龍長江,譚鶴群,朱 明,辛 瑞,覃光勝,黃彭志
畜禽舍移動式智能監(jiān)測平臺研制
龍長江1,2,譚鶴群1,2※,朱 明1,2,辛 瑞1,覃光勝1,黃彭志1
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070; 2. 農(nóng)業(yè)農(nóng)業(yè)部長江中下游農(nóng)業(yè)裝備重點實驗室,武漢 430070)
畜禽養(yǎng)殖場內(nèi)溫度、濕度及各種氣體構(gòu)成畜禽生長的外圍環(huán)境,直接影響畜禽日常行為和生長速度及免疫狀態(tài)。對這些畜禽養(yǎng)殖場內(nèi)進(jìn)行檢測并監(jiān)控畜禽健康狀態(tài)及尋找二者間的聯(lián)系,對優(yōu)化養(yǎng)殖環(huán)境,發(fā)展健康養(yǎng)殖具有重要意義。該研究以STM32單片機為控制核心,在固定點傳感器外設(shè)置移動式智能監(jiān)測平臺,通過無線定位系統(tǒng)UWB(Ultra Wide Band)和集成傳感器對畜禽養(yǎng)殖場內(nèi)環(huán)境進(jìn)行監(jiān)測,利用帶圖傳功能攝像頭和紅外測溫裝置實時監(jiān)控畜禽狀態(tài)。傳感器獲取信息后將數(shù)據(jù)以UART、IIC或模擬量輸出方式傳遞給STM32,STM32處理數(shù)據(jù)后通過物聯(lián)網(wǎng)WIFI模塊上傳至阿里云IoT(The Internet of Things)物聯(lián)網(wǎng)平臺,用戶登錄網(wǎng)頁頁面即可對數(shù)據(jù)進(jìn)行遠(yuǎn)程訪問,并對畜禽狀態(tài)進(jìn)行實時監(jiān)控。實測結(jié)果表明,智能檢測平臺檢測數(shù)據(jù)與豬場內(nèi)布置的傳感器檢測結(jié)果相近,二者偏差小于10%,在無遮擋情況下布置無線定位系統(tǒng),定位誤差接近10 cm級。系統(tǒng)檢測數(shù)據(jù)可信,數(shù)據(jù)傳輸正常,可持續(xù)長時間穩(wěn)定運行。機動平臺還開發(fā)了搬運功能,單次運送能力為200 kg左右。移動式智能監(jiān)測平臺為畜禽養(yǎng)殖場內(nèi)實現(xiàn)全范圍環(huán)境監(jiān)控提供了設(shè)備基礎(chǔ)。
溫度;濕度;傳感器;智能監(jiān)測;畜禽養(yǎng)殖;阿里云
工廠化畜禽養(yǎng)殖已成現(xiàn)代養(yǎng)殖主流,養(yǎng)殖環(huán)境中的溫度、濕度、CO2、H2S和NH3等氣體含量以及顆粒懸浮物濃度等環(huán)境因子直接影響畜禽的日常行為和生長速度及免疫狀態(tài)[1-2]。當(dāng)環(huán)境因子異常時,畜禽行為可顯著改變,并可導(dǎo)致生長異常,發(fā)育停滯甚至疫病肆虐等嚴(yán)重后果[3],養(yǎng)殖場附近居民身體健康亦會受到影響[4-5]。對養(yǎng)殖區(qū)域內(nèi)環(huán)境因子和畜禽狀態(tài)進(jìn)行監(jiān)控是現(xiàn)代化養(yǎng)殖業(yè)的基本要求。
歐美國家在20世紀(jì)80年代即對畜禽舍環(huán)境和污物排放進(jìn)行了嚴(yán)格的法律規(guī)定,因此對環(huán)境因子的智能化檢測研究和應(yīng)用處于領(lǐng)先地位。Ni等[6]通過布置傳感器連續(xù)采集畜禽舍內(nèi)氣體含量,研究了有害氣體與家畜的體質(zhì)量增長間的定量關(guān)系。Pan等[7]在豬場中應(yīng)用無線傳感器網(wǎng)絡(luò)研究豬的生理狀況與有害氣體濃度關(guān)系,大大減少了病豬的死亡率。Lysenko等[8]研究了傳感器在畜禽舍內(nèi)的最優(yōu)布置問題,利用多種智能算法優(yōu)化節(jié)點布置。利用多點合理布置傳感器可較為全面的研究畜禽舍內(nèi)環(huán)境因子分布狀態(tài)和變遷規(guī)律,分析環(huán)境因子和畜禽生長及健康的相互關(guān)系,以此為依據(jù)可優(yōu)化畜禽舍結(jié)構(gòu),降低能耗,改善畜禽生活狀態(tài),提高飼養(yǎng)效率。
李保明等[9]對國內(nèi)規(guī)模化養(yǎng)雞場內(nèi)溫度控制穩(wěn)定性與通風(fēng)均勻性及裝備進(jìn)行了研究。汪開英等[10-11]對國內(nèi)外畜禽場的各種有害氣體、PM、惡臭及顆粒物等主要空氣污染物的檢測方法與技術(shù)進(jìn)行介紹。介鄧飛等[12]對國內(nèi)外規(guī)?;笄蒺B(yǎng)殖主要污染氣體現(xiàn)場檢測方法和分析儀器研究現(xiàn)狀進(jìn)行了綜述,對國內(nèi)外畜禽養(yǎng)殖環(huán)境因子的現(xiàn)場檢測技術(shù)和控制進(jìn)行了總結(jié)和對比,對未來發(fā)展新型現(xiàn)場檢測儀器和控制方法提供了研究方向。鑒于畜禽舍內(nèi)環(huán)境具備一定腐蝕性,化學(xué)傳感器壽命較低,何瑩[13]設(shè)計了基于吸收光譜的氨排放源在線檢測裝置,但該裝置檢測結(jié)果易受粉塵和風(fēng)速等外界因素的干擾。譚鶴群等[14]利用封閉光程采氣室采用可調(diào)諧吸收光譜檢測畜禽舍氨氣濃度,該裝置避免了電化學(xué)傳感器壽命短的缺點,且穩(wěn)定性好,抗干擾能力強,可用于長期監(jiān)控。
