• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative Evaluation of the Larval Density of Sea Potato Acaudina spp. with Mitochondrial Molecular Marker

    2021-06-25 11:16:10LIXiangWANGGuilinLIYunfanLIUWeiLUChaoGUOYuchenHUANGWenWANGJinhuiandDONGBo
    Journal of Ocean University of China 2021年3期

    LI Xiang, WANG Guilin, LI Yunfan, LIU Wei, LU Chao,GUO Yuchen, HUANG Wen, WANG Jinhui, and DONG Bo, 2), *

    Quantitative Evaluation of the Larval Density of Sea Potatospp. with Mitochondrial Molecular Marker

    LI Xiang1), 2), #, WANG Guilin1), 2), #, LI Yunfan1), LIU Wei3), 4), LU Chao3), 4),GUO Yuchen3), 4), HUANG Wen3), 4), WANG Jinhui5), and DONG Bo1), 2), *

    1),,,266003,2),,266237,3),352100,4),200137,5),,200137,

    The sea potatospp. is a species of sea cucumber, belonging to the classunder Phylum. It becomes blooming recently in the East Sea of China, causing serious ecological problems. However, until now there are no molecular data for its larval identification and population genetic analysis. In this study, we firstly screened a mtDNA fragment and demonstrated that it was the species-specific molecular marker for the identification ofspp. We then developed a quantitative polymerase chain reaction (PCR)method to evaluate the larval density ofspp. based on this molecular probe. Utilizing this method, we examined 116 plankton samples collected in four seasons from 13 stations along the coastal region in Fujian province, China. The results showed that the high larval density was presented at stations 1, 2, and 3, which were near a quay in the coast. The larval density increased from April and reached the highest value in June and July, suggesting temperature might be the main environmental factor on the effects of its population distribution and density. Our work provides an important molecular tool for species identification and risk evaluation of a potentially invasive species.

    spp.; sea potato; larval density; population distribution; molecular marker

    1 Introduction

    The sea potato (spp.), a species of sea cucum-ber,widely distributes in the waters alongsome Asiancounties including Philippine and China. Most of these spe- cies live in the intertidal zone, and only a few of them live in the coastal sediment. The sea potato has simple body structure with a fast reproductive ability. Every summer, it becomes blooming in the East Sea of China, causing serious problems on the maintenance and operation of marine facilities. For example, large numbers of adults and larvae of sea potato caused the blockage of the pipes for seawater intake and drainage for nuclear power plants. It is necessary to carry out species identification and establish the risk evaluation system forthis species. The classic species identification is mainly based on morphology observation. However, this approach is hard to identify the larvae of sea potato from a large number of plankton. The molecular methods based on the mitochondria genome have become an effective way to solve this problem.

    Mitochondria are subcellular organelles unique to eukaryotes, playing an important role in a series of cytolo- gical processes, such as energy metabolism (Brand, 1997; Morenosánchez., 2010), cellular aging and diseases (Wallace., 1995). Mitochondrial genome data have been utilized to study phylogeographic (Scribner., 2003), evolution and phylogenetic relationships of the ani- mals in the metazoans (Boore., 2005). Mitochondrial DNA (mtDNA) is a double-stranded circular DNA molecule that is independent of the chromosome. Its size is about 16kb (Boore, 1999). Except for a few species, most of animals’ mitochondrial genomes consist of 37 genes: 13 protein-coding genes, 2 ribosomal RNAs (rRNAs), 22 tran- sfers RNAs (tRNAs) (Boore and Brown, 1994; Peregrino- Uriarte., 2009), and a non-coding putative control re- gion, in which signal sequences exist for transcription and replication (Takata., 2001). mtDNA is essential for the process of protein synthesis, transcription, and translation. In addition, it has the characteristics of the small genome (Behera., 2018), compact structure, high copy number (Ingman., 2000) and no rearrangement during cell meiosis (Fan., 2011). It is widely used in evolution analysis, genetic diversity study and species identification (Curole and Kocher, 1999). The full mitochondrial sequ- ences of most species of the sea cucumber have been de- termined (Shen., 2009; Perseke., 2010).

    In our previous study, the mitochondrial DNA sequence ofspp.has been detected through polymerase chain reaction (PCR) amplification and Sanger sequencing (Wang., 2019). In this study, based on the complete mitochondrial genome sequences, we screened and identi- fied the partial sequence ofgene as a specific molecular marker for the identificationofspp. from the col- lected plankton samples. With the molecular marker, we de- veloped an effective method to identify and evaluate the population dynamic ofspp. through PCR.

    2 Materials and Methods

    2.1 Animal Collection

    Four adults ofspp.(Fig.1A) were collected fromthe coast in Fujian Province, China. Species were identifiedby morphology (Xiao, 2015) and 16S rRNA sequencing based on the published sequences (Wen., 2011).The samples were then fixed in 75% ethanol and stored at 4℃ until DNA extraction.

    The larvae ofspp.were collected using a type II plankton collection net (diameter 31.6cm, length 140cm,mesh size 0.16mm, rope length 10m) from 13 stations. The plankton samples were concentrated in a 500mL plastic sampling bottle and then fixed with 75% ethanol. The po- sitions of sampling stations were indicated in Fig.3A.

