可 欣, 周 燕,, 張飛杰,, 朱凱旋, 楊 敏, 袁溶瀟, 郭觀林*
1.沈陽航空航天大學(xué)能源與環(huán)境學(xué)院, 遼寧 沈陽 110136 2.生態(tài)環(huán)境部土壤與農(nóng)業(yè)農(nóng)村生態(tài)環(huán)境監(jiān)管技術(shù)中心, 北京 100012 3.中國環(huán)境科學(xué)研究院土壤與固體廢物研究所, 北京 100012
目前我國土壤修復(fù)產(chǎn)業(yè)迅速發(fā)展,據(jù)不完全統(tǒng)計(jì)2019年我國污染場地修復(fù)規(guī)模超過60億元[1]. 在這些修復(fù)工程中,固化/穩(wěn)定化、淋洗、化學(xué)氧化/還原等修復(fù)藥劑修復(fù)技術(shù)具有周期短、適用范圍廣、操作簡單等優(yōu)勢,而得以廣泛應(yīng)用. 2018年我國土壤修復(fù)工程99個(gè)案例中,固化/穩(wěn)定化技術(shù)應(yīng)用占48.5%、化學(xué)氧化/還原技術(shù)占34.3%、淋洗修復(fù)技術(shù)占1%[2]. 以目前普遍應(yīng)用的固化/穩(wěn)定化修復(fù)藥劑2%~5%的添加比例估算,大量的修復(fù)藥劑會被應(yīng)用于場地修復(fù),其成分可能會對土壤、植物造成不良影響. 修復(fù)藥劑中硫成分會降低植物葉綠素含量和酶活性[3]. 修復(fù)藥劑中磷的淋失會造成水體富營養(yǎng)化和地下水污染,同時(shí)可能導(dǎo)致土壤中砷、硒、鎢的浸出[4]. 修復(fù)藥劑本身的酸堿性或修復(fù)過程可能會導(dǎo)致土壤酸堿極端,破壞原有土壤理化性質(zhì)、降低微生物、酶活性. 外源性修復(fù)藥劑進(jìn)入土壤的危害及可能引發(fā)的二次污染地下水問題不容忽視. 目前污染土壤修復(fù)分析評估指標(biāo)一般只包括污染物濃度的測定,基于修復(fù)藥劑對土壤本身物理、化學(xué)、生物性質(zhì)及地下水影響的評估存在缺陷.
本文闡述了常用場地修復(fù)藥劑的分類與修復(fù)機(jī)理,對修復(fù)藥劑的潛在危害性進(jìn)行分析,提出針對修復(fù)藥劑安全的評價(jià)指標(biāo)和安全管控的建議,以期為修復(fù)藥劑安全利用提供參考.
目前在修復(fù)過程中涉及到修復(fù)藥劑的技術(shù)包括固化/穩(wěn)定化、淋洗、化學(xué)氧化/還原等. 不同技術(shù)所采用的藥劑類型、添加量、反應(yīng)機(jī)理和后期風(fēng)險(xiǎn)管控措施均有區(qū)別. 近年來,包括天然材料、人工合成材料、副產(chǎn)品等來源的材料被用作場地修復(fù)藥劑. 表1、表2、表3分別對固化/穩(wěn)定化、淋洗、化學(xué)氧化/還原等修復(fù)藥劑類型、修復(fù)對象和來源進(jìn)行了分類和總結(jié).
表1 常見固化/穩(wěn)定化藥劑的類型及來源
表2 常見淋洗藥劑類型及來源
表3 常見化學(xué)氧化/還原藥劑類型及來源
土壤修復(fù)過程中藥劑的作用效果會因污染物特性產(chǎn)生差異,不同修復(fù)藥劑對污染物的作用機(jī)理差異明顯. 固定化技術(shù)通過添加固定化藥劑將污染物質(zhì)封入惰性材料或在污染物外加上低滲透材料,減少污染物的淋洗面積,以降低污染物的遷移性;穩(wěn)定化技術(shù)將穩(wěn)定化藥劑與土壤混合,與土壤污染物發(fā)生吸附、絡(luò)合、螯合等反應(yīng),改變污染物的賦存形態(tài)或組成,減小其毒性、溶解性和遷移性[44];淋洗技術(shù)利用淋洗藥劑對污染物解吸、溶解、螯合等作用,把污染物轉(zhuǎn)移至淋洗藥劑中,后與土壤固液分離處理,達(dá)到清洗土壤的目的[45];化學(xué)氧化修復(fù)技術(shù)通過化學(xué)氧化藥劑與污染物發(fā)生氧化反應(yīng),降解污染物或轉(zhuǎn)化污染物毒性、移動性;化學(xué)還原修復(fù)技術(shù)藥劑可降解污染物或?qū)⑽廴疚镛D(zhuǎn)化為固定態(tài),從而降低污染物的生物可利用性和遷移性[46].
