李宇 李琛 趙福志 李釗
摘 ? 要:選取139條長周期地震動記錄作為輸入,研究了恢復(fù)力模型參數(shù)(恢復(fù)力模型、剛度比η、阻尼比ξ、位移延性比μ)和地震動特性(周期T、震級MW、場地、PGA)對長周期地震的輸入能量譜SEI、滯回耗能譜SEH和阻尼耗能譜SED的影響. 研究表明:1)恢復(fù)力模型對長周期(常規(guī))地震能量譜的影響很大(?。?η對長周期和常規(guī)的地震動的能量譜的影響都很小;隨著ξ增加,長周期(常規(guī))地震的SEI的長周期段譜值增大(減?。?隨著μ增加,長周期(常規(guī))地震的SEH的峰值平臺段延長(縮短)且峰值降低(增大). 2)MW越大,結(jié)構(gòu)損傷越大;場地土越軟,能量譜值越大;若已知基準(zhǔn)PGAref的能量譜,其他PGAoth的能量譜可由(PGAoth /PGAref)2調(diào)整得到. 基于以上的參數(shù)影響研究,采用三段式擬合函數(shù),建立了長周期地震彈性輸入能量設(shè)計譜,并擬合了μ和ξ對長周期地震能量譜的影響公式,進(jìn)而得到長周期地震非彈性輸入能量設(shè)計譜.
關(guān)鍵詞:長周期地震動;輸入能量譜;滯回耗能譜;阻尼耗能譜;設(shè)計譜
中圖分類號:U448.27 ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A
Abstract:A total of 139 long-period ground motion(GM) records are selected to study the effects of the parameters of restoring force models(restoring force models, stiffness ratio η,damping ratio ξ,displacement ductility ratio μ) and GM characteristics (period T,earthquake magnitude MW,site,PGA) on the input energy spectra SEI,hysteretic energy spectra SEH and damping energy spectra SED of the long-period GMs. Therefore, it can be found that: 1) there is a significant(slight) influence of the restoring force model on the long-period (conventional) seismic energy spectra, while there is a slight influence of the restoring force model on the conventional one; there is a slight influence of η on the long-period and conventional seismic energy spectra; with the increase of ξ,the spectral values in the long-period region of the long-period ?SEI increases, but for the conventional one it decreases; with the increase of μ,the peak platform and peak value of the long-period SEH is prolonged and decreases, but for the conventional one they are shortened and increases,respectively. 2)the larger MW results in the greater structural damage,while the softer site soil leads to the larger energy spectra value;the seismic energy spectra with other PGAoth can be obtained by multiplying the known seismic energy spectra with the reference PGAref by the equation of (PGAoth /PGAref)2. Then,based on the above parametric studies,the elastic long-period input energy design spectra are established by using a three-segment fitting function, and the influence formulas of μ and ξ on the long-period spectra are fitted. And then the inelastic long-period input energy design spectra are obtained.
Key words:long-period ground motions(GM);input energy spectra;hysteretic energy spectra;damping energy spectra;design spectra
2003年,在日本十勝沖地震中,苫小牧地區(qū)(震中距約225 km,PGA = 89.2 gal)的儲油罐被破壞并引發(fā)火災(zāi);北海道許多橋梁也發(fā)生破壞,如Rekifune Bridge跨中豎向位移達(dá)12 cm. 2011年,在東日本大地震中,東京都辦公大樓(震中距約300 km)地下3層的最大加速度僅為74 gal,而頂部(48層)最大位移卻達(dá)65 cm;大阪府辦公大樓(震中距約700 km)頂部(52層)最大加速度僅為131 gal,而最大位移卻達(dá)132 cm. 可見,長周期地震動(遠(yuǎn)場卓越周期偏大型地震動)對長周期結(jié)構(gòu)有較大影響. 此后,學(xué)者們開始真正地關(guān)注長周期地震,并研究了長周期地震作用下的超高層建筑結(jié)構(gòu)[1-5]、基礎(chǔ)隔震結(jié)構(gòu)[6-7]、隔震橋梁[8]、鋼筋混凝土框架[9-10]和風(fēng)電機(jī)組[11]等長周期結(jié)構(gòu)的地震響應(yīng). 但是,上述研究僅停留在計算長周期結(jié)構(gòu)地震響應(yīng)的初步階段,還未能在長周期地震作用下進(jìn)行長周期結(jié)構(gòu)的抗震設(shè)計. 究其原因,主要是由于缺乏抗震設(shè)計用的長周期地震反應(yīng)譜.