    2.2 DNA Isolation

    Total genomic DNA was extracted from the gonad of adultspp. and the planktonic samples, respec-tively, using a modified phenol/chloroform/isoamyl alco- hol method (Wei., 2020). Firstly, 45mL STE buffer (100mmolL?1NaCl, 10mmolL?1Tris-HCl, 100mmolL?1EDTA, pH 8.0) and 4.5mL 10% SDS (dissolved in ddH2O) were mixed in a 50mL tube to make the lysis buffer. The gonads were dissected from the animal and were put into a 1.5mL tube. Then 700μL lysis buffer and 2.8μL Protei- nase K (Merck, dissolve in ddH2O with the concentration of 50mgmL?1) were added into the tube to make a final concentration of 200μgmL?1proteinase K. The mixture was shaken gently and incubated in a water bath at 58℃for 3h.Finally, DNA was extracted with phenol-chloro- form-isoamyl alcohol and chloroform-isoamyl alcohol, re- spectively, and then precipitated by alcohol and dissolved in ddH2O. The dissolved DNA was stored at ?20℃.

    2.3 PCR Amplification

    PCR reaction was carried out using PfuS DNA polyme- rase (gift from Dr. Zhiyi Lv) in a 50μL volume. The reac- tion solution includes 10μL 5× Phusion HF Buffer (Ther- mo fisher Catalog number: F518L), 1μL 10mmolL?1dNTP, 2.5μL 10μmolL?1Primer F, 2.5μL 10μmolL?1Primer R, 1μL template DNA (200ngμL), 0.5μL PfuS DNA poly- merase, and 32.5μL ddH2O. The PCR was performed as follows: Pre-denaturation at 95℃ for 3min; denaturation at 95℃ for 15s; annealing at 55℃ for 15s, followed withelongation at 72℃ for 1min, and totally for 35 cycles; and a final extension at 72℃for 5min. The PCR products were purified by Gene JET Gel Extraction Kit (Thermo Fisher Scientific, Lithuanian).

    Table 1 Primer sequences and annealing temperatures

    Note: Degenerate base: R=A/G, Y=C/T, H=A/T/C, D=G/A/T.

    The primers for the amplification offromspp.were designed based on the published mitoge- nomes (Wang., 2019).The primer sequences and an- nealing temperaturesof PCR were shown in Table 1.

    2.4 TOPO Clone, Sequencing, and Sequence Alignment

    TOPO cloning was performed using pEasy-Blunt3 kit(Transgen, Beijing, China). Firstly, 4μL purified PCR pro- duct was mixed with 1μL pEasy-Blunt3 vector and incubated at 25℃ for 15min.Then they were transformed intoTrans1-T1 competent cells and spray on Luria-Bertani (LB)agar plates. The LB plates were cultured overnight at 37℃. Monoclonal colonies were picked up for sequencing. Sequencing was performed by Genwiz company (Tianjin, Chi- na). Multiple sequence alignments were carried out using the ClustalW program in BioEdit software (version 7.0.4.1) with default parameters.

    2.5 Image Analysis and Statistical Analyses

    Totally 116 plankton samples were examined by PCRto determine whether the larvae ofsppwere in the samples. PCR products were detected on a 1% agarose gel.The electrophoresis bands of 116 samples were analyzed using ImageJ software to calculate the gray value, which can reflect the content of DNA.(also known asgene) was used as a reference. The distribution ofspp. larvae at 13 detected stations were eva- luated based on molecular data.

    3 Results

    3.1 Morphological and Molecular Identification of Acaudina spp.

    One adult sample was collected from the coast of Fujian province. It was about eight cm long and its body pre- sented the light brown color with dark brown spots (Fig.1A). They were morphologically similar to sea potato. To iden- tify the species, we designed primersandto amplify a mitochondrial fragment including two genesandbased onpreviously published sequ- ences (FJ971405 and FJ971380) ofspp.(Wen., 2011)A 1500 bp DNA fragment was amplified from the total DNA (Fig.1B). After sequencing and alignment,bothandgenes from our samples showed high identify with the ones fromspp..However, the identity ofsequence from our samples with FJ- 971405 was only 85% (Fig.1C), and thesequ- ence from our samples showed 90% identity with FJ971- 380 (Fig.1D). Based on these data, we identified our sam- ples asspp.

    3.2 The Fragment of Mitochondrialnd1 Gene Was an Effective Species-Specific Molecular Marker

    Mitochondrial genes are widely used in population iden- tification and genetic studies, such as(Das., 2018),(Wang., 2018),(Behera., 2015)In our previous work, we got the mitochondrial genome sequ- ence ofspp.. Based on this data, we designed pri- mers to amplify different fragments from the total DNA ofspp. and other marine species to identify the species-specific marker. The results showed that a 229bpDNA fragment ofgene could be effectively amplified through a primers pair,(Fig.2A) and(Fig.2B) from the total DNA ofspp., but could not from other marine species including ascidians (,), clam ()andscallop ()(Fig.2C). We then tested the validity of this pair of primers using total DNA extracted from the collected plankton samples. The results showed that one specific fragment could be successfully amplified from 9 of 13 samples (Fig.2D), suggesting that the fragment ofgene is an effective species-specific molecular marker for species identification and larva detection from the plankton samples.