隨著國家對環(huán)保的日益重視,為減少溫室氣體排放,董紅敏等[15-16]對中國農(nóng)業(yè)源溫室氣體排放與減排技術(shù)進(jìn)行了綜述,并對育肥豬舍甲烷排放濃度和排放通量進(jìn)行了測試;高新星等[17]對規(guī)?;i場的甲烷排放通量進(jìn)行了測試分析;劉安芳等[18]對豬舍內(nèi)糞污廢棄物和有害氣體減排技術(shù)進(jìn)行了研究。以上文獻(xiàn)對畜禽舍的不同季節(jié)、不用時段的氨、甲烷等有害氣體的度變化范圍和排放通量進(jìn)行統(tǒng)計,為后期在線檢測和減排技術(shù)開發(fā)提供參考。
為探究畜禽舍內(nèi)溫度分布和流場規(guī)律,需要獲得畜禽舍內(nèi)多點的持續(xù)數(shù)據(jù)。計算流體動力學(xué)(Computational Fluid Dynamics,CFD)技術(shù)被引入到當(dāng)前研究中。尚峰軍等[19]對蛋雞舍溫?zé)岘h(huán)境進(jìn)行仿真和評估,賀城等[20]對豬舍溫度場和氣流場進(jìn)行了仿真和對比分析。這些研究為優(yōu)化通風(fēng)設(shè)計方案提供了依據(jù),但仿真結(jié)果還需進(jìn)一步實際測試進(jìn)行驗證。林加勇等[21]對公豬舍夏季溫度和流場進(jìn)行了仿真,并通過局部布點對仿真結(jié)果進(jìn)行了驗證,相對誤差最大30.8%,如進(jìn)行全范圍檢測,可接數(shù)據(jù)進(jìn)行分析,進(jìn)一步優(yōu)化仿真模型和設(shè)置,使仿真結(jié)果更貼近實測。由于互聯(lián)網(wǎng)和物聯(lián)網(wǎng)技術(shù)的發(fā)展,國內(nèi)開始利用相應(yīng)技術(shù)布置傳感器長時間自動檢測畜禽舍內(nèi)環(huán)境因子并無線上傳數(shù)據(jù)以利于環(huán)境因子變化規(guī)律的研究[22-25],朱虹等[26]對生豬養(yǎng)殖場無線傳感器網(wǎng)絡(luò)路徑損耗構(gòu)建了模型并進(jìn)行了驗證,高云等[27-29]對豬舍內(nèi)的氣流及環(huán)境參數(shù)變化進(jìn)行了仿真及無線傳感器網(wǎng)絡(luò)測試,杜文田等[30-31]研究了一種帶有云平臺的畜禽舍環(huán)境控制系統(tǒng),解決了目前檢測系統(tǒng)數(shù)據(jù)處理能力不足的問題。但由于技術(shù)尚未完全成熟,數(shù)據(jù)傳輸?shù)姆€(wěn)定性和數(shù)據(jù)處理的實時性還有待提高。將監(jiān)測與控制方法結(jié)合,謝秋菊等[32]為優(yōu)化豬舍內(nèi)環(huán)境,設(shè)計了檢測調(diào)控系統(tǒng)和控制策略;王斌等[33]采用可編程控制器設(shè)計了豬舍生態(tài)環(huán)境監(jiān)測及控制系統(tǒng);李立峰等[34]應(yīng)用模糊控制策略設(shè)計了分娩母豬舍環(huán)境監(jiān)控系統(tǒng)。精細(xì)的控制策略需要準(zhǔn)確的模型,而構(gòu)建準(zhǔn)確的模型需要大量實時數(shù)據(jù),但大規(guī)模布置固定點傳感器費成本高,靈活性欠缺。
研究畜禽舍內(nèi)環(huán)境因子的分布和擴(kuò)散規(guī)律需要仿真結(jié)果結(jié)合實際測試數(shù)據(jù)進(jìn)行對比。數(shù)據(jù)和規(guī)律的準(zhǔn)確性是畜禽舍結(jié)構(gòu)和節(jié)能降耗環(huán)境控制方法優(yōu)化的前提,因此獲取養(yǎng)殖區(qū)域全范圍內(nèi)的環(huán)境因子信息非常必要。過去研究多在某些點固定布置傳感器,全面監(jiān)測需要大量布點,鑒于養(yǎng)殖場內(nèi)環(huán)境變化較為緩慢,如采用攜帶集成傳感器的移動式智能化檢測平臺快速巡檢畜禽舍內(nèi)各區(qū)域環(huán)境,結(jié)合重要節(jié)點固定布置傳感器,可實現(xiàn)全區(qū)環(huán)境因子監(jiān)測并節(jié)省大量成本。本文結(jié)合傳統(tǒng)固定點傳感器的布局,設(shè)計了移動式智能檢測平臺,以實現(xiàn)畜禽舍內(nèi)外環(huán)境的全范圍檢測。
動物生病時,最常見特征為體溫或行為異常。為實現(xiàn)健康養(yǎng)殖,防止疫病傳播,還需要對畜禽狀態(tài)進(jìn)行監(jiān)控。為創(chuàng)造最佳養(yǎng)殖環(huán)境,研究環(huán)境和動物行為及生長速度之間的關(guān)系,也需要同時采集畜禽狀態(tài)和環(huán)境因子間的數(shù)據(jù)。本移動式智能檢測平臺以四輪小車為載體,在折疊升降結(jié)構(gòu)上固定集成環(huán)境傳感器,實現(xiàn)養(yǎng)殖區(qū)域內(nèi)不同高度環(huán)境因子信息的檢測,利用車體前端可轉(zhuǎn)向的紅外測溫裝置和視頻監(jiān)控裝置實現(xiàn)對畜禽狀態(tài)的監(jiān)控。
根據(jù)畜禽養(yǎng)殖場對環(huán)境和對畜禽自身狀態(tài)的監(jiān)控要求,針對畜禽養(yǎng)殖環(huán)境中對畜禽健康影響較大的溫濕度、CO2、H2S和NH3等氣體含量及粉塵濃度在全區(qū)域內(nèi)進(jìn)行機動檢測,并可對畜禽狀態(tài)進(jìn)行實時監(jiān)控。檢測數(shù)據(jù)實時上傳至阿里云IoT平臺,用戶通過網(wǎng)頁遠(yuǎn)程訪問數(shù)據(jù)。為充分利用小車機動功能,在不檢測時將檢測模塊收縮折疊,安裝帶斜面的上蓋板后,可搬運重物或畜禽。