目前,反應(yīng)譜法仍是世界各國抗震規(guī)范中最主要的抗震設(shè)計方法,而反應(yīng)譜則是該法的基礎(chǔ). 隨著長周期結(jié)構(gòu)的日益增多,我國《建筑抗震設(shè)計規(guī)范》(GB 50011—2010)[12]、《鐵路工程抗震設(shè)計規(guī)范》(GB 50111—2006)[13]和《公路橋梁抗震設(shè)計規(guī)范》(JTGT 2231-01—2020)[14]分別將反應(yīng)譜延伸至 6 s、5Tg和10 s,但仍未能滿足工程應(yīng)用要求,而且反應(yīng)譜下降段也與實際長周期反應(yīng)譜的特征不符(即特征周期Tg偏小、下降形式單一和幅值偏?。15]. 因此,有必要針對長周期反應(yīng)譜開展專門研究.
由于傳統(tǒng)地震儀的缺陷和大震級地震發(fā)生的概率較小,記錄到的長周期地震動時程并不多[15]. 因此,針對長周期地震動反應(yīng)譜的研究還很少:張亮泉等[15]、李宇等[16]、Zhou等[17]對長周期地震的彈性、彈塑性加速度和位移反應(yīng)譜等進(jìn)行了初步探索;陳清軍等[18]則選取了36條長周期地震動記錄,對長周期地震的能量譜進(jìn)行了研究. 但是,由于他們所依據(jù)的長周期地震動記錄的數(shù)量太少,所得研究結(jié)果不具有統(tǒng)計意義,而且也沒有詳細(xì)討論長周期地震的非彈性能量反應(yīng)譜. 因此,本文通過對比長周期和常規(guī)地震動的特性,選取139條長周期地震動記錄作為輸入,以期建立長周期地震動的彈性和非彈性輸入能量設(shè)計譜.
1 ? 長周期地震動的特征
長周期地震動(臺灣集集地震的TCU018和TCU094)和常規(guī)地震動(El Centro波和天津波)的加速度時程(t為時間,a為加速度)如圖1所示. 通過傅里葉變換,可得其傅里葉幅值譜(如圖2所示,f為頻率,B為幅值),可知:常規(guī)地震動的卓越頻率分布較寬,且集中在高頻(1~5 Hz);而長周期地震動的卓越頻率分布較窄,且集中在低頻(0.1~1.0 Hz).
將4條地震動按同一PGA調(diào)幅后,對比它們的彈性加速度和位移反應(yīng)譜(Sat為加速度譜值,D為位移譜值,T為周期),從圖3可知:在長周期段,長周期地震動的譜值要遠(yuǎn)大于常規(guī)地震動,即長周期地震動對長周期結(jié)構(gòu)(如大跨橋梁、超高層建筑)的影響很大.
2 ? 長周期地震動的選取
根據(jù)長周期地震動記錄的挑選標(biāo)準(zhǔn)[16-19]:震中距較大;卓越頻率分布較窄,且集中在0.1~1.0 Hz的低頻段;彈性加速度反應(yīng)譜的峰值在中長周期段. 從PEER、K-NET和KIK-NET中挑選了139條長周期地震動記錄(6級以上),并采用地震動數(shù)據(jù)處理軟件SeismoSignal進(jìn)行了濾波處理與基線校正,進(jìn)而計算相關(guān)地震動參數(shù).