    Fig.1 Morphological and molecular identification of sea potato Acaudina spp.(A) Image of adultAcaudina spp.. Bar is 1cm. (B) Polymerase chain reaction (PCR) product with about 1500bp size. The length of the markers from top to bottom is 5000bp, 3000bp, 2000bp, 1500bp, 1000bp, 750bp, 500bp, 250bp, and 100bp, respectively. (C)Sequence alignment be- tween amplicon and Am-COI (FJ971405). The identity is 85%. (D) Sequence alignment between amplicon and Am-16S(FJ971380). The identity is 90%.

    Fig.2 Screen of species-specific molecular for the identification of Acaudina spp. (A) Alignment of the forward primer with the nd1 sequences from different species. (B) Alignment of the reverse primers with the nd1 sequences from different species. (C) The amplificated bands were presented in 1% agarose gel using the nd1 gene primers and the total DNA from different marine species. M, DL5000 marker; 1, C. robusta, 2, S. clava, 3, Acaudina spp.,4, M. quadrangularis, 5, P. yes- soensis. (D) The amplificated bands were presented in 1% agarose gel using the nd1 gene primers and the total DNA from the nine collected plankton samples.

    3.3 Quantitative Evaluation of Larval Population of Sea Potato

    To evaluate the population of sea potato, we developed a relative quantitative analysis method based on the species-specificmarker. The quality of DNA from each sample was verified bywith universal primers.The optical density ratio ofandPCR bands were used to represent the relative quantity of sea potato larvae, and compare the population variation among dif- ferent samples. The 116 samples were collected from 13 stations distributed along the coast region of Fujian province (Fig.3A). We divided all the sampling stations into four groups by the distance to the S01 station: group I in- cluded S01, S02, and S03, which were off S01 station less than 1km; group II included S04, S05, S06 and S07, off S01 station 1to 2km; Group III included S08, S09, and S10, off S01 station 4 to 6km; group IV included S11, S12, and S13, off S01 station more than 9km. The total DNA was extracted from the samples, respectively. AllDNA samples were diluted to 20ngμL?1, and 10μL was utilized for PCR. The DNA quality of most samples (107/ 116) were sufficiently good for the amplification of the fragments ofand. The results showed ob- vious differences in the relative larval density among the samples and the groups (Fig.3B). It clearly showed that the high-density sea potato was presented in group I station in spring and summer near the land, suggesting that distribution of sea potato is associated to the marine se- diment environment.

    Fig.3 Quantitative evaluation of the density of Acaudina spp. larvae. (A) Sampling stations in this study (B) Relative quan- tity of Acaudina spp. larval density.Relative densities of Acaudina spp. larvae are indicated through a gradient change from white to red. White color indicates lower density of larvae. Red color indicates higher density of the larvae. Blue color indicates that the sample was not collected. Yellow color indicates failures of PCR reaction (no band on the gel).

    3.4 Season Variation of Acaudina spp.Larvae

    The samples were collected in four seasons. The data showed that the highest larval density appeared in June and July. For stations in group I, there was a significant increase from May to July, and then a rapid decline after September (Fig.4A). For stations in groups II and III, they showed similar patterns: the lowest density in Winter, and other seasons showed the moderate density (Figs.4B and 4C). For group IV, the relative density was globally low and two small peaks were observed in January and June (Fig.4D).

    4 Discussion

    In this study, we successfully identified a 229bp fragment of geneasspp. specific molecular mar- ker, which provides an effective molecular tool for species identification and population dynamic evaluation. By analyzing the relative quantity of this fragment with PCR, we quantitatively detected the larval density ofspp.in a marine coast, and found that their density decreased gradually from offshore to deeper waters. In the samples that were collected from about 20m deep of the seawaters, the larval density is quite low. In addition, the higher density of larvae was presented in the samples col- lected in May, June, and July, suggesting that the larvae ofspp. might propagate from April to July.

    It is worthy to note that the method that we developed in this studycannot distinguish the species within one ge- nus. CRISPR-based specific high sensitivity enzymatic re-porter unlocking technology (Gootenberg., 2017; Gootenberg., 2018) and DNA endonuclease targeted CRISPR trans reporter technology (Chen., 2018) can be the alternative ways to accurately quantify target mole- cules. Loop-mediated isothermal amplification is another potentially useful technology with high specificity and ef- ficiency under isothermal conditions (Notomi., 2015).

    Fig.4 Relative density of Acaudina spp. larvae at different stations. Variation trend of relative density plot in stations of group I (A), group II (B), group III (C), and group IV (D), respectively.

    Our results showed that the larval density ofspp. is dynamic and tightly correlates with the temperature and the sediment in the offshore seawaters. These re- sults therefore provide useful information to understand the seasonal and regional distribution ofspp. lar- vae. Based on this information, population dynamics can be effectively evaluated, early warning mechanisms canbe established, and the population density ofspp.can be regulated in the specific sea region.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (No. 2018YFD090 0705), the Key Laboratory of Integrated Marine Monitor- ing and Applied Technologies for Harmful Algal Blooms Funds (No. MATHAB201706), and the Fundamental Re- search Funds for the Central Universities (No. 201822016).