車體高設(shè)計為0.2 m,檢測模塊最低高度貼近地面,通過伸縮折疊調(diào)整,最大測試高度1 m,收縮折疊部件最大長度為0.8 m,折疊范圍0°~90°??紤]到試驗豬舍內(nèi)走道寬度1.2 m,小車可原地掉頭,因此長度需小于過道寬度大于收縮桿長度(收縮時實際為0.5m),預(yù)留空間給監(jiān)控設(shè)備,整車長度設(shè)計為0.7 m;長寬比約為1:2,寬度設(shè)計為0.4 m。小車凈質(zhì)量約50 kg,運輸?shù)纳i體質(zhì)量約為50~150 kg,加上安全裕量,最大總重設(shè)計為250 kg。豬舍長度60 m,為保證不同測試點時間盡可能接近,要求小車能快速到達(dá)豬舍兩端,結(jié)合電機功率考慮,小車速度設(shè)計為0~3 m/s,滿載時考慮到運輸工件和飼料的平穩(wěn)性,加速度為0.2 m/s2,根據(jù)滿載和空載的質(zhì)量比,對應(yīng)空載加速度為1 m/s2,滿載速度為0.6 m/s。上蓋板尺寸略大于車體,系統(tǒng)總體設(shè)計參數(shù)如表1所示。
表1 系統(tǒng)設(shè)計參數(shù)
環(huán)境因子檢測傳感器利用PCB技術(shù)制作集成為一個模塊,整體安裝于可通過折疊升降調(diào)節(jié)高度的運動部件上,整個電路板及其上各傳感器可獨立拆卸、安裝,方便維護(hù)和更換。車體前端安裝帶圖傳模塊的攝像頭和遠(yuǎn)程紅外測溫系統(tǒng)以方便對畜禽狀態(tài)進(jìn)行監(jiān)控。圖像數(shù)據(jù)通過遙控器內(nèi)帶SD卡暫存后轉(zhuǎn)移至電腦,其余檢測數(shù)據(jù)通過UART、IIC或模擬量輸出等方式傳遞給主控STM32芯片,芯片對數(shù)據(jù)進(jìn)行處理后通過WIFI模塊上傳至阿里云IoT平臺。用戶通過遙控器操控移動式智能監(jiān)控平臺移動及調(diào)節(jié)可折疊升降機構(gòu)改變檢測模塊的高度,實現(xiàn)對畜禽舍內(nèi)全范圍環(huán)境因子數(shù)據(jù)實時采集和對畜禽狀態(tài)進(jìn)行監(jiān)控。系統(tǒng)總體設(shè)計方案如圖1所示。
由于養(yǎng)殖場內(nèi)部為平整硬化路面,移動平臺采用輪式結(jié)構(gòu)以節(jié)能并簡化設(shè)計??紤]防水防腐要求,車體傳動部件和驅(qū)動模塊整體置于平臺內(nèi)部,上覆鋁合金板,鋼板以螺絲固定在平臺上,連接處以玻璃膠填縫處理,需要獨立運動的檢測監(jiān)控模塊安裝在鋁板上(如圖2a所示)。為方便養(yǎng)殖場內(nèi)搬運畜禽和物料,傳感器折疊后,車體上部可附加不銹鋼蓋板,蓋板上設(shè)置一荷載1 361 kg的12V電動絞盤和斜面以方便拖拽搬運對象,系統(tǒng)整體外觀如圖2b所示。
a. 結(jié)構(gòu)簡圖
a. Schematic diagram
b. 裝置實物圖
b. Physical picture
圖2 移動式智能監(jiān)測平臺
Fig.2 Mobile intelligent monitoring platform
車體由40 mm×40 mm鋁型材和面板搭建而成,采用電機驅(qū)動,利用鏈輪系統(tǒng)傳動,轉(zhuǎn)向使用差速機構(gòu)實現(xiàn)。車輪直徑15 cm,在硬質(zhì)路面摩擦系數(shù)0.010~0.015情況下,根據(jù)車體最大負(fù)荷250 kg及加速度0.2 m/s2的要求,選用JM-039型大扭矩永磁蝸輪蝸桿減速直流電機,其額定電壓12 V,功率80~120 W,額定電流10 A,輸出扭矩0~40 N·m,滿足系統(tǒng)動力指標(biāo)要求。
檢測模塊高度調(diào)節(jié)子系統(tǒng)采用可折疊升降機構(gòu),由電動分度盤1在90°內(nèi)轉(zhuǎn)動以實現(xiàn)折疊,步進(jìn)電機推桿器驅(qū)動安裝傳感器的集成模塊移動實現(xiàn)升降。兩電機通過PWM波以計步方式精確控制折疊角度和升降距離,距地高度通過兩者聯(lián)合控制。電動分度盤1、2型號均為HST100ZT,臺面尺寸直徑100 mm,傳動比180:1,可360°旋轉(zhuǎn),無細(xì)分時分辨率為0.18°,承重45 kg。步進(jìn)電機推桿器采用龍翔步進(jìn)50,其行程50 cm,推力250 N,速度12 mm/s。
環(huán)境因子檢測子系統(tǒng)包含濕度、溫度、二氧化碳、硫化氫、氨氣及顆粒懸浮物等信息。選用傳感器主要參數(shù)如表2所示。
表2 各指標(biāo)監(jiān)測傳感器參數(shù)
為方便監(jiān)控禽畜狀態(tài),需采集體溫和圖像2種信息。體溫采用GY-906-DI紅外測溫傳感器,測量距離0.5 m以內(nèi),測溫范圍?40~125 ℃,在0~50 ℃溫度范圍內(nèi)測量精度±0.5 ℃。圖像監(jiān)控系統(tǒng)采用Sony-FPV700TVL航拍小攝像頭,其像素52萬,F(xiàn)PV圖傳系統(tǒng)發(fā)射功率僅600 mW,信號傳輸距離可達(dá)5 km。2種傳感器固定安裝在位于車體前端的電動旋轉(zhuǎn)分度盤2的舵機末端,控制系統(tǒng)可遙控電動分度盤2左右旋轉(zhuǎn)及舵機進(jìn)行俯仰角度調(diào)整。舵機采用LDX-218大扭矩舵機,可180°旋轉(zhuǎn),速度1.6s/60°,扭矩15 kg/cm。