根據(jù)文獻(xiàn)[20]:美國抗震設(shè)計規(guī)范的vs30(覆蓋層厚度為30 m的剪切波速) ≥ 510 m/s、260 m/s ≤ vs30 < 510 m/s、150 m/s ≤ vs30 < 260 m/s、vs30 < 150 m/s的場地分別對應(yīng)中國抗震設(shè)計規(guī)范[12-14]的場地Site Ⅰ~Ⅳ.因此,可將139條長周期地震動記錄按中國抗震設(shè)計規(guī)范[12-14]的場地標(biāo)準(zhǔn)進(jìn)行分類,見表1:Site Ⅰ有38條,Site Ⅱ有40條,Site Ⅲ有41條,Site Ⅳ有20條.
再以139條長周期地震動記錄作為激勵,計算Ⅰ~Ⅳ類場地的動力放大系數(shù)β(阻尼比ξ=5%,周期為T),并與規(guī)范[14]的β曲線進(jìn)行對比(見圖4),從中可知:統(tǒng)計所得的β曲線與規(guī)范值符合較好. 可見,本文所選用的長周期地震動記錄符合規(guī)范要求.
注意:當(dāng)非彈性SDOF體系的m≠1時,以上各能量譜值應(yīng)乘以m后,才能得到各類能量響應(yīng).
下文將考慮周期(T = 0.01~20 s)、恢復(fù)力模型、屈服后剛度比(η = k1/k2 = 0.0~0.05,k2為二次剛度)、位移延性比(μ = xmax /xy = l.0~5.0,xmax為最大位移,xy為屈服位移)、阻尼比(ξ = 2%~14%)、震級(MW)、場地、地震峰值加速度(PGA)的影響,利用BISPEC程序,研究長周期地震的非彈性能量譜(SEI、SEH、SED、SλH、SλD).
3 ? 恢復(fù)力模型參數(shù)的影響
3.1 ? 恢復(fù)力模型
以Ⅱ類場地為例,將40條長周期地震動記錄的PGA調(diào)幅為0.15g,采用考慮剛度退化的Takeda模型和無剛度退化的雙線性模型(圖5),并取η=0.05、ξ=5%、μ=1.0~5.0,采用BISPEC計算SEI、SEH、SED、SλD、SλH的平均值.
從圖6可知,當(dāng)μ相同時:1)無剛度退化模型的能量譜峰值平臺段要長于剛度退化模型的能量譜峰值平臺段,而且無剛度退化模型的特征周期也要大于剛度退化模型的特征周期;2)在中短周期段,無剛度退化模型的能量譜值要小于剛度退化模型的能量譜值,而在中長周期段則反之. 可見,相比于剛度退化模型,無剛度退化模型能量譜的峰值平臺、特征周期和中長周期段譜值都要長或大,即采用無剛度退化模型的能量譜值對長周期結(jié)構(gòu)進(jìn)行抗震設(shè)計,會偏于保守.
從圖7可知,當(dāng)μ相同時,在中短周期段,2種模型的SλH和SλD的譜值差距較大,但隨著T的增加,SλH和SλD的譜值逐漸趨于一致. 可見,長周期結(jié)構(gòu)的周期越長,恢復(fù)力模型對塑性鉸滯回耗能能力和系統(tǒng)阻尼耗能能力的影響就越小.
文獻(xiàn)[23]研究了恢復(fù)力模型對常規(guī)地震能量譜的影響,與本文的研究結(jié)果對比后可知:
1)恢復(fù)力模型對常規(guī)地震能量譜的影響隨著μ的增加而減小,特別是當(dāng)μ>5 后,恢復(fù)力模型的影響可以忽略;但是,恢復(fù)力模型對長周期地震能量譜的影響則隨著μ的增大而越加顯著.