    Behera, B. K., Baisvar, V. S., Rout, A. K., Pakrashi, S., Kumari, K., Panda, D., Das, P., Parida, P. K., Meena, D. K., Bhakta, D., Das, B. K., and Jena, J., 2018. The population structure and genetic divergence of(Hamilton, 1822) analyz- ed through mitochondrial DNA cytochrome b gene for con- servation in Indian waters., 29: 543-551.

    Behera, B. K., Kunal, S. P., Paria, P., Das, P., Meena, D. K., Pa- krashi, S., Sahoo, A. K., Panda, D., Jena, J., and Sharma, A. P., 2015. Genetic differentiation in Indian Major Carp,(Hamilton, 1822) from Indian Rivers, as revealed by direct sequencing analysis of mitochondrial Cytochromere- gion., 26: 1-3.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27: 1767-1780.

    Boore, J. L., and Brown, W. M., 1994. Mitochondrial genomes and the phylogeny of molluscs.,108 (supp. 2): 61- 78.

    Boore, J. L., Macey, J. R., and Medina, M., 2005. Sequencing andcomparing whole mitochondrial genomes of animals., 395: 311.

    Brand, M. D., 1997. Regulation analysis of energy metabolism., 200: 193-202.

    Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., and Doudna, J. A., 2018. CRISPR-Cas12a tar- get binding unleashes indiscriminate single-stranded DNase activity., 360: 436.

    Curole, J. P., and Kocher, T. D., 1999. Mitogenomics: Digging deeper with complete mitochondrial genomes., 14: 394-398.

    Das, S. P., Swain, S., Jena, J., and Das, P., 2018. Genetic di- versity and population structure ofreveal- ed by mitochondrial ATPase 6 gene., 29: 495-500.

    Fan, S., Hu, C., Wen, J., and Zhang, L., 2011. Characterization of mitochondrial genome of sea cucumber: A novel gene arrangement in Holothuroidea., 54: 434-441.

    Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., and Zhang, F., 2018. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6., 360: 439.

    Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., Verdine, V., Donghia, N., Daringer, N. M., Freije, C. A., Myhrvold, C., Bhattacharyya, R. P., Livny, J., Regev, A., Koonin, E. V., Hung, D. T., Sabeti, P. C., Col- lins, J. J., and Zhang, F., 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2., 356: 438.

    Ingman, M., Kaessmann, H., P??bo, S., and Gyllensten, U., 2000. Mitochondrial genome variation and the origin of modern hu- mans., 408: 708-713.

    Morenosánchez, R., Rodríguezenríquez, S., Marínhernández, A., and Saavedra, E., 2010. Energy metabolism in tumor cells., 274: 1393-1418.

    Notomi, T., Mori, Y., Tomita, N., and Kanda, H., 2015. Loop- mediated isothermal amplification (LAMP): Principle, features, and future prospects., 53: 1-5.

    Peregrino-Uriarte, A. B., Varela-Romero, A., Muhlia-Almazan, A., Anduro-Corona, I., Vega-Heredia, S., Gutierrez-Millan, L. E., De la Rosa-Velez, J., and Yepiz-Plascencia, G., 2009. The complete mitochondrial genomes of the yellowleg shrimpand the blue shrimp(Crustacea: Decapoda)., 4: 45-53.

    Perseke, M., Bernhard, D., Fritzsch, G., Brümmer, F., Stadler, P. F., and Schlegel, M., 2010. Mitochondrial genome evolutionin Ophiuroidea, Echinoidea, and Holothuroidea: Insights in phy- logenetic relationships of Echinodermata., 56: 201.

    Scribner, K. T., Talbot, S. L., Pearce, J. M., Pierson, B. J., Bol- linger, K. S., and Derksen, D. V., 2003. Phylogeography of Canada Geese () in western North America., 120: 889-907.

    Shen, X., Tian, M., Liu, Z., Cheng, H., Tan, J., Meng, X., and Ren, J., 2009. Complete mitochondrial genome of the sea cu- cumber(Echinodermata: Holothuroi- dea): The first representative from the subclass Aspidochi- rotacea with the echinoderm ground pattern., 439: 79- 86.

    Takata, K., Yoshida, H., Hirose, F., Yamaguchi, M., Kai, M., Oshige, M., Sakimoto, I., Koiwai, O., and Sakaguchi, K., 2001.mitochondrial transcription factor A: Characteri- zation of its cDNA and expression pattern during development., 287: 474-483.

    Wallace, D. C., Shoffner, J. M., Trounce, I., Brown, M. D., Bal- linger, S. W., Corraldebrinski, M., Horton, T., Jun, A. S., and Lott, M. T., 1995. Mitochondrial DNA mutations in human de- generative diseases and aging., 1271: 141-151.

    Wang, G., Li, X., Wang, J., Zhang, J., Liu, W., Lu, C., Guo, Y., and Dong, B., 2019. The complete mitochondrial genome and phylogenetic analysis of.–, 4: 668-669.

    Wang, X., Han, X., Zhang, Y., Liu, S., and Lin, Q., 2018. Phy- logenetic analysis and genetic structure of the seahorse,from the Arabian and Red Sea based on mi- tochondrial DNA sequences., 39: 165-171.