常見的固化/穩(wěn)定化藥劑一般分為無機(jī)、有機(jī)和復(fù)合3種類型,無機(jī)類藥劑反應(yīng)機(jī)理主要有:堿性材料提高土壤pH,增加土壤表面負(fù)電荷,增大對金屬陽離子的吸附,或生成重金屬的氫氧化物或碳酸鹽沉淀;粘土礦物類材料層狀結(jié)構(gòu)上的負(fù)離子可與金屬陽離子發(fā)生離子交換反應(yīng)或共沉淀反應(yīng);磷酸鹽類固定藥劑本身可與重金屬離子反應(yīng),形成難溶性的沉淀而固定重金屬[14];金屬氧化物類材料可通過專項(xiàng)吸附將重金屬間隔在金屬氧化物層間減少重金屬的移動性[47]. 有機(jī)類藥劑反應(yīng)機(jī)理一般包括以下兩種情形:①天然有機(jī)材料利用有機(jī)材料中的有機(jī)質(zhì)及豐富的含氧官能團(tuán)(如·OH、·COOH等),與污染物發(fā)生吸附、絡(luò)合或螯合反應(yīng)[48];②非天然有機(jī)材料如生物炭利用其孔隙多導(dǎo)致的大表面積對污染物吸附,表面含氧官能團(tuán)的配位作用可與重金屬反應(yīng)生成絡(luò)合物,也可提高土壤pH,使重金屬移動性降低[49]. 復(fù)合類藥劑主要類型有無機(jī)類+無機(jī)類藥劑、無機(jī)類+有機(jī)類藥劑. 無機(jī)類藥劑引起的pH變化可被有機(jī)類藥劑中的有機(jī)質(zhì)緩解,無機(jī)類藥劑可與有機(jī)類藥劑吸附的污染物發(fā)生離子交換反應(yīng)降低污染物毒性. 復(fù)合類藥劑可同時(shí)發(fā)揮無機(jī)類和有機(jī)類藥劑的優(yōu)勢.
修復(fù)工程中用于淋洗的修復(fù)藥劑類型包括無機(jī)淋洗劑、螯合劑、表面活性劑、天然有機(jī)酸. 無機(jī)淋洗藥劑主要是通過離子交換、酸解等作用使污染物從土壤解吸,降低土壤污染物含量. 螯合劑將與土壤結(jié)合的污染物解絡(luò)后,與污染物形成強(qiáng)螯合物分離污染物. QIAO等[50]采用連續(xù)式和間歇式兩種EDTA輔助淋洗方法進(jìn)行研究,發(fā)現(xiàn)連續(xù)浸提可以去除75.43%的鉛、53.21%的鎘,間歇浸提可以去除78.08%的鉛、57.37%的鎘. 表面活性劑的反應(yīng)機(jī)理有以下兩種情形:①通過潤濕和滲透污染土壤,利用其分子結(jié)構(gòu)中憎水基與疏水有機(jī)物與土壤結(jié)合,降低界面張力使污染物增流,或?qū)ξ廴疚锏哪z束增容,促進(jìn)土壤有機(jī)污染物的解吸[51];②與重金屬離子發(fā)生離子交換或配合作用,把重金屬離子從土壤中分離. 天然有機(jī)酸可與重金屬污染物通過絡(luò)合作用溶解土壤中污染物,進(jìn)而去除污染物.