2)不同恢復(fù)力模型對應(yīng)的常規(guī)地震能量譜的峰值平臺段的長度和位置沒有太大區(qū)別;但是,相比于雙線性模型,Takeda模型的長周期地震能量譜的峰值平臺段的長度更短而且更靠后(原點方向).
3.2 ? 屈服后剛度比
以I類場地為例,將38條長周期地震動記錄的PGA調(diào)幅為0.15g,采用Takeda模型,取μ=1.0~5.0、ξ=5%,采用BISPEC計算η=0、0.025、0.05的SEI、SEH、SED、SλD、SλH的平均值.
從圖8、圖9可知:當(dāng)μ相同時,η對SEI、SEH、SED、SλD、SλH的影響可以忽略,即在統(tǒng)計長周期地震能量反應(yīng)譜時,可以不考慮η的影響.
文獻(xiàn)[24]研究了η對常規(guī)地震能量譜的影響,從中可知:η對常規(guī)地震的能量譜譜值的影響很小. 這與η對長周期地震的能量譜的影響結(jié)論相同. 可見,無論是何種類型的地震動,η對地震能量譜的影響都是可以忽略的.
3.3 ? 阻尼比
以I類場地為例,將38條長周期地震動記錄的PGA調(diào)幅為0.15g,采用Takeda模型,取η=0.05,μ = l.0~5.0,采用BISPEC計算ξ=2%、5%、10%、14%時的SEI、SEH、SED、SλD、SλH的平均值.
從圖10、圖11可知:隨著ξ增大,SEI峰值、SEH和SλH都逐漸減小,SEI長周期段譜值、SED和SλD都逐漸增大,而SEI峰值平臺長度和特征周期則變化較小. 可見,ξ的增大,對SEI有削峰作用,并會增大SEI長周期段譜值,但不改變SEI峰值平臺長度和特征周期;另外,隨著ξ增大,塑性鉸的滯回耗能能力降低,而系統(tǒng)的阻尼耗能能力提高.
文獻(xiàn)[24]研究了ξ對常規(guī)地震能量譜的影響,與本文的研究結(jié)果對比后可知:ξ對常規(guī)地震和長周期地震的SEH和SED影響相同(隨著ξ增大,不同類型地震的SEH減小而SED增大);但是,ξ對不同類型地震的SEI長周期段的影響則不同(隨著ξ增大,常規(guī)地震的SEI的長周期段的譜值減小,而長周期地震的SEI的長周期段的譜值則增大).
3.4 ? 位移延性比
以Ⅱ類場地為例,將40條長周期地震動記錄的PGA調(diào)幅為0.30g,采用Takeda模型,取η=0.05、ξ=5%,采用BISPEC計算μ=1.0~5.0時的 SEI、SEH、SED、SλD、SλH的平均值.
從圖12可知:隨著μ的增大,SEI和SED的峰值減小,SEH峰值變化較小,SEI和SEH的峰值平臺段增長,并往短周期方向移動,它們的特征周期也相應(yīng)減小. 可見,μ的增大,對SEI和SED有削峰作用,并使SEI和SEH的峰值平臺段往短周期方向移動,并減小它們的特征周期.
從圖13可知,當(dāng)其他條件相同時,在中短周期段,隨著μ的增大,SλH增大而SλD則減小;但隨著T的增加,SλH和SλD的譜值逐漸趨于一致. 可見,隨著μ的增加,塑性鉸的滯回耗能能力都提高,而系統(tǒng)的阻尼耗能能力則降低;另外,長周期結(jié)構(gòu)的周期越長,μ對塑性鉸滯回耗能能力和系統(tǒng)阻尼耗能能力的影響就越小.
文獻(xiàn)[24]研究了μ對常規(guī)地震能量譜的影響,與本文的研究結(jié)果對比后可知:μ對常規(guī)地震和長周期地震的SEI和SED的影響規(guī)律相同(隨著μ增大,SEI和SED都逐漸減?。?,但對與μ聯(lián)系最緊密的SEH的影響規(guī)律則不同(隨著μ增大,常規(guī)地震的SEH的峰值平臺段后移(往原點方向))、平臺段縮短、峰值增大,相反地,長周期地震的SEH的峰值平臺段后移、平臺段延長、峰值降低).