平臺采用32位微控制器系列單片機STM32F103ZET6作為主控制器,使用云卓H16遙控器。主控制器接收遙控器信號輸出6路PWM波,2路控制車體左右電機運動實現(xiàn)平臺整體移動和轉(zhuǎn)向,2路驅(qū)動折疊升降機構(gòu)電機,實現(xiàn)檢測模塊高度控制,2路控制監(jiān)控系統(tǒng)分度盤旋轉(zhuǎn)和舵機俯仰。
平臺利用無線定位系統(tǒng)(UWB)進(jìn)行厘米級精確定位,定位標(biāo)簽通過串口將位置數(shù)據(jù)發(fā)送給主控制器。為防止小車在行進(jìn)過程中觸碰障礙物,在車體前端左右設(shè)置了兩個超聲波避障傳感器,自動避障規(guī)則為一側(cè)有障礙信號時向另一邊轉(zhuǎn)彎,兩側(cè)均有障礙時后退,若連續(xù)退讓3次后仍無法避開障礙,則暫停運動并報警,依靠車體前端監(jiān)控攝像頭提供視頻信息等待操作人員進(jìn)行遙控操作。
CO2及溫、濕度傳感器采用IIC通信;NH3、PM2.5及PM10傳感器統(tǒng)一波特率后使用74LS151實現(xiàn)共用一個串口通訊;H2S通過模擬A/D接口采集。主控芯片獲取數(shù)據(jù)后,采用Savitzky-Golay濾波算法進(jìn)行處理,此算法可在濾波時保留信號的細(xì)節(jié)特征,后使用USART1串口將數(shù)據(jù)通過WIFI模塊上傳至阿里云IoT物聯(lián)網(wǎng)平臺。
視頻通過攝像頭所帶圖傳模塊經(jīng)2.4G無線網(wǎng)傳輸?shù)皆谱縃16遙控器接收端進(jìn)行顯示并暫存于SD卡中,后期轉(zhuǎn)存至電腦。養(yǎng)殖場內(nèi)畜禽圖像可通過電腦端推流軟件對外直播,實現(xiàn)遠(yuǎn)程觀看。
網(wǎng)頁界面按功能系統(tǒng)分為用戶信息模塊、定位模塊,環(huán)境因子檢測模塊、健康狀態(tài)監(jiān)控模塊及系統(tǒng)運動控制模塊。用戶信息模塊用于用戶的注冊和登錄以及確定不同級別用戶的使用權(quán)限,用戶注冊時綁定1組或多組巡檢設(shè)備的ID,登錄后可查看所有已綁定設(shè)備的數(shù)據(jù)集;定位模塊用于移動平臺位置監(jiān)控及軌跡顯示,給出巡檢車在養(yǎng)殖場內(nèi)實時運行的三維坐標(biāo);環(huán)境因子檢測模塊用于實現(xiàn)檢測平臺與客戶端的數(shù)據(jù)通訊、圖表繪制及超值報警功能,環(huán)境因子數(shù)據(jù)信息由單片機實時采集后存儲到云數(shù)據(jù)庫,隨時調(diào)取,分溫濕度曲線、氣體濃度曲線、定位信息等3個主頁面進(jìn)行顯示;健康狀態(tài)監(jiān)控模塊提供養(yǎng)殖場內(nèi)畜禽的實時圖像,通過查看畜禽表面圖像判斷其健康狀況;系統(tǒng)運動模塊提供控制接口,用戶可在網(wǎng)頁端操控巡檢平臺行進(jìn)的方向和速度。
試驗于2020年10月10日至2021年3月20在華中農(nóng)業(yè)大學(xué)種豬場進(jìn)行。豬舍長60 m,寬12 m,過道寬度1.2 m左右,單側(cè)11個豬欄,圍欄高0.8 m,小門寬0.6 m,現(xiàn)有約50頭種豬,采用人工控制通風(fēng)和清糞。
由于豬舍尺寸限制,UWB定位基站無法布置為最優(yōu)的等邊三角形,故設(shè)為直角三角形形式。為避免墻角反射干擾和圍欄遮擋,定位基站0置于距離門內(nèi)側(cè)0.5 m、高1.0 m的窗臺上,作為坐標(biāo)原點;以過道方向軸,基站1位于軸30 m處窗臺上;以垂直過道方向為軸,基站2位于圍欄內(nèi)坐標(biāo)2.4 m處。所有基站高度均為1 m,與升降桿上集成傳感器最高高度一致,以使定位時圍欄內(nèi)、外定位標(biāo)簽均不受遮擋并與基站在同一水平面上。
為檢驗平臺數(shù)據(jù)是否準(zhǔn)確,以養(yǎng)豬場內(nèi)固定設(shè)置的山東精訊暢通電子科技有限公司傳感器數(shù)據(jù)為參照。其中RS485型高精度工業(yè)級CO2傳感器量程為(0~10 000)×10-6,分辨率50×10-6,精度±5%,響應(yīng)時間<60s;RS485型NH3傳感器量程為(0~100)×10-6,分辨率1×10-6,響應(yīng)時間≤15 s;RS485型H2S傳感器量程為(0~100)×10-6,分辨率1×10-6,精度±3%(25 ℃),響應(yīng)時間≤15 s;RS485型S20溫濕度傳感器的溫度檢測范圍?40~80 ℃,溫度分辨率0.1 ℃,精度0.3 ℃,濕度檢測范圍0~100%RH,分辨率0.1%RH,測量精度±7%(25 ℃),響應(yīng)時間≤15 s。
現(xiàn)場測試圖如3所示。
采用Matlab2017進(jìn)行數(shù)據(jù)分析及制圖。
2020年12月10日,移動檢測平臺在3個不同位置點上進(jìn)行平面定位偏差測試。點1位于圍欄內(nèi),偏向軸。點2位于過道上,偏向軸,點3位于圍欄內(nèi),距離、軸接近等距,各點具體坐標(biāo)如表3所示。每個點連續(xù)測量50次。3點的測量誤差分布如圖4所示。
表3 定位試驗測試數(shù)據(jù)表