化學(xué)氧化藥劑可以將有機(jī)大分子污染物質(zhì)氧化分解為小分子物質(zhì)或最終礦化為CO2、H2O及無機(jī)鹽物質(zhì),主要用于處理有機(jī)物污染土壤. 場地土壤修復(fù)常用的化學(xué)氧化藥劑有高錳酸鹽、臭氧、Fenton試劑、及過硫酸鹽. 高錳酸鹽可與有機(jī)物上的氫發(fā)生反應(yīng),使氫鍵斷裂后實(shí)現(xiàn)氧化[52]. 臭氧可直接氧化活性芳香烴、胺等有機(jī)物,也可分解后產(chǎn)生自由基(·OH)與有機(jī)物發(fā)生加成反應(yīng)、脫氫反應(yīng)降解有機(jī)物. Fenton及類Fenton試劑活化組分H2O2產(chǎn)生·OH以氧化作用降解有機(jī)污染物. 過硫酸鹽含有過氧基(—O—O—),與水接觸可產(chǎn)生S2O82-,能有效地降解有機(jī)污染. YAN等[53]利用菱鐵礦分別催化H2O2和H2O2-過硫酸鹽體系處理三氯乙烯(TCE),結(jié)果表明隨H2O2或過硫酸鹽藥劑量增加,生成了更多的·OH或SO4-·,TCE去除率分別為49.3%和100%. 目前常見的化學(xué)還原藥劑包括鐵系還原藥劑和硫系還原藥劑,二者都可將高價(jià)態(tài)、高毒性重金屬還原為低價(jià)態(tài)、低毒重金屬. 以修復(fù)Cr6+污染土壤為例,主要有以下兩種方法:①利用硫系還原藥劑H2S使土壤呈弱酸還原態(tài),將土壤中的Cr6+還原為Cr3+;②鐵系還原藥劑ZVI或Fe2+將Cr6+還原為Cr3+,本身被氧化為Fe3+,最終Cr3+與Fe3+形成CrxFe1-x(OH)3沉淀,同時(shí)降低了Cr的生物可利用性和遷移性.
修復(fù)藥劑的修復(fù)效果與場地環(huán)境和修復(fù)藥劑性質(zhì)、施用量相關(guān). 土壤巖性、含水率、污染空間分布的異質(zhì)性以及施工過程中的攪拌均勻程度都會影響修復(fù)藥劑的靶向性和傳質(zhì)效果,進(jìn)而影響修復(fù)方案中修復(fù)藥劑的施用量. 一方面,當(dāng)施用量偏低時(shí),會導(dǎo)致污染土壤的修復(fù)不達(dá)標(biāo);另一方面,過量施加修復(fù)藥劑不僅增加了修復(fù)成本,還會對土壤理化性質(zhì)造成影響,且形成二次污染物. 如圖1所示,修復(fù)藥劑及修復(fù)產(chǎn)物會通過土壤孔隙遷移從而擴(kuò)大污染范圍,還會直接或間接遷移至地下水. 此外,修復(fù)產(chǎn)物會經(jīng)過生態(tài)系統(tǒng)的物質(zhì)循環(huán)擴(kuò)散,對生態(tài)安全和人體健康產(chǎn)生風(fēng)險(xiǎn). 我國土壤修復(fù)行業(yè)正逐步進(jìn)入規(guī)范化管理的關(guān)鍵階段,因而在開發(fā)和應(yīng)用高效修復(fù)藥劑的同時(shí),需要關(guān)注修復(fù)藥劑的負(fù)面影響.
圖1 修復(fù)藥劑及修復(fù)產(chǎn)物遷移模型Fig.1 Migration model of remediation agents and degradation products
使用修復(fù)藥劑會改變土壤的物質(zhì)組成,主要表現(xiàn)為影響土壤透氣性、持水量和水分傳導(dǎo)率,對土壤物理環(huán)境產(chǎn)生副作用. 修復(fù)藥劑加入時(shí),會不同程度地改變土壤的容重和密度,從而引起土壤持水量的變化;同時(shí),修復(fù)藥劑可能會降低土壤毛管孔隙度和通氣性,提高土壤飽和導(dǎo)水率引起毛管水量下降,最終導(dǎo)致土壤蓄水量的下降. WEI等[54]利用生物炭探究其在干、濕循環(huán)后土壤的開裂形狀和收縮特性,結(jié)果表明隨生物炭施用量的增加,干燥過程中裂縫裂隙度、等效寬度、分形維數(shù)和開裂連通性指數(shù)均降低;經(jīng)過3個(gè)濕潤和干燥循環(huán)后,150 g/kg處理的裂縫裂隙度下降了56.9%,土壤的收縮能力降低了45.54%,且土壤空隙率與含水率的相關(guān)性隨生物炭利用率的增加而減小. 王興照[55]研究了土壤毛細(xì)水特性受表面活性劑的影響,表明施用3種表面活性劑(十二烷基硫酸鈉、Tween40、Tween80)分別降低了土壤毛細(xì)水上升高度的13.6%、22.1%和27.9%,在一定程度下,土壤含水率和毛細(xì)水的上升速率與表面活性劑濃度呈負(fù)相關(guān). 戚興超[56]對離子型表面活性劑影響土壤性質(zhì)的研究表明,陽離子型十六烷基三甲基溴化銨(CTAB)在施入土壤30 min后增大了粒級在2~0.25 mm和<0.053 mm團(tuán)聚體的數(shù)量,土壤團(tuán)聚體的平均重量直徑、團(tuán)聚體的穩(wěn)定性分別與表面活性劑的濃度成正比,隨CTAB濃度增加,土壤水分滲入速率增大.