4 ? 地震動特性的影響
4.1 ? 震級
保持139條長周期地震動記錄的原始PGA不變,并將它們按照MW = 6.5~6.9、7.0~7.4和7.5~9.0分組. 再采用Takeda模型,取η=0.05、ξ=5%、μ=2.0,用BISPEC計算SEI、SEH、SED、SλD、SλH的均值.
從圖14可知,隨著MW的增大,SEI、SEH、SED隨之增大. 這是因為MW越大,地震釋放的能量就越多,使得結(jié)構(gòu)地震能量響應(yīng)也越大.
從圖15可知:隨著MW的增大,SλH減小而SλD增大. 可見,MW越大,結(jié)構(gòu)的損傷也就越大,塑性鉸的滯回耗能能力下降,結(jié)構(gòu)將主要依靠阻尼來消耗地震能量.
4.2 ? 場地
將139條長周期地震動記錄的PGA調(diào)幅為0.30g,采用Takeda模型,取η=0.05、ξ=5%、μ=3.0,采用BISPEC計算I、Ⅱ、Ⅲ、Ⅳ類場地的SEI、SEH、SED、SλD、SλH的平均值.
從圖16可知:隨著場地土質(zhì)的變軟,SEI、SEH、SED隨之增大. 這是因為場地土越軟,場地與長周期地震動的卓越周期就越接近,進(jìn)而導(dǎo)致結(jié)構(gòu)地震能量響應(yīng)的放大.
從圖17可知:隨著場地土變軟,SλH減小而SλD增大. 可見,場地土越軟,塑性鉸的滯回耗能能力就越低,而系統(tǒng)的阻尼耗能能力則提高.
4.3 ? PGA
以Ⅱ類場地為例,將40條長周期地震動記錄的PGA分別調(diào)幅為0.05g、0.10g、0.30g和0.40g,采用Takeda模型,取η=0.05、ξ=5%、μ=1.0~5.0,采用BISPEC計算SEI、SEH、SED、SλD、SλH的平均值.
從圖18、圖19可知:隨著PGA的增大,SEI、SEH、SED隨之增大;同一PGA下,隨著μ的增大,SEI、SEH、SED逐漸減小;若結(jié)構(gòu)的μ相同,則可忽略PGA對SλH和SλD的影響;另外,若以0.10g的SEI為基準(zhǔn),則:
SEI,0.05g /SEI,0.10g ≈(0.05g /0.10g)2,
SEI,0.30g /SEI,0.10g ≈(0.30g /0.10g)2,
SEI,0.40g /SEI,0.10g ≈(0.40g /0.10g)2. ? ? ?(7)
可見,若已知某基準(zhǔn)PGAref下的SEI,ref,則其他PGAoth下的SEI,oth可根據(jù)PGAoth與PGAref比值的平方調(diào)整得到.
5 ? 長周期地震輸入能量設(shè)計譜
5.1 ? 長周期地震彈性輸入能量設(shè)計譜
以139條長周期地震動記錄作為輸入,采用BISPEC計算四類場地的長周期地震彈性輸入能量譜S′ EI的平均值NE1(見圖20,PGAref = 0.25g,對于長周期結(jié)構(gòu)取ξ = 2%),再采用三段式擬合函數(shù)[18,25]和最小二乘法對NE1進(jìn)行擬合:
式中:NEI為NEI 的擬合值,即下文的長周期地震彈性輸入能量設(shè)計譜;NEI max為NEI的平臺段峰值;T1為峰值平臺起始周期;Tg為峰值平臺結(jié)束周期;r為衰減指數(shù);Δmin為最小誤差.