無線電波受到障礙物反射和折射時,會產(chǎn)生多路徑效應(yīng),導(dǎo)致信號特性變化,信噪比下降。定位精度還與基站的布置方式及移動平臺的與基站和標(biāo)簽的相對位置有關(guān)。由于豬場內(nèi)由環(huán)境復(fù)雜,信號受到墻體、圍欄及支柱的反射,定位誤差比空曠區(qū)域大。由表3測試結(jié)果可知,由于基站無法采用最優(yōu)布置方式,加上環(huán)境復(fù)雜,定位誤差在10 cm級,比技術(shù)手冊上給定的5 cm級大。當(dāng)標(biāo)簽與各基站間距離差異較大時,如監(jiān)測點1、2,測量誤差相對較大,平均位置偏差為127 mm;當(dāng)標(biāo)簽與基站的距離均相近時,如監(jiān)測點3,測量誤差相對較小,平均位置偏差為115 mm。試驗中還發(fā)現(xiàn)基站不能放置于角落,基站與定位標(biāo)簽間不可有遮擋物,否則誤差會急劇增大。
2021年3月10日環(huán)境因子數(shù)據(jù)監(jiān)測結(jié)果如圖5所示,監(jiān)測顯示頁面如圖6所示。為方便對比,測試時將小車放置在養(yǎng)豬場內(nèi)原來固定設(shè)置的山東精訊暢通電子科技有限公司傳感器旁邊。自動發(fā)送數(shù)據(jù)的時間間隔均為10 s,后臺數(shù)據(jù)為1 min內(nèi)數(shù)據(jù)取平均后顯示。登錄網(wǎng)頁頁面,瀏覽智能監(jiān)控平臺上傳的信息。結(jié)果表明,由于兩者位置接近,智能監(jiān)測平臺傳感器檢測結(jié)果與豬場內(nèi)原傳感器檢測結(jié)果相近,溫度、相對濕度、CO2測量值差異不到5%;由于H2S濃度低于2種傳感器檢測下限,均為0;NH3濃度在固定點傳感器無波動,智能移動平臺監(jiān)測結(jié)果波動幅值達(dá)10%,二者偏差小于10%可能與固定點傳感器慣性較大及二者布置位置差異有關(guān);移動平臺粉塵傳感器檢測到飼喂時粉塵濃度明顯增長,PM2.5濃度達(dá)PM10的3倍以上,可能與飼料粒度有關(guān)。由于傳感器特性不同,智能監(jiān)測平臺的傳感器靈敏度較高,慣性較小,數(shù)據(jù)波動較為頻繁,但二者數(shù)據(jù)總體變化趨勢相同,可認(rèn)為智能檢測平臺的檢測數(shù)據(jù)可信,并能進(jìn)行持續(xù)檢測及穩(wěn)定上傳數(shù)據(jù),實現(xiàn)對畜禽舍內(nèi)的環(huán)境因子進(jìn)行遠(yuǎn)程監(jiān)測。
在不監(jiān)測時折疊收起檢測裝置,加上蓋板后利用蓋板上的電動絞盤將重物通過斜面拖拽上平板,捆扎后進(jìn)行運輸。測試表明,系統(tǒng)在滿載250 kg時仍可正常運行,單次運送能力達(dá)200 kg。
本文設(shè)計了一種可畜禽養(yǎng)殖場所使用的移動式智能檢測平臺。檢測系統(tǒng)在重要位置固定布置傳感器外,其他位置利用移動平臺攜帶可調(diào)節(jié)高度的集成傳感器機動進(jìn)行環(huán)境因子自動檢測,并可利用圖像傳感器和遠(yuǎn)程紅外測溫裝置對特定對象的健康和行為狀態(tài)實施監(jiān)測。監(jiān)測數(shù)據(jù)通過WIFI模塊實現(xiàn)檢測模組與阿里云IoT平臺的通信,從而實現(xiàn)與互聯(lián)網(wǎng)用戶端的交互。實測結(jié)果表明,智能檢測平臺檢測數(shù)據(jù)與原豬場內(nèi)布置的傳感器檢測結(jié)果相近,溫度、濕度、CO2測量值差異不到5%;由于H2S濃度低于2種傳感器檢測下限,均為0;NH3濃度的固定點傳感器監(jiān)測結(jié)果無波動,智能移動平臺監(jiān)測結(jié)果波動幅值接近10%,可能與固定點傳感器慣性較大及二者布置位置差異有關(guān);移動平臺粉塵傳感器檢測到飼喂時粉塵濃度明顯增長, PM2.5濃度達(dá)PM10的3倍以上,可能與飼料粒度有關(guān)。無線定位系統(tǒng)誤差接近10 cm級,系統(tǒng)可持續(xù)運行,檢測數(shù)據(jù)可信,傳輸功能穩(wěn)定。利用該移動式智能檢測平臺可對室內(nèi)、室外的環(huán)境因子進(jìn)行全區(qū)域監(jiān)測,可利用獲得的大數(shù)據(jù)分析環(huán)境因子與動物行為和生長速度之間的關(guān)系,為健康養(yǎng)殖提供基礎(chǔ)信息。
移動式智能檢測平臺可在遠(yuǎn)程遙控下運行,如結(jié)合衛(wèi)星定位技術(shù)及激光雷達(dá)建圖技術(shù),移動平臺可在室內(nèi)室外實現(xiàn)自主巡航和定時自動檢測。系統(tǒng)還可進(jìn)一步拓展傳感器種類,通過PCB 板上預(yù)留接口,增加光照及風(fēng)速等其他傳感器,利用74LS151實現(xiàn)一個串口同時與多個傳感器的分時通訊。如機動平臺舍棄搬運功能,車體舍棄上蓋板,總負(fù)載可由250 kg減少到50 kg,選用小電機,車體寬度和功率可進(jìn)一步減小。
[1] Seo I H, Lee I B, Moon O K, et al. Modeling of internal environmental conditions in a full-scale commercial pighouse containing animals[J]. Biosystems Engineering, 2012, 111: 91-106.