修復(fù)藥劑與土壤組分物質(zhì)發(fā)生離子交換、氧化還原等化學(xué)反應(yīng)后,會破壞原有土壤的化學(xué)環(huán)境. 一方面,修復(fù)藥劑或修復(fù)產(chǎn)物可能會改變土壤的pH,導(dǎo)致土壤酸堿度失衡,例如,砷污染土壤修復(fù)中,使用生物炭等堿性修復(fù)藥劑會導(dǎo)致土壤pH增大,增強(qiáng)砷活性,引起土壤孔隙水中砷濃度增加[57];另一方面,氧化/還原性修復(fù)藥劑與土壤中變價(jià)元素或污染物反應(yīng)會引起離子價(jià)態(tài)改變,影響土壤氧化還原電位,進(jìn)而影響污染物以及土壤組分遷移和存在形態(tài),例如,陰離子表面活性劑可將土壤中K+等陽離子去除,降低土壤陽離子交換量. 淋洗修復(fù)會在淋洗過程中導(dǎo)致土壤中營養(yǎng)物質(zhì)(氮、磷、鉀等)的流失. GUO等[58]淋洗修復(fù)土壤重金屬污染的研究表明,F(xiàn)eCl3、EDTA、MC(EDTA、GLDA、檸檬酸摩爾比為1∶1∶3)淋洗的石灰性污染土壤中總氮含量分別下降了13.9%、9.85%和10.9%,總鉀含量分別下降了16.1%、5.7%、3.6%. 富含官能團(tuán)的修復(fù)藥劑可與土壤膠體中的顆粒形成復(fù)合體,促使土壤中有機(jī)物大量分解. 氧化性修復(fù)藥劑可將有機(jī)質(zhì)中可氧化部分降解. 陳玉等[59]利用化學(xué)氧化劑修復(fù)污染土壤研究表明,向污染土壤分別施用2.5 mmol/g的過氧化氫、Fenton試劑和高錳酸鉀后,土壤7%的有機(jī)質(zhì)含量分別降至4.19%、3.77%、2.98%. 納米藥劑作為當(dāng)前研究較多的修復(fù)藥劑,應(yīng)用于污染土壤修復(fù)時(shí),也會對土壤組分產(chǎn)生一定負(fù)面影響. 尹勇等[60]將nSiO2、nTiO2、nZnO三種納米藥劑施入水稻田的試驗(yàn)表明,3種納米藥劑均降低了土壤有機(jī)質(zhì)含量,且3種不同濃度的nSiO2和nTiO2處理后,土壤有效磷和有效鉀含量均降低.
修復(fù)藥劑不僅會直接影響土壤中營養(yǎng)物質(zhì)的輸送,還會對微生物產(chǎn)生毒害作用,影響微生物的活性,進(jìn)而限制微生物參與土壤分解生態(tài)系統(tǒng)的物質(zhì)交換和能量流動. Tilston等[61]對nZVI(零價(jià)鐵)修復(fù)氯代芳烴污染土壤的研究表明,nZVI加入改變了土壤理化條件(pH、Eh),降低了氯芳香族礦化微生物的活性. 微生物的多樣性也會對修復(fù)藥劑響應(yīng)發(fā)生變化. Palmroth等[62]的土柱淋洗試驗(yàn)發(fā)現(xiàn),改良Fenton藥劑〔0.4 g/g (以H2O2計(jì))土壤〕氧化未酸化土壤后,柱滲濾液對費(fèi)歇爾弧菌的毒性增加,微生物活性和活細(xì)胞豐度均較低. 土壤微生物對修復(fù)藥劑劑量的耐受度也應(yīng)作為修復(fù)藥劑應(yīng)用過程中的重要參考. TU等[63]在多硫化鈣修復(fù)鎘污染土壤的研究表明,添加CaSx可顯著抑制土壤微生物活性,1%和2% CaSx處理后可恢復(fù)微生物活性、群落多樣性和豐富度,而5% CaSx處理后微生物代謝活性明顯下降. 此外,修復(fù)藥劑引起土壤性質(zhì)改變也會催化土壤中酶活性降低,引起土壤自凈能力及土壤肥力降低. 祝方等[64]關(guān)于螯合劑對鋅污染場地土壤中酶活性的研究表明,高濃度的EDTA對酶活性的增幅降低,高濃度草酸和EDDS顯著抑制磷酸酶的活性.