    Wei, J., Zhang, J., Lu, Q., Ren, P., Guo, X., Wang, J., Li, X., Chang, Y., Duan, S., Wang, S., Yu, H., Zhang, X., Yang, X., Gao, H., and Dong, B., 2020. Genomic basis of environmen- tal adaptation in the leathery sea squirt ()., 20: 1414-1431.

    Wen, J., Hu, C., Zhang, L., and Fan, S., 2011. Genetic identifi- cation of global commercial sea cucumber species on the basis of mitochondrial DNA sequences., 22: 72-77.

    Xiao, N., 2015.. Science Press, Beijing, 100pp (in Chinese).

    June 6, 2020;

    September 21, 2020;

    November 17, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    #The two authors contributed equally to this work.

    . E-mail: bodong@ouc.edu.cn

    (Edited by Qiu Yantao)

    国产又色又爽无遮挡免| 国产男人的电影天堂91| 好男人视频免费观看在线| 成年av动漫网址| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产av新网站| 一个人免费看片子| 一本久久精品| 19禁男女啪啪无遮挡网站| 国产 精品1| 777米奇影视久久| 大香蕉久久网| 婷婷色av中文字幕| 99久久综合免费| 精品一区二区三区四区五区乱码 | 一级毛片 在线播放| 尾随美女入室| 老司机深夜福利视频在线观看 | 精品人妻熟女毛片av久久网站| 超碰97精品在线观看| 又粗又硬又长又爽又黄的视频| 国产高清不卡午夜福利| 黄色 视频免费看| 男女边吃奶边做爰视频| 高清视频免费观看一区二区| 婷婷色综合www| 国产熟女午夜一区二区三区| 国产淫语在线视频| 天堂8中文在线网| av.在线天堂| av在线老鸭窝| 美女扒开内裤让男人捅视频| av卡一久久| 亚洲av电影在线进入| 久久久久久人人人人人| 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 韩国精品一区二区三区| av在线播放精品| 男女边摸边吃奶| 三上悠亚av全集在线观看| 久久综合国产亚洲精品| 久久精品亚洲av国产电影网| 美女中出高潮动态图| 王馨瑶露胸无遮挡在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲国产日韩一区二区| 午夜日韩欧美国产| 成人国产av品久久久| 国产精品99久久99久久久不卡 | xxxhd国产人妻xxx| 亚洲国产av影院在线观看| 成人亚洲精品一区在线观看| 涩涩av久久男人的天堂| 欧美精品av麻豆av| 亚洲国产av新网站| 色94色欧美一区二区| videos熟女内射| 大片电影免费在线观看免费| 日韩一本色道免费dvd| 国产免费又黄又爽又色| 亚洲国产精品一区三区| 久久免费观看电影| 丝袜喷水一区| 99九九在线精品视频| 成人亚洲精品一区在线观看| 国产精品久久久av美女十八| 一本久久精品| 亚洲精品aⅴ在线观看| 欧美激情极品国产一区二区三区| 一级黄片播放器| 亚洲精品久久午夜乱码| 日本午夜av视频| 亚洲精品一二三| 丰满饥渴人妻一区二区三| xxxhd国产人妻xxx| 桃花免费在线播放| 欧美日韩一区二区视频在线观看视频在线| 女人高潮潮喷娇喘18禁视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲美女视频黄频| 欧美激情高清一区二区三区 | 丝袜美足系列| 欧美日韩视频精品一区| 亚洲在久久综合| 777久久人妻少妇嫩草av网站| 99九九在线精品视频| 一级毛片 在线播放| 黄片小视频在线播放| 亚洲欧美一区二区三区久久| 美国免费a级毛片| 欧美日韩综合久久久久久| 99re6热这里在线精品视频| 成人国产av品久久久| 国产在线一区二区三区精| 亚洲精品在线美女| 伊人久久大香线蕉亚洲五| 在线观看人妻少妇| 性高湖久久久久久久久免费观看| 午夜免费男女啪啪视频观看| 人人妻人人澡人人爽人人夜夜| 日韩精品有码人妻一区| 69精品国产乱码久久久| 9色porny在线观看| 国产片特级美女逼逼视频| 国产爽快片一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产成人一区二区在线| 