[2] 高中霞. 基于無線傳感器網(wǎng)絡(luò)畜禽舍環(huán)境監(jiān)測系統(tǒng)[D]. 吉林:吉林農(nóng)業(yè)大學(xué),2012.
Gao Zhongxia. Study on Monitoring System of Poultry House Environmental Based on Wireless Sensor Network[D]. Jilin: Jilin Agricultural University, 2012. (in Chinese with English abstract)
[3] 劉鴻濤,鄭進(jìn)碧. 農(nóng)村散養(yǎng)雞的無公害生產(chǎn)技術(shù)探討[J]. 中國禽業(yè)導(dǎo)刊,2004,21(22):34-34.
Liu Hongtao, Zheng Jingbi. Discussion on nuisanceless production technology of free-range chicken in rural area[J]. Guide to China Poultry, 2004, 21(22): 34-34. (in Chinese with English abstract)
[4] 郭軍蕊,劉國華,楊斌,等. 畜禽養(yǎng)殖場除臭技術(shù)研究進(jìn)展[J]. 動物營養(yǎng)學(xué)報,2013,25(8):1708-1714.
Guo Junrui, Liu Guohua, Yang Bing, et al. Deodorization technology of livestock and poultry farming[J]. Chinese Journal of Animal Nutrition, 2013, 25(8): 1708-1714. (in Chinese with English abstract)
[5] 戴鵬遠(yuǎn),沈丹,唐倩,等. 畜禽養(yǎng)殖場顆粒物污染特征及其危害呼吸道健康的研究進(jìn)展[J]. 中國農(nóng)業(yè)科學(xué),2018,51(16):3214-3225.
Dai Pengyuan, Shen Dan, Tang Qian, et al. Research progress on characteristics of particulate matter in livestock houses and its harmful effects on respiratory tract health of livestock and poultry[J]. Scientia Agricultura Sinica, 2018, 51(16): 3214-3225. (in Chinese with English abstract)
[6] Ni J Q, Hendriks J, Vinckier C, et al. Development and validation of a dynamic mathematical model of ammonia release in pig house[J]. Environment International, 2000, 26(1): 105-115.
[7] Pan L L, Yang S X. A new intelligent electronic nose system for measuring and analyzing livestock and poultry farm odours[J]. Environ Monit Assess, 2007, 135(1/2/3): 399-408.
[8] Lysenko A I, Chumachenko S N, Valuiskyi S V. Technology for environmental monitoring using wireless sensor networks[C] 24th International Crimean Conference “Microwave & Telecommunication Technology”, IEEE, 2014.
[9] 李保明,王陽,鄭煒超,等. 中國規(guī)?;B(yǎng)雞環(huán)境控制關(guān)鍵技術(shù)與設(shè)施設(shè)備研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(16):212-221.
Li Baoming, Wang Yang, Zheng Weichao, et al. Research progress in environmental control key technologies, facilities and equipment for laying hen production in China[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2020, 36(16): 212-221. (in Chinese with English abstract)
[10] 汪開英,吳捷剛,趙曉洋. 畜禽場空氣污染物檢測技術(shù)綜述[J]. 中國農(nóng)業(yè)科學(xué),2019,52(8):1458-1474.
Wang Kaiying, Wu Jiegang, Zhao Xiaoyang. Review of measurement technologies for air pollutants at livestock and poultry farms[J]. Scientia Agricultura Sinica, 2019, 52(8): 1458-1474. (in Chinese with English abstract)
[11] 汪開英,吳捷剛,梅威達(dá),等. 畜舍顆粒物減排技術(shù)研究現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(18):204-212.
Wang Kaiying, Wu Jiegang, Mei Weida, et al. Research status on particulate reduction technology in livestock houses[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2020, 36(18): 204-212. (in Chinese with English abstract)
[12] 介鄧飛,泮進(jìn)明,應(yīng)義斌. 規(guī)?;笄蒺B(yǎng)殖污染氣體現(xiàn)場檢測方法與儀器研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(1):236-246.
Jie Dengfei, Pan Jinming, Ying Yibin. Advances in methods and instruments for determining concentration of gaseous air pollutants in large-scaled livestock farms[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2015, 31(1): 236-246. (in Chinese with English abstract)
[13] 何瑩. 基于激光吸收光譜的主要人為氨排放源在線檢測技術(shù)與應(yīng)用研究[D]. 合肥:中國科學(xué)技術(shù)大學(xué),2017.
He Ying. Study on On-Line Detection Technology and Application of Main Anthropogenic Ammonia Emissions Based on Laser Absorption Spectroscopy[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese with English abstract)
[14] 譚鶴群,李鑫安,艾正茂. 基于可調(diào)諧吸收光譜的畜禽舍氨氣濃度檢測[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(13):186-194.