修復(fù)藥劑在修復(fù)過程中會引起土壤結(jié)構(gòu)、通氣性和水分滲濾的改變,導(dǎo)致殘留污染物、修復(fù)藥劑及其分解物通過淋溶等途徑進(jìn)入地下水,引發(fā)二次污染. 如磷酸鹽類穩(wěn)定藥劑施用過程中,隨著施用量的增加,淋失量超過10%,有較高滲濾風(fēng)險(xiǎn),易造成水體富營養(yǎng)化[65]. 螯合劑由于難降解,在淋洗修復(fù)過程中也有滲濾污染地下水的風(fēng)險(xiǎn). WEN等[66]研究表明,20 d后EDTA降解率僅為14%. 此外,表面活性劑能增大有機(jī)污染物的溶解度,增強(qiáng)污染物的遷移性,進(jìn)入地下水后導(dǎo)致污染范圍擴(kuò)大.
藥劑安全評估的目的是確定化學(xué)物質(zhì)是否對健康或環(huán)境構(gòu)成風(fēng)險(xiǎn). 目前我國場地修復(fù)藥劑安全應(yīng)用還存在一些問題,缺乏藥劑使用的引導(dǎo)規(guī)范;評價(jià)集中于污染物濃度,缺乏針對修復(fù)藥劑成分以及施用對土壤環(huán)境影響的安全性評價(jià)體系. 以修復(fù)藥劑成分安全性和修復(fù)后長效性為切入點(diǎn),建立修復(fù)藥劑安全性評估體系尤為迫切.
進(jìn)入21世紀(jì)以來,各國對土壤修復(fù)藥劑安全日益重視. 2016年我國農(nóng)業(yè)部發(fā)布的《土壤調(diào)理劑 通用要求》(NY/T 3034—2016)[67],要求調(diào)理劑對其主要成分含量、pH、有毒有害成分限量(根據(jù)不同原料)等做出明示. 2019年我國頒布了針對土壤添加劑的《肥料中有毒有害物質(zhì)的限量要求》(GB 38400—2019)[68],對肥料中有毒有害的重金屬和有機(jī)物含量限值做出明確規(guī)定. 2018年我國農(nóng)業(yè)部發(fā)布了《肥料和土壤調(diào)理劑 急性經(jīng)口毒性試驗(yàn)及評價(jià)要求》[69],以受試劑對小鼠的經(jīng)口半數(shù)致死劑量為標(biāo)準(zhǔn),將受試劑分為無毒、低毒、中等毒和高毒4個(gè)等級,以評價(jià)受試劑的毒性. 藥劑安全應(yīng)用的研究日益增多,但尚缺乏完善的場地修復(fù)藥劑安全性評價(jià)規(guī)范.
從修復(fù)場地后土壤的應(yīng)用類型出發(fā),構(gòu)建修復(fù)藥劑成分安全性評價(jià)體系,可以加強(qiáng)場地修復(fù)過程中修復(fù)藥劑的安全性和長效性評價(jià). 修復(fù)藥劑中金屬安全性評價(jià)可參考土壤污染風(fēng)險(xiǎn)篩選值、國家或地方土壤背景值以及《肥料中有毒有害物質(zhì)的限量要求》中金屬指標(biāo)確定. 修復(fù)藥劑中其他有毒有害物質(zhì)的限制規(guī)定可參考相關(guān)化學(xué)物質(zhì)安全法〔如《弗蘭克勞騰伯格21世紀(jì)化學(xué)物質(zhì)安全法》(LCSA)〕[70]、相關(guān)化學(xué)物質(zhì)名錄〔如《中國現(xiàn)有化學(xué)物質(zhì)名錄》(IECSC)[71]、歐盟REACH法[72]等〕等資料. 制定針對修復(fù)藥劑成分安全性評價(jià)方法,確定修復(fù)藥劑成分安全評價(jià)指標(biāo),建立修復(fù)藥劑危害成分名錄,進(jìn)而規(guī)范修復(fù)藥劑的準(zhǔn)入成分和劑量范圍,才能確保場地修復(fù)藥劑的安全.