在此基礎(chǔ)上,可得四類場地NEI的擬合參數(shù)(見表3),并繪制NEI(見圖20),而其他PGA下的NEI可根據(jù)4.3節(jié)結(jié)論,由PGAoth與PGAref比值的平方調(diào)整得到.
5.2 ? 長周期地震非彈性輸入能量設(shè)計譜
5.2.1 ? μ和ξ對非彈性輸入能量譜形狀的影響
以Ⅱ類場地為例,將40條長周期地震動記錄的PGA調(diào)幅為0.25g,采用Takeda模型,并取η = 0.05、ξ = 2%,用BISPEC計算μ = 1.0 ~ 6.0的非彈性輸入能量譜(SEI,ξ=2%,μ)和彈性輸入能量譜(SEI,ξ=2%,μ=1)的比值R1(見圖21),對其擬合后得:
以Ⅱ類場地為例,將40條長周期地震動記錄的PGA調(diào)幅為0.25g,采用Takeda模型,取η=0.05、μ=4.0,再用BISPEC計算不同ξ的非彈性輸入能量譜(SEI,ξ,μ = 4)和ξ = 2%的非彈性輸入能量譜(SEI,ξ=2%,μ = 4)的比值R2(圖22),對其擬合后得:
同理,其他三類場地的β擬合公式也可用上述方法獲得.
5.2.3 ? 建立長周期地震非彈性輸入能量設(shè)計譜
對5.1節(jié)建立的長周期地震彈性輸入能量設(shè)計譜(圖20的NEI)進(jìn)行調(diào)整,以建立長周期地震非彈性輸入能量設(shè)計譜(PEI). 步驟如下:
1)將NEImax乘以β,可得PEI的平臺峰值PEImax,即PEImax = NEImax × β;
2)將Tg代入式(14)可得K Tg,ξ,μ,再定義譜值調(diào)整系數(shù)γ(式(16)),將NEI的T > Tg段的譜值乘以γ后,可得到PEI的T > Tg段的譜值.
6 ? 結(jié) ? 論
選取了139條長周期地震動記錄作為輸入,研究了恢復(fù)力模型動力參數(shù)和地震動特性對長周期地震能量反應(yīng)譜的影響,得到以下結(jié)論:
1)相比剛度退化模型,無剛度退化模型能量譜的峰值平臺、特征周期和中長周期段譜值都要長或大;可以忽略η對長周期地震能量反應(yīng)譜的影響;ξ對SEI有削峰作用,會增大SEI長周期段譜值,但不改變SEI峰值平臺長度和特征周期;μ對SEI和SED有削峰作用,會減小SEI和SEH的特征周期;隨著T或μ的增大,各種因素對塑性鉸滯回耗能能力和系統(tǒng)阻尼耗能能力的影響減小.
2)與常規(guī)地震能量譜的研究結(jié)果對比可知: 恢復(fù)力模型對常規(guī)地震能量譜的影響隨著μ的增大而減小,但恢復(fù)力模型對長周期地震能量譜的影響則十分顯著;無論是何種類型的地震動,η對地震能量譜的影響都可以忽略;ξ對常規(guī)地震和長周期地震的SEH和SED影響相同,但是,隨著ξ增大,常規(guī)地震的SEI的長周期段譜值減小,而長周期地震的SEI的長周期段譜值則增大;μ對常規(guī)地震和長周期地震的SEI和SED的影響相同,但是,隨著μ增加,常規(guī)地震的SEH的峰值平臺段后移(往原點方向)、平臺段縮短、峰值增大,而長周期地震的SEH的峰值平臺段后移、平臺段延長、峰值降低.
3)MW越大,結(jié)構(gòu)損傷也越大,使得塑性鉸滯回耗能能力下降;場地越軟,長周期地震能量譜值越大,塑性鉸滯回耗能能力降低,而系統(tǒng)阻尼耗能能力則提高;若已知某基準(zhǔn)PGAref下的能量譜,其他PGAoth下的能量譜可根據(jù)PGAoth與PGAref比值的平方調(diào)整得到.