Tan Hequn, Li Xin’an, Ai Zhengmao. Detection of ammonia concentration in livestock poultry houses based on tunable diode laser absorption spectroscopy[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2020, 36(13): 186-194. (in Chinese with English abstract)
[15] 董紅敏,李玉娥,陶秀萍,等. 中國農(nóng)業(yè)源溫室氣體排放與減排技術(shù)對策[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(10):269-273.
Dong Hongmin, Li Yu’e, Tao Xiuping, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2008, 24(10): 269-273. (in Chinese with English abstract)
[16] 董紅敏,朱志平,陶秀萍,等. 育肥豬舍甲烷排放濃度和排放通量的測試與分析[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(1):123-128.
Dong Hongmin, Zhu Zhiping, Tao Xiuping, et al. Measurement and analysis of methane concentration andflux emitted from finishing pig house[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2006, 22(1): 123-128. (in Chinese with English abstract)
[17] 高新星,趙立欣. 規(guī)?;i場甲烷排放通量測量與分析[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(增刊):248-252.
Gao Xinxing, Zhao Lixin. Measurement and analysis of methane flux emitted from animal manure lagoon of livestock farm[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2006, 22(Supp.): 248-252. (in Chinese with English abstract)
[18] 劉安芳,阮蓉丹,李廳廳,等. 豬舍內(nèi)糞污廢棄物和有害氣體減量化工程技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(15):200-210.
Liu Anfang, Ruan Rongdan, Li Tingting, et al. Research progress of in-house reduce engineering technology for piggery manure wastes and poisonous gas[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2019, 35(15): 200-210. (in Chinese with English abstract)
[19] 尚峰軍,趙潔. 采用CFD技術(shù)分析和評估蛋雞舍溫?zé)岘h(huán)境質(zhì)量[J]. 中國家禽,2021,43(2):61-68.
Shang Fengjun, Zhao Jie. Using CFD technology to analyze and evaluate the quality of the warm environment of layer house[J]. Chinese Poultry, 2021, 43(2): 61-68. (in Chinese with English abstract)
[20] 賀城,牛智有,齊德生. 豬舍溫度場和氣流場的CFD 模擬比較分析[J]. 湖北農(nóng)業(yè)科學(xué),2010,49(1):134-136.
He Cheng, Niu Zhiyou, Qi Desheng. CFD simulation and comparative analysis about air temperature and airflow in the piggery[J]. Hubei Agricultural Sciences, 2010, 49(1): 134-136. (in Chinese with English Abstract).
[21] 林加勇,劉繼軍,孟慶利,等. 公豬舍夏季溫度和流場數(shù)值CFD模擬及驗證[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(23):207-212.
Lin Jiayong, Liu Jijun, Meng Qingli, et al. Numerical CFD simulation and verification of summer indoor temperature and airflow field in boar building[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2016, 32(23): 207-212. (in Chinese with English abstract)
[22] 吳武豪. 基于物聯(lián)網(wǎng)的豬舍環(huán)境監(jiān)控系統(tǒng)研究[D]. 杭州:浙江大學(xué),2014.
Wu Wuhao. A Study on Piggery Environment Monitoring and Control System Based on Internet of Things[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)
[23] 李惠敏,連京華,孫凱,等. 家禽環(huán)境自動化控制技術(shù)研究進(jìn)展[J]. 中國家禽,2013,35(14):41-44.
Li Huiming, Lian Jinghua, Sun Kai, et al. Research progress of poultry environmental automation control technology[J]. China Poultry, 2013, 35(14): 41-44. (in Chinese with English abstract)
[24] 左現(xiàn)剛,孔德川,周逸,等. 基于ARM控制器的豬舍有害氣體無線檢測控制系統(tǒng)[J]. 江蘇農(nóng)業(yè)科學(xué),2016,448:440-443.
Zuo Xiangang, Kong Dechuan, Zhou Yi, et al. Wireless detection and control system of harmful gas in pig house based on ARM controller[J]. Jiangsu Agricultural Science, 2016, 448: 440-443. (in Chinese with English abstract)
[25] 潘榮德. 一種家禽養(yǎng)殖無線傳感器網(wǎng)絡(luò)監(jiān)測系統(tǒng):CN201710453917.0[P]. 2020-04-07.
[26] 朱虹,李爽,鄭麗敏,等. 生豬養(yǎng)殖場無線傳感器網(wǎng)絡(luò)路徑損耗模型的建立與驗證[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(2):205-212.
Zhu Hong, Li Shuang, Zheng Limin, et al. Modeling and validation on path loss of WSN in pig breeding farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2017, 33(2): 205-212. (in Chinese with English abstract)
[27] 高云,刁亞萍,林長光,等. 機械通風(fēng)樓房豬舍熱環(huán)境及有害氣體監(jiān)測與分析[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(4):239-247.
Gao Yun, Diao Yaping, Lin Changguang, et al. Monitoring and analysis of thermal environment and harmful gases in mechanically ventilated multistory pig buildings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 239-247. (in Chinese with English abstract)
[28] 高云,陳震撼,王瑜,等. 多環(huán)境參數(shù)控制的豬養(yǎng)殖箱設(shè)計及箱內(nèi)氣流場分析[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(2):203-212.
Gao Yun, Chen Zhenhan, Wang Yu, et al. Design for pig breeding chamber under multiple environment variable control and analysis of internal flow field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 203-212. (in Chinese with English abstract)
[29] 高云,魯斯迪,廖慧敏,等. 基于無線傳感器網(wǎng)絡(luò)的豬舍環(huán)境監(jiān)測研究進(jìn)展[J]. 中國豬業(yè),2019,14(6):67-74.