確定修復(fù)藥劑對土壤的物理化學(xué)、生物環(huán)境影響的評價(jià)指標(biāo),可以更全面評估應(yīng)用土壤修復(fù)藥劑后土壤環(huán)境質(zhì)量的變化. 對比使用前后土壤背景值、土壤肥力、土壤生物活性、土壤生態(tài)質(zhì)量中具體指標(biāo)值變化,可以準(zhǔn)確評估修復(fù)藥劑施用對土壤環(huán)境的影響. 通過選定合適的土壤/地下水質(zhì)量評價(jià)模型和案例驗(yàn)證,利用相關(guān)性分析、主成分分析和判別分析確定修復(fù)藥劑與指標(biāo),及其組合相互關(guān)聯(lián)的方向和強(qiáng)度,建立對應(yīng)于應(yīng)用修復(fù)藥劑的土壤指標(biāo)最小數(shù)據(jù)集(MDS),將修復(fù)藥劑劑量與土壤指標(biāo)值變化進(jìn)行回歸分析,確定指標(biāo)的臨界限值,可以簡潔高效地評估修復(fù)藥劑對場地造成的影響. 表4總結(jié)了近幾年國內(nèi)不同地塊土壤評價(jià)指標(biāo)最小數(shù)據(jù)集,由于土壤的復(fù)雜性和異質(zhì)性,指標(biāo)的代表性尚需更多的研究和驗(yàn)證.
表4 不同地塊土壤質(zhì)量評價(jià)指標(biāo)最小數(shù)據(jù)集
場地土壤質(zhì)量評價(jià)過程具有不確定性和主觀性,制定基于模糊邏輯的環(huán)境質(zhì)量指標(biāo)能更嚴(yán)格且實(shí)際地評估土壤質(zhì)量,為場地土壤質(zhì)量的評估工作開辟了新途徑. 由專家小組基于模糊邏輯和模糊集理論確定修復(fù)藥劑修復(fù)效果動態(tài)質(zhì)量指數(shù)(S-DQI)指標(biāo)[82],可持續(xù)有效評價(jià)修復(fù)藥劑修復(fù)后土壤質(zhì)量變化.專家小組判定土壤動態(tài)質(zhì)量的屬性,并結(jié)合MDS構(gòu)建法制定針對修復(fù)藥劑的土壤指標(biāo)數(shù)據(jù)集;確定相關(guān)指標(biāo)的隸屬表示函數(shù),并確定標(biāo)準(zhǔn)化優(yōu)先級向量以表示具體土壤指標(biāo),進(jìn)而確定評價(jià)修復(fù)藥劑應(yīng)用前后土壤質(zhì)量的S-DQI;相關(guān)部門、機(jī)構(gòu)對修復(fù)前后S-DQI長期監(jiān)測,以有效估計(jì)由于修復(fù)藥劑應(yīng)用引起的土壤質(zhì)量變化,促進(jìn)場地修復(fù)藥劑的安全應(yīng)用.
《污染場地風(fēng)險(xiǎn)管控與土壤修復(fù)技術(shù)效果評估技術(shù)導(dǎo)則》(HJ 25.5—2018)[83]中明確提出對化學(xué)氧化、還原修復(fù)產(chǎn)生的二次污染物需進(jìn)行評估. 加強(qiáng)基于修復(fù)藥劑化學(xué)組成的污染修復(fù)反應(yīng)機(jī)理研究,對修復(fù)產(chǎn)物做出更準(zhǔn)確的判斷,可更有效地對修復(fù)產(chǎn)物進(jìn)行安全性評價(jià),包括修復(fù)產(chǎn)物對污染場地周圍土壤的污染評價(jià),以及對地下水的安全評價(jià),確保修復(fù)后修復(fù)產(chǎn)物不會產(chǎn)生二次危害.
2019年《土壤污染防治法》新增了建立土壤有毒有害物質(zhì)的防控制度,并將逐步推出土壤修復(fù)相關(guān)細(xì)分領(lǐng)域的相關(guān)細(xì)則. 對進(jìn)入土壤后的修復(fù)藥劑開展安全和效果評估,加強(qiáng)修復(fù)藥劑準(zhǔn)入管控,避免二次污染,有利于推行場地修復(fù)可持續(xù)發(fā)展理念.