在此基礎(chǔ)上,采用三段式擬合函數(shù),建立了長周期地震彈性輸入能量設(shè)計譜NEI,并擬合了μ和ξ對長周期地震能量譜的影響公式,進(jìn)而通過調(diào)整NEI譜值,以得到長周期地震非彈性輸入能量設(shè)計譜PEI,可為長周期結(jié)構(gòu)(如超高層建筑、大跨度橋梁)基于能量的抗震設(shè)計提供譜依據(jù).
參考文獻(xiàn)
[1] ? ?CHEN Q J,YUAN W Z,LI Y C,et al. Dynamic response characteristics of super high-rise buildings subjected to long-period ground motions[J]. Journal of Central South University,2013,20(5):1341—1353.
[2] ? ASAI T,WATANABE Y. Outrigger tuned inertial mass electromagnetic transducers for high-rise buildings subject to long period earthquakes[J]. Engineering Structures,2017,153:404—410.
[3] ? ?HU R P,XU Y L,ZHAO X. Long-period ground motion simulation and its impact on seismic response of high-rise buildings[J]. Journal of Earthquake Engineering,2018,22(7):1285—1315.
[4] ? ?ZHOU Y,PING T Y,GONG S M,et al. An improved defining parameter for long-period ground motions with application of a super-tall building[J]. Soil Dynamics and Earthquake Engineering,2018,113:462—472.
[5] ? ?姬淑艷,劉爍宇,李英民. 遠(yuǎn)場長周期地震動作用下超高層建筑響應(yīng)特性[J]. 建筑結(jié)構(gòu)學(xué)報,2018,39(11):1—10.
JI S Y,LIU S Y,LI Y M. Response characteristics of super high-rise ?building subjected to far-field long-period ground motion[J]. Journal of Building Structures,2018,39(11):1—10. (In Chinese)
[6] ? ?SHEKARI M R. A coupled BE-FE-BE study for investigating the effect of earthquake frequency content and predominant period on seismic behavior of base-isolated concrete rectangular liquid tanks[J]. Journal of Fluids and Structures,2018,77:19—35.
[7] ? ?MAZZA F. Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes[J]. Soil Dynamics and Earthquake Engineering,2018,108:111—129.
[8] ? ?ISMAIL M,RODELLAR J,CASAS J R. Seismic behavior of RNC-isolated bridges:a comparative study under near-fault,long-period,and pulse-like ground motions[J]. Advances in Materials Science and Engineering,2016,2016:1—18.
[9] ? MAZZA F. Nonlinear modeling and analysis of R. C. framed buildings located in a near-fault area[J]. The Open Construction and Building Technology Journal,2012,6(1):346—354.
[10] ?BAI Y T,GUAN S Y,LIN X C,et al. Seismic collapse analysis of high-rise reinforced concrete frames under long-period ground motions[J]. Structural Design of Tall Buildings,2019,28(1):e1566.
[11] ?HUO T,TONG L W,ZHANG Y F. Dynamic response analysis of wind turbine tubular towers under long-period ground motions with the consideration of soil-structure interaction[J]. Advanced Steel Construction,2018,14(2):227—250.
[12] ?建筑抗震設(shè)計規(guī)范:GB50011—2010 [S]. 北京:中國建筑工業(yè)出版社,2016:18—20.
Code for seismic design of buildings:GB 50011—2010[S]. Beijing:China Architecture & Building Press,2016:18—20. (In Chinese)
[13] ?鐵路工程抗震設(shè)計規(guī)范:GB50111—2006[S]. 北京:中國計劃出版社,2009:9—10.
Code for seismic design of railway engineering:GB50111—2006[S]. Beijing:China Planning Press,2009:9—10. (In Chinese)
[14] ?公路橋梁抗震設(shè)計規(guī)范:JTGT 2231-01—2020[S]. 北京:人民交通出版社,2020:23—24.