Gao Yun, Lu Sidi, Liao Huimin, et al. Research progress on environmental monitoring of pig house based on wireless sensor network[J]. China Swine Industry, 2019, 14(6): 67-74. (in Chinese with English abstract)
[30] 杜文田. 帶有云平臺的畜禽舍環(huán)境控制系統(tǒng)及控制方法:CN108803736A[P]. 2018-11-13.
[31] 曾志雄,余喬東,易子騏,等. 基于WSN的集中通風(fēng)式分娩豬舍環(huán)境參數(shù)時空分布特性[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(12):204-211.
Zeng Zhixiong, Yu Qiaodong, Yi Ziqi, et al. Spatiotemporal distribution characteristics of environmental parameters of centralized ventilation delivery sows based on WSN Development of mobile intelligent monitoring platform for livestock and poultry house[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(12): 204-211. (in Chinese with English abstract)
[32] 謝秋菊,蘇中濱,Ni Ji-Qin,等. 密閉式豬舍多環(huán)境因子調(diào)控系統(tǒng)設(shè)計及調(diào)控策略[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(6):163-170.
Xie Qiuju, Su Zhongbin, Ni Ji-Qin, et al. Control system design and control strategy of multiple environmental factors in confined swine building[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 163-170. (in Chinese with English abstract)
[33] 王斌,劉雪梅,張國強,等. 豬舍生態(tài)環(huán)境監(jiān)測和清潔控制系統(tǒng)的設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(3):55-62.
Wang Bin, Liu Xuemei, Zhang Guoqiang, et al. Design of control system for pig farm cleaning and ecological environment monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 55-62. (in Chinese with English abstract)
[34] 李立峰,武佩,麻碩士,等. 基于組態(tài)軟件和模糊控制的分娩母豬舍環(huán)境監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(6):231-236.
Li Lifen, Wu Pei, Ma Shuoshi, et al. Monitoring and controlling system for delivery sow house environment based on configuration software and fuzzy control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 231-236. (in Chinese with English abstract)
Development of mobile intelligent monitoring platform for livestock and poultry house
Long Changjiang1,2, Tan Hequn1,2※, Zhu Ming1,2, Xin Rui1, Qin Guangsheng1, Huang Pengzhi1
(1.,430070,; 2.,,430070,)
Environmental factors including temperature, humidity, and gas atmosphere directly determine the daily performance, growth rate, and immune status of livestock and poultry in a farm. It is highly urgent to detect the factors for real-time monitoring the health state of livestock and poultry, particularly the relationship between environmental factors and health state. Therefore, a healthy aquaculture pattern can be developed to optimize the breeding environment. In this study, a mobile intelligent monitoring platform was established to detect the key environmental factors within the whole area. An integrated sensor system was installed in the fixed important points. A four-wheel trolley with sprocket wheels was used to drive the platform. The motor and transmission components were installed inside the car body in the need of waterproof and anti-corrosion. The upper side of the car was sealed with a cover plate, and only the integrated sensor system installed on a foldable telescopic mechanism that needs to be exposed was fixed on the plate. Height adjusting of an integrated sensor system was performed via changing the folding angle and telescopic length of a foldable telescopic mechanism. The sensors were assembled separately and disassembled conveniently, in order to facilitate repair and maintenance, and even the integrated sensor system was replaced as a whole. AnSTM32 microcontroller was used as the master control unit in the system. A PCB-integrated sensor system was selected to detect the temperature, humidity, CO2, H2S, NH3,and dust concentration in the environment. Three standard conditions were set for the detection. Specifically, when the livestock or poultry felt uncomfortable, their behavior appeared too quiet or too irritable. When the livestock or poultry was sick, their body temperature was abnormal. When an infection occurred, the surface of the skin was ulcerated. A camera with a high-speed image transmission and a remote infrared temperature measurement device was used to monitor the livestock and poultry, where the abnormal state of their body temperature was observed in time, and the infection was found at an early stage. Two monitor sensors were installed on an electromechanical actuator, which was fixed on an electromechanical indexing plate in the front of the mobile platform. The actuator was used to adjust the pitch angle, whereas, the indexing plate was used to change the horizontal angle. An Ultra-Wide Band (UWB) wireless system was also selected to accurately locate the position of the mobile platform. All the data was sent to the STM32 microcontroller in UART, IIC, or analog output mode. The STM32 microcontroller processed the data with the Savitzky-Golay filtering, and then uploaded the data to the Ali Cloud IoT platform through a WIFI module. The users can login to the web page to remotely access the data, and thereby monitor the status of livestock and poultry in real time. The experimental results show that the detection data of a mobile intelligent detection platform was similar to that of the sensors in the former pig farm, where the difference between them was less than 10%. The positioning error was close to the 10 cm level, when the base stations were located at the optimal position. The monitoring data were reliable, and the mobile intelligent monitoring platform ran stably for a long time. The mobile platform can also serve as a carrier to transport about 200 kg of heavy objects. For instance, materials and livestock can be transported by the platform, when installing an upper cover plate with a winch and inclined plane on the surface. The proposed mobile intelligent monitoring platform can provide a hardware foundation for whole-scale environmental monitoring of livestock and poultry farms.
temperature; humidity; sensors; intelligent monitoring; livestock and poultry breeding; Ali cloud
2020-11-19
2021-03-30
“十三五”國家重點研發(fā)計劃項目(2018YFD0500702)
龍長江,博士,副教授,研究方向為自動控制和無損檢測。 Email:lcjflow@163.com
譚鶴群,博士,教授,研究方向為農(nóng)產(chǎn)品加工機械與畜牧機械。Email:thq@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2021.07.009
TP23; TP242.3; S817.3
A
1002-6819(2021)-07-0068-08
龍長江,譚鶴群,朱明,等. 畜禽舍移動式智能監(jiān)測平臺研制[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(7):68-75. doi:10.11975/j.issn.1002-6819.2021.07.068 http://www.tcsae.org
Long Changjiang, Tan Hequn, Zhu Ming, et al. Development of mobile intelligent monitoring platform for livestock and poultry house[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 68-75. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.068 http://www.tcsae.org