對修復(fù)藥劑明確安全準(zhǔn)入細(xì)則,有利于實(shí)施過程的有效管控. 依據(jù)修復(fù)藥劑安全性評價(jià),準(zhǔn)入細(xì)則可以從成分準(zhǔn)入和劑量準(zhǔn)入兩個(gè)方面做出規(guī)定. 成分準(zhǔn)入以修復(fù)藥劑成分直接毒性為依據(jù),明確要求用于生產(chǎn)修復(fù)藥劑的成分清單,禁止添加對場地造成破壞的成分,從源頭阻止高毒性修復(fù)藥劑的應(yīng)用.劑量準(zhǔn)入的規(guī)范對象為對污染場地直接毒性較小,但長期累積后具有較大潛在危害性的修復(fù)藥劑. 劑量準(zhǔn)入綜合考慮修復(fù)藥劑對污染場地物理、化學(xué)及生物的影響,對修復(fù)藥劑的施加劑量范圍做出具體規(guī)定.
完善我國針對場地修復(fù)藥劑安全性的評價(jià)指標(biāo)體系和評價(jià)方法,強(qiáng)化修復(fù)后的長期監(jiān)管,促進(jìn)修復(fù)藥劑的安全應(yīng)用. 加強(qiáng)基于生態(tài)毒理學(xué)、環(huán)境歸趨、生態(tài)毒理學(xué)的修復(fù)藥劑安全性研究,建立針對修復(fù)藥劑的生態(tài)毒理據(jù)庫,建立包括物理、化學(xué)、生物在內(nèi)的評價(jià)指標(biāo)體系,評價(jià)修復(fù)藥劑對場地的影響.
從生態(tài)安全和人體健康安全角度,結(jié)合模糊邏輯和MDS,確定基于生態(tài)環(huán)境風(fēng)險(xiǎn)和人體健康的修復(fù)藥劑安全性評價(jià)指標(biāo),以劑量效應(yīng)關(guān)系量化評價(jià)修復(fù)藥劑的安全性.
持續(xù)強(qiáng)化基于修復(fù)藥劑安全性的風(fēng)險(xiǎn)管控和修復(fù)后監(jiān)管,防止修復(fù)過程的二次污染. 強(qiáng)化修復(fù)安全監(jiān)督責(zé)任,建立修復(fù)藥劑安全性應(yīng)用問題的反饋機(jī)制;強(qiáng)化修復(fù)藥劑應(yīng)用后的二次污染防治監(jiān)督.
參考文獻(xiàn)(References):
[1] 劉陽生,李書鵬,邢軼蘭,等.2019年土壤修復(fù)行業(yè)發(fā)展評述及展望[J].中國環(huán)保產(chǎn)業(yè),2020,261(3):26-30.
[2] 張娟,劉陽生,李書鵬,等.2018年土壤修復(fù)行業(yè)發(fā)展概述及發(fā)展展望[J].中國環(huán)保產(chǎn)業(yè),2019,250(4):17-19.
[3] 崔巖山.硫?qū)ν寥梨k鋅鉛的植物有效性影響的研究[D].北京:中國科學(xué)院研究生院,2004.
[4] MIRETZKY P,FERNANDEZ-CIRELLI A.Phosphates for Pb immobilization in soils:a review[J].Environmental Chemistry Letters,2008,6(3):121-133.
[5] HALE B,EVANS L,LAMBERT R.Effects of cement or lime on Cd,Co,Cu,Ni,Pb,Sb and Zn mobility in field-contaminated and aged soils[J].Journal of Hazardous Materials,2012,199/200:119-127.
[6] LI Shan,HUANG Xiao,MUHAMMAD F,etal.Waste solidification/stabilization of lead-zinc slag by utilizing fly ash based geopolymers[J].RSC Advances,2018,8(57):32956-32965.
[7] ZHOU Rui,LIU Xiaochen,LUO Lin,etal.Remediation of Cu,Pb,Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment[J].Internationall Biodeterioration & Biodegradation,2017,118:73-81.
[8] SUN Yuebing,ZHAO Dan, XU Yingming,etal.Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J].Frontiers of Environmental Science & Engineering,2015,10(1):85-92.
[9] ANTONIADIS V,ZANNI A A,LEVIZOU E,etal.Modulation of hexavalent chromium toxicity onOriganumvulgarein an acidic soil amended with peat,lime,and zeolite[J].Chemosphere,2018,195:291-300.
