二区三区| a级毛片在线看网站| 午夜激情久久久久久久| 国产精品熟女久久久久浪| 免费看a级黄色片| 91成年电影在线观看| 国产国语露脸激情在线看| 青青草视频在线视频观看| 女同久久另类99精品国产91| 两个人免费观看高清视频| 天天操日日干夜夜撸| 亚洲综合色网址| 欧美性长视频在线观看| 亚洲成人免费av在线播放| 久久中文字幕人妻熟女| 性少妇av在线| 男男h啪啪无遮挡| 亚洲 国产 在线| 久久久久精品人妻al黑| 免费观看a级毛片全部| 久久青草综合色| 日本黄色视频三级网站网址 | 国产精品麻豆人妻色哟哟久久| 久久国产精品大桥未久av| 老司机午夜十八禁免费视频| 9191精品国产免费久久| 大型黄色视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 国产av又大| 免费在线观看日本一区| 午夜精品国产一区二区电影| 在线天堂中文资源库| 在线观看免费午夜福利视频| 一级毛片精品| 狠狠精品人妻久久久久久综合| 亚洲中文av在线| 精品国产一区二区久久| 99久久99久久久精品蜜桃| 精品亚洲乱码少妇综合久久| 成人亚洲精品一区在线观看| 老司机午夜十八禁免费视频| netflix在线观看网站| 久热这里只有精品99| 日韩人妻精品一区2区三区| 一级片'在线观看视频| 曰老女人黄片| 精品人妻在线不人妻| 丝袜人妻中文字幕| 最新美女视频免费是黄的| 欧美日韩黄片免| 女性生殖器流出的白浆| 精品久久久久久电影网| 亚洲欧美一区二区三区久久| 新久久久久国产一级毛片| 免费观看人在逋| 国产亚洲欧美精品永久| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三| 亚洲一区二区三区欧美精品| 国产一区二区 视频在线| 国产精品久久久久久精品古装| 亚洲精品粉嫩美女一区| 久久久精品国产亚洲av高清涩受| 美国免费a级毛片| 国产又色又爽无遮挡免费看| 一级,二级,三级黄色视频| 国产一区二区 视频在线| 欧美亚洲日本最大视频资源| 色94色欧美一区二区| 成人国产av品久久久| 亚洲欧美色中文字幕在线| 欧美精品人与动牲交sv欧美| 成人影院久久| 极品少妇高潮喷水抽搐| 中文字幕人妻熟女乱码| 精品一区二区三区视频在线观看免费 | 啦啦啦 在线观看视频| 日本wwww免费看| 欧美精品啪啪一区二区三区| 国产免费av片在线观看野外av| 动漫黄色视频在线观看| 国产在线免费精品| 最新在线观看一区二区三区| 精品福利观看| 91精品三级在线观看| 国产熟女午夜一区二区三区| 欧美日韩国产mv在线观看视频| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 亚洲精品久久午夜乱码| 亚洲精品在线观看二区| 交换朋友夫妻互换小说| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区蜜桃| 国产免费福利视频在线观看| av天堂久久9| 自线自在国产av| 久久精品国产亚洲av高清一级| av天堂久久9| 欧美+亚洲+日韩+国产| 18禁美女被吸乳视频| 久久国产精品人妻蜜桃| 黑人巨大精品欧美一区二区蜜桃| 国产福利在线免费观看视频| 欧美久久黑人一区二区| 99国产极品粉嫩在线观看| 久久亚洲真实| 中文字幕av电影在线播放| 国产日韩欧美在线精品| 在线观看免费日韩欧美大片| 99久久99久久久精品蜜桃| 一区二区日韩欧美中文字幕| 亚洲天堂av无毛| 超碰成人久久| 国内毛片毛片毛片毛片毛片| 黄色毛片三级朝国网站| 国产一区二区激情短视频| 精品国产乱子伦一区二区三区| www.999成人在线观看| 一级毛片电影观看| 久久亚洲精品不卡| 一级毛片电影观看| 久久精品aⅴ一区二区三区四区| 国产麻豆69| 国产成人免费无遮挡视频| 啦啦啦免费观看视频1| 热99re8久久精品国产| 老司机深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 精品国产一区二区久久| 日本黄色视频三级网站网址 | 巨乳人妻的诱惑在线观看| 