久久久亚洲精品成人影院| 国产极品粉嫩免费观看在线| 国产一区二区 视频在线| 免费久久久久久久精品成人欧美视频| 亚洲色图综合在线观看| 久热爱精品视频在线9| 成年av动漫网址| 欧美老熟妇乱子伦牲交| 亚洲av日韩在线播放| 精品国产一区二区三区久久久樱花| 色精品久久人妻99蜜桃| 久久久久国产一级毛片高清牌| 久久午夜综合久久蜜桃| 国产精品嫩草影院av在线观看| 亚洲av综合色区一区| 妹子高潮喷水视频| 男女午夜视频在线观看| 精品人妻熟女毛片av久久网站| 男女之事视频高清在线观看 | 国产色婷婷99| 精品国产一区二区三区久久久樱花| 成人手机av| 久久久久视频综合| netflix在线观看网站| 久久久久精品性色| 三上悠亚av全集在线观看| 日韩电影二区| 亚洲中文av在线| 久久久久久久久久久久大奶| 亚洲免费av在线视频| 久久久久精品国产欧美久久久 | 欧美在线黄色| 欧美黑人欧美精品刺激| 国产有黄有色有爽视频| 成人三级做爰电影| 99久国产av精品国产电影| 纯流量卡能插随身wifi吗| 成人免费观看视频高清| 制服诱惑二区| √禁漫天堂资源中文www| 日日摸夜夜添夜夜爱| 国产日韩欧美视频二区| 久久狼人影院| 亚洲七黄色美女视频| 美女主播在线视频| 国产精品女同一区二区软件| 一二三四在线观看免费中文在| 亚洲av在线观看美女高潮| 国产伦理片在线播放av一区| 亚洲av国产av综合av卡| 国产精品免费大片| 王馨瑶露胸无遮挡在线观看| 亚洲国产成人一精品久久久| 欧美黄色片欧美黄色片| 亚洲精品自拍成人| 久久久国产一区二区| 又粗又硬又长又爽又黄的视频| 高清不卡的av网站| 亚洲精品中文字幕在线视频| 久久av网站| 亚洲精品aⅴ在线观看| 视频在线观看一区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲成人av在线免费| 黄片无遮挡物在线观看| 国产高清国产精品国产三级| 9热在线视频观看99| 乱人伦中国视频| 亚洲视频免费观看视频| 在线精品无人区一区二区三| 777久久人妻少妇嫩草av网站| 久久人妻熟女aⅴ| 悠悠久久av| 成人三级做爰电影| 日韩一区二区视频免费看| 丝袜脚勾引网站| 亚洲色图综合在线观看| 国产精品三级大全| 国产成人精品久久二区二区91 | 久久久久久久大尺度免费视频| 毛片一级片免费看久久久久| 狂野欧美激情性bbbbbb| 欧美av亚洲av综合av国产av | 久久久久网色| 国产日韩欧美亚洲二区| 丝袜美腿诱惑在线| 少妇被粗大猛烈的视频| a 毛片基地| 国产成人系列免费观看| 你懂的网址亚洲精品在线观看| 国产国语露脸激情在线看| 久久影院123| 下体分泌物呈黄色| 日韩精品免费视频一区二区三区| 永久免费av网站大全| 亚洲免费av在线视频| 色播在线永久视频| 三上悠亚av全集在线观看| 中文字幕人妻丝袜一区二区 | 国产精品嫩草影院av在线观看| 亚洲av成人不卡在线观看播放网 | 日韩av免费高清视频| 丝袜美足系列| 在现免费观看毛片| avwww免费| 香蕉丝袜av| 久久这里只有精品19| 亚洲精品av麻豆狂野| 亚洲精品在线美女| 九草在线视频观看| 最黄视频免费看| 国产高清国产精品国产三级| 国产一级毛片在线| 五月开心婷婷网| 国产精品无大码| 国产视频首页在线观看| 国产 精品1| 如何舔出高潮| 久久久国产精品麻豆| 中文字幕人妻熟女乱码| 大片免费播放器 马上看| 如何舔出高潮| 国产av精品麻豆| 日韩精品有码人妻一区| 夜夜骑夜夜射夜夜干| 极品少妇高潮喷水抽搐| 国产伦人伦偷精品视频| 极品人妻少妇av视频| 久久韩国三级中文字幕| av线在线观看网站| 精品国产露脸久久av麻豆| 色婷婷av一区二区三区视频| 日韩免费高清中文字幕av| 伊人久久国产一区二区| 精品国产乱码久久久久久男人| 国产国语露脸激情在线看| 亚洲,一卡二卡三卡| 婷婷成人精品国产| 免费在线观看完整版高清| 天天躁夜夜躁狠狠躁躁| 啦啦啦在线免费观看视频4| 又大又黄又爽视频免费| 亚洲av国产av综合av卡| 人成视频在线观看免费观看| 成人毛片60女人毛片免费| 母亲3免费完整高清在线观看| 国产又色又爽无遮挡免| 亚洲精品国产av成人精品| bbb黄色大片| 久久精品国产亚洲av涩爱| 欧美日韩av久久| 亚洲精品日本国产第一区| 久久国产亚洲av麻豆专区| 精品久久蜜臀av无| 亚洲国产av新网站| 亚洲欧美成人综合另类久久久| 欧美另类一区| 久久精品亚洲熟妇少妇任你| 久久久久精品性色| 老司机在亚洲福利影院| 成人18禁高潮啪啪吃奶动态图| 高清视频免费观看一区二区| 青春草国产在线视频| 欧美另类一区| 在线观看免费日韩欧美大片| 亚洲av中文av极速乱| 久久精品人人爽人人爽视色| 亚洲欧美激情在线| 天堂中文最新版在线下载| 十八禁高潮呻吟视频| 亚洲精品国产av成人精品| 亚洲欧洲国产日韩| 视频在线观看一区二区三区| 在线观看一区二区三区激情| 久久精品aⅴ一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 亚洲情色 制服丝袜| 国产又爽黄色视频| 久久精品亚洲熟妇少妇任你| 老司机影院成人| 无限看片的www在线观看| 午夜av观看不卡| 高清av免费在线| www.