Specifications for seismic design of highway bridges:JTGT 2231-01—2020 [S]. Beijing:China Communications Press,2020:23—24. (In Chinese)
[15] ?張亮泉,于建杰. 基于遺傳算法的長周期地震動加速度反應(yīng)譜的擬合[J]. 自然災(zāi)害學(xué)報,2019,28(6):17—27.
ZHANG L Q,YU J J. Study on the fitting of the long-period ground motion acceleration response spectrum based on genetic algorithm[J]. Journal of Natural Disasters,2019,28(6):17—27. (In Chinese)
[16] ?李宇,吳桂楠,李琛,等. 長周期地震動彈塑性反應(yīng)譜的參數(shù)影響[J]. 蘭州大學(xué)學(xué)報(自然科學(xué)版),2018,54(1):90—97.
LI Y,WU G N,LI C,et al. Parametric impact on elasto-plastic response spectra of long-period ground motion[J]. Journal of Lanzhou University (Natural Sciences),2018,54(1):90—97. (In Chinese)
[17] ?ZHOU J,JIANG Y,WANG L X,et al. A long-period elastic response spectrum based on the site-classification of Chinese seismic code[J]. Soil Dynamics and Earthquake Engineering,2018,115:622—633.
[18] ?陳清軍,袁偉澤. 基于長周期地震動記錄的SDOF體系能量譜探討[J]. 振動與沖擊,2013,32(10):36—42.
CHEN Q J,YUAN W Z. Energy spectrum of SDOF system based on long-period ground motion records[J]. Journal of Vibration and Shock,2013,32(10):36—42. (In Chinese)
[19] ?劉爍宇,李英民. 盆地型長周期地震動的判別準(zhǔn)則[J]. 湖南大學(xué)學(xué)報(自然科學(xué)版),2018,45(5):85—93.
LIU S Y,LI Y M. Discriminant criterion of long-period ground motion in basin[J]. Journal of Hunan University (Natural Sciences),2018,45(5):85—93. (In Chinese)
[20] ?劉培玄,劉紅帥,趙紀(jì)生,等. 基于KiK-net臺站的中美場地類別對比分析[J]. 地震工程與工程振動,2015,35(6):42—46.
LIU P X,LIU H S,ZHAO J S,et al. Comparison of site classification between Chinese and American seismic codes based on data of Japanese Ki K-net station[J]. Earthquake Engineering and Engineering Dynamics,2015,35(6):42—46. (In Chinese)
[21] ?HOUSNER G W. Behavior of structures during earthquakes[J]. Journal of the Engineering Mechanics Division,1959,85(4):109—129.
[22] ?CHOU C C,UANG C M. Establishing absorbed energy spectra—an attenuation approach[J]. Earthquake Engineering & Structural Dynamics,2000,29(10):1441—1455.
[23] ?李宇. 考慮殘余位移和土-結(jié)構(gòu)相互作用的橋梁結(jié)構(gòu)基于性能的抗震設(shè)計及評估[D]. 北京:北京交通大學(xué),2010:31—33.
LI Y. Research on performance-based seismic design and evaluation for bridge structures considering residual displacement and soil-structure interaction effects[D]. Beijing:Beijing Jiaotong University,2010:31—33. (In Chinese)
[24] ?李宇,車艷陽,王森. 梁式橋抗震設(shè)計的地震能量反應(yīng)譜分析[J]. 土木工程學(xué)報,2015,48(1):82—89.
LI Y,CHE Y Y,WANG S. Study on seismic energy response spectra for beam-bridge seismic design[J]. China Civil Engineering Journal,2015,48(1):82—89. (In Chinese)
[25] ?程光煜,葉列平. 彈塑性SDOF系統(tǒng)累積滯回耗能譜[J]. 工程抗震與加固改造,2007,29(2):1—7.
CHENG G Y,YE L P. Cumulative hysteretic energy spectra of SDOF systems[J]. Earthquake Resistant Engineering and Retrofitting,2007,29(2):1—7. (In Chinese)