日韩有码中文字幕| 亚洲午夜精品一区,二区,三区| 五月开心婷婷网| 91麻豆av在线| 亚洲av成人不卡在线观看播放网| 18禁美女被吸乳视频| 久久青草综合色| 精品亚洲成国产av| 国产色视频综合| 亚洲欧美一区二区三区久久| 少妇被粗大的猛进出69影院| 色婷婷av一区二区三区视频| 一级a爱视频在线免费观看| 免费高清在线观看日韩| 欧美中文综合在线视频| 精品亚洲成a人片在线观看| 久久天躁狠狠躁夜夜2o2o| 一本久久精品| 91麻豆精品激情在线观看国产 | 日韩一区二区三区影片| 狠狠婷婷综合久久久久久88av| av一本久久久久| 啦啦啦免费观看视频1| 久久九九热精品免费| 一二三四在线观看免费中文在| 91成年电影在线观看| 欧美久久黑人一区二区| 丁香六月天网| 中文字幕人妻熟女乱码| 激情在线观看视频在线高清 | 在线观看免费视频网站a站| 精品熟女少妇八av免费久了| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| www.精华液| 丝瓜视频免费看黄片| 欧美乱妇无乱码| 久久久久网色| 黑丝袜美女国产一区| 亚洲欧洲精品一区二区精品久久久| 欧美精品高潮呻吟av久久| 青草久久国产| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| h视频一区二区三区| 精品熟女少妇八av免费久了| 亚洲成人免费电影在线观看| 国产精品av久久久久免费| 亚洲精品av麻豆狂野| 久久精品熟女亚洲av麻豆精品| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区| cao死你这个sao货| 国产1区2区3区精品| 国产在线视频一区二区| 免费久久久久久久精品成人欧美视频| 丝袜喷水一区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美在线一区| 久久久久久人人人人人| 久久香蕉激情| 亚洲精品一卡2卡三卡4卡5卡| 纵有疾风起免费观看全集完整版| 啦啦啦视频在线资源免费观看| 国产欧美日韩精品亚洲av| www.精华液| 久热这里只有精品99| aaaaa片日本免费| 国产精品影院久久| 成年人黄色毛片网站| 欧美精品亚洲一区二区| 大型av网站在线播放| 99九九在线精品视频| 国产一区二区三区在线臀色熟女 | 男女无遮挡免费网站观看| 精品一区二区三区四区五区乱码| 老熟妇仑乱视频hdxx| 超色免费av| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av高清一级| 丰满少妇做爰视频| 亚洲精品美女久久av网站| 久久国产精品人妻蜜桃| 在线观看免费视频网站a站| 免费不卡黄色视频| 自线自在国产av| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区视频了| 免费看十八禁软件| 少妇 在线观看| 高清黄色对白视频在线免费看| 超碰成人久久| 老司机影院毛片| 美国免费a级毛片| av有码第一页| 亚洲av成人一区二区三| 欧美日本中文国产一区发布| 一级毛片女人18水好多| 一进一出好大好爽视频| 欧美大码av| 久久毛片免费看一区二区三区| 黑人猛操日本美女一级片| 国产免费av片在线观看野外av| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 自拍欧美九色日韩亚洲蝌蚪91| 国产又色又爽无遮挡免费看| 成人国产av品久久久| 99国产综合亚洲精品| 丰满少妇做爰视频| 人人妻人人澡人人爽人人夜夜| 窝窝影院91人妻| 亚洲av日韩精品久久久久久密| 脱女人内裤的视频| 日韩熟女老妇一区二区性免费视频| 精品少妇久久久久久888优播| 国产在线免费精品| 亚洲 欧美一区二区三区| 大香蕉久久网| 国产1区2区3区精品| 国产精品.久久久| 亚洲午夜理论影院| 午夜福利在线免费观看网站| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花|