熟女人妻精品国产| 综合色丁香网| netflix在线观看网站| 国产精品一二三区在线看| a 毛片基地| 晚上一个人看的免费电影| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 中文乱码字字幕精品一区二区三区| 国产xxxxx性猛交| 如日韩欧美国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 又粗又硬又长又爽又黄的视频| 久久久久久人妻| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| 欧美 亚洲 国产 日韩一| 在线免费观看不下载黄p国产| 亚洲三区欧美一区| 日韩精品免费视频一区二区三区| 精品福利永久在线观看| 国产女主播在线喷水免费视频网站| 高清av免费在线| av国产精品久久久久影院| 欧美日韩精品网址| 涩涩av久久男人的天堂| 日韩一区二区视频免费看| 亚洲人成网站在线观看播放| 老司机影院毛片| 国产极品天堂在线| 性少妇av在线| 天天躁日日躁夜夜躁夜夜| 十八禁高潮呻吟视频| av网站免费在线观看视频| av天堂久久9| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花| 欧美日韩亚洲国产一区二区在线观看 | 黑丝袜美女国产一区| 成年女人毛片免费观看观看9 | 亚洲欧洲国产日韩| 99久国产av精品国产电影| 欧美黄色片欧美黄色片| 日韩大片免费观看网站| 国产精品免费视频内射| 国产在线视频一区二区| 国产男人的电影天堂91| 蜜桃国产av成人99| 成年美女黄网站色视频大全免费| 在线观看国产h片| 另类精品久久| 黑丝袜美女国产一区| 2018国产大陆天天弄谢| 久久久久久久大尺度免费视频| 午夜日本视频在线| 少妇猛男粗大的猛烈进出视频| 免费少妇av软件| 久久精品亚洲av国产电影网| 2021少妇久久久久久久久久久| 亚洲男人天堂网一区| 色吧在线观看| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 成人18禁高潮啪啪吃奶动态图| 涩涩av久久男人的天堂| av在线观看视频网站免费| 成人影院久久| 亚洲欧美精品综合一区二区三区| 精品少妇黑人巨大在线播放| 精品一区在线观看国产| 人人妻,人人澡人人爽秒播 | 亚洲欧美一区二区三区久久| 国产毛片在线视频| 最近最新中文字幕免费大全7| 亚洲欧美一区二区三区国产| 亚洲精品一二三| 日韩不卡一区二区三区视频在线| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 久久久久精品国产欧美久久久 | 欧美精品亚洲一区二区| 精品酒店卫生间| 性少妇av在线| 一级a爱视频在线免费观看| 成年人免费黄色播放视频| 成人国语在线视频| 久久人人爽人人片av| 国产一区二区激情短视频 | 亚洲自偷自拍图片 自拍| 另类亚洲欧美激情| 午夜老司机福利片| 亚洲欧美激情在线| 高清黄色对白视频在线免费看| 亚洲av电影在线观看一区二区三区| 美女国产高潮福利片在线看| 国产色婷婷99| 波多野结衣一区麻豆| 九色亚洲精品在线播放| 亚洲人成77777在线视频| 久久影院123| 亚洲欧美色中文字幕在线| 亚洲欧美精品自产自拍| 9色porny在线观看| 国产免费又黄又爽又色| 一区二区三区精品91| 咕卡用的链子| 欧美人与善性xxx| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 国产在线免费精品| 亚洲国产欧美一区二区综合| 亚洲七黄色美女视频| 国产成人午夜福利电影在线观看| 成人手机av| av国产精品久久久久影院| 男的添女的下面高潮视频| 精品一区在线观看国产| 超碰97精品在线观看| 建设人人有责人人尽责人人享有的| 免费在线观看视频国产中文字幕亚洲 | 高清欧美精品videossex| 亚洲美女搞黄在线观看| 日本黄色日本黄色录像| 哪个播放器可以免费观看大片| 久久热在线av| 精品国产超薄肉色丝袜足j| 人妻一区二区av| 日韩人妻精品一区2区三区| 大片电影免费在线观看免费| 9热在线视频观看99| videosex国产| 伦理电影免费视频| 午夜影院在线不卡| 99热国产这里只有精品6| 最近的中文字幕免费完整| 国产伦人伦偷精品视频| 少妇猛男粗大的猛烈进出视频| 欧美黄色片欧美黄色片| 国产精品三级大全| 免费黄频网站在线观看国产| 国产欧美日韩综合在线一区二区| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人| 卡戴珊不雅视频在线播放| 深夜精品福利| av天堂久久9| 久久精品国产亚洲av涩爱| 卡戴珊不雅视频在线播放| 国产有黄有色有爽视频| 国产黄色视频一区二区在线观看| 91国产中文字幕| 久久久久久久大尺度免费视频| 国产一区二区在线观看av| 日日啪夜夜爽| 日韩av免费高清视频| 1024香蕉在线观看| av国产精品久久久久影院| 亚洲人成77777在线视频| 欧美国产精品va在线观看不卡| 青春草视频在线免费观看| 精品午夜福利在线看| 亚洲人成网站在线观看播放| 亚洲,一卡二卡三卡| 美女脱内裤让男人舔精品视频| a级毛片黄视频| 亚洲av国产av综合av卡| 天天躁夜夜躁狠狠躁躁| 国产男人的电影天堂91| 亚洲男人天堂网一区| 国产免费视频播放在线视频| 你懂的网址亚洲精品在线观看| 777久久人妻少妇嫩草av网站| 成人手机av| 亚洲图色成人| 啦啦啦在线观看免费高清www| 亚洲精华国产精华液的使用体验| 亚洲色图综合在线观看| 精品免费久久久久久久清纯 | tube8黄色片| 久久久精品94久久精品| 大香蕉久久网| 免费在线观看视频国产中文字幕亚洲 | 欧美97在线视频| 成人18禁高潮啪啪吃奶动态图| 五月开心婷婷网| 亚洲四区av| 十八禁人妻一区二区| 久久久久久久大尺度免费视频| 国产精品亚洲av一区麻豆 | 亚洲色图综合在线观看| 制服丝袜香蕉在线| 亚洲欧美激情在线| 精品一区二区免费观看| 一区福利在线观看| 久久精品久久精品一区二区三区| 男女之事视频高清在线观看 | 亚洲伊人色综图| 在线观看三级黄色| 亚洲久久久国产精品| 嫩草影院入口| 欧美精品人与动牲交sv欧美| 999精品在线视频| 成人国产av品久久久| 亚洲欧洲日产国产| 亚洲久久久国产精品| 日韩欧美精品免费久久| 国产黄色免费在线视频| 久久精品国产a三级三级三级| 国产男女内射视频| 91精品三级在线观看| 午夜福利影视在线免费观看| 亚洲精品视频女| 18禁动态无遮挡网站| 精品久久蜜臀av无| 精品少妇黑人巨大在线播放| 国产精品久久久久成人av| 亚洲av国产av综合av卡| 国产在线一区二区三区精| 日韩一卡2卡3卡4卡2021年| 日韩精品免费视频一区二区三区| 看免费av毛片| 久久99一区二区三区| 亚洲精品国产区一区二| 成年女人毛片免费观看观看9 | 一区二区日韩欧美中文字幕| 亚洲精品久久午夜乱码| 亚洲av日韩在线播放| 亚洲精品国产区一区二| 久久久久国产一级毛片高清牌| 一本一本久久a久久精品综合妖精| 亚洲在久久综合| 综合色丁香网| 中文字幕人妻丝袜一区二区 | 欧美日韩视频高清一区二区三区二| 日韩电影二区| av网站在线播放免费| 在线观看一区二区三区激情| 国产精品人妻久久久影院| videos熟女内射| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成a人片在线观看| 中文字幕人妻熟女乱码| 免费黄网站久久成人精品| 亚洲av成人精品一二三区| 精品亚洲乱码少妇综合久久| 七月丁香在线播放| 精品亚洲成国产av| 国产精品亚洲av一区麻豆 | 狂野欧美激情性xxxx| 精品亚洲乱码少妇综合久久| 精品一区二区免费观看| 国产亚洲一区二区精品| 大话2 男鬼变身卡| 九色亚洲精品在线播放| 亚洲七黄色美女视频| 久久韩国三级中文字幕| 成年人免费黄色播放视频| 中文字幕高清在线视频| 在线天堂最新版资源| 成年人午夜在线观看视频| 中文天堂在线官网| 韩国av在线不卡| 性色av一级| 久久天躁狠狠躁夜夜2o2o | 尾随美女入室| 超碰成人久久| 一区在线观看完整版| 日韩电影二区| 丝袜美足系列| av在线观看视频网站免费| 丝袜喷水一区| 制服人妻中文乱码| 叶爱在线成人免费视频播放| 国产精品一二三区在线看| 久久久久视频综合| 19禁男女啪啪无遮挡网站| 国产精品99久久99久久久不卡 | 午夜福利乱码中文字幕| 亚洲婷婷狠狠爱综合网| 亚洲精品,欧美精品| 搡老岳熟女国产| 高清不卡的av网站| 亚洲精品视频女| 日日啪夜夜爽| 我的亚洲天堂| 大话2 男鬼变身卡| 熟妇人妻不卡中文字幕| 激情五月婷婷亚洲| 一级毛片黄色毛片免费观看视频| 久久精品久久久久久久性| 啦啦啦在线观看免费高清www| 国产精品.久久久| 欧美日韩av久久| 免费在线观看黄色视频的| 久热这里只有精品99| 一二三四中文在线观看免费高清| 亚洲精品aⅴ在线观看| 久久精品国产a三级三级三级| 国产一区二区 视频在线| 久久99一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 成人漫画全彩无遮挡| 国产高清不卡午夜福利| 韩国高清视频一区二区三区| av网站在线播放免费| 国产精品一区二区在线观看99| 免费日韩欧美在线观看| 少妇人妻 视频| 久久婷婷青草| 王馨瑶露胸无遮挡在线观看| 电影成人av| 人人妻,人人澡人人爽秒播 | 精品久久久精品久久久| 两性夫妻黄色片| 精品一区二区三卡| av国产久精品久网站免费入址| 成人黄色视频免费在线看| 久久久精品免费免费高清| 一本大道久久a久久精品| 日本午夜av视频| 80岁老熟妇乱子伦牲交| 老司机深夜福利视频在线观看 | 香蕉国产在线看|