[10] HUAN-PING JING,WANG XueJiang,etal.Sustainable utilization of a recovered struvite/diatomite compound for lead immobilization in contaminated soil:potential,mechanism,efficiency,and risk assessment[J].Environmental Science and Pollution Research International,2019,26(5):4890-4900.
[11] ZHANG Gangya,LIN Yunqing,WANG Mingkuang.Remediation of copper polluted red soils with clay materials[J].Journal of Environmental Sciences,2011,23(3):461-467.
[12] FANG Yueying,CAO Xinde,ZHAO Ling,etal.Effects of phosphorus amendments and plant growth on the mobility of Pb,Cu,and Zn in a multi-metal-contaminated soil[J].Environmental Science and Pollution Research,2012,19(5):1659-1667.
[13] CUI Hongbiao,SHI Yu,ZHOU Jing,etal.Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition[J].Agriculture,Ecosystems & Environment,2018,267:165-173.
[14] CAO X,MA L Q,RHUE D R,etal.Mechanisms of lead,copper,and zinc retention by phosphate rock[J].Environmental Pollution,2004,131(3):435-444.
[15] XENIDIS A,STOURAITI C,PAPASSIOPI N.Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J].Journal of Hazardous Materials,2010,177(1):929-937.
[16] LIN Jiajiang,SUN Mengqiang,SU Binglin,etal.Immobilization of cadmium in polluted soils by phytogenic iron oxide nanoparticles[J].Science of the Total Environment,2019,659:491-498.
[17] XU Xiaowei,CHEN Chuang,WANG Ping,etal.Control of arsenic mobilization in paddy soils by manganese and iron oxides[J].Environmental Pollution,2017,23:37-47.
[18] SHI Weiyu,SHAO Hongbo,LI Hua,etal.Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids[J].Journal of Hazardous Materials,2009,167(1/2/3):136-140.
[19] FARRELL M,GRIFFITH G W,HOBBS P J,etal.Microbial diversity and activity are increased by compost amendment of metal-contaminated soil[J].Fems Microbiology Ecology,2010,71(1):94-105.
[20] ALABOUDI K A,AHMED B,BRODIE G.Effect of biochar on Pb,Cd and Cr availability and maize growth in artificial contaminated soil[J].Annals of Agricultural Sciences,2019,64(1):95-102.
[21] ZHAO Lianqin,GUAN Xin,YU Baowei,etal.Carboxylated graphene oxide-chitosan spheres immobilize Cu2+in soil and reduce its bioaccumulation in wheat plants[J].Environment International,2019,133:105208.
[22] MOUTSATSOU A,GREGOU M,MATSAS D,etal.Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities[J].Chemosphere,2006,63(10):1632-1640.
[23] JANG Min,HWANG J S,CHOI S I.Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines[J].Chemosphere,2007,66(1):8-17.
[24] GAO Ruili,ZHU Pengfei,GUO Guangguang,etal.Efficiency of several leaching reagents on removal of Cu,Pb,Cd,and Zn from highly contaminated paddy soil[J].Environmental Science and Pollution Research,2016,23(22):23271-23280.
[25] GLUHAR S,JEZ E,LESTAN D.The use of zero-valent Fe for curbing toxic emissions after EDTA-based washing of Pb,Zn and Cd contaminated calcareous and acidic soil[J].Chemosphere,2019,215:482-489.
[26] CHEN Hong,CUTRIGHT T.EDTA and HEDTA effects on Cd,Cr,and Ni uptake by Helianthus annuus[J].Chemosphere,2001,45(1):21-28.
[27] WANG Guiyin,ZHANG Shisong,XU Xiaoxun,etal.Heavy metal removal by GLDA washing:optimization,redistribution,recycling,and changes in soil fertility[J].Science of the Total Environment,2016,569-570.
[29] LIANG Chun,PENG Xianjia.Mobilization of arsenic from contaminated sediment by anionic and nonionic surfactants[J].Journal of Environmental Sciences,2016,56(6):281-289.
[30] YAN Jingchun,GAO Weiguo,QIAN Linbo,etal.Remediation of nitrobenzene contaminated soil by combining surfactant enhanced soil washing and effluent oxidation with persulfate[J].Plos One,2015,10(8):e0132878.
[31] LU Li,ZHU Lizhong.Effect of a cationic surfactant on the volatilization of PAHs from soil[J].Environmental Science & Pollution Research International,2012,19(5):1515-1523.
[32] 張方立,黨志,孫貝麗,等,不同淋洗劑對土壤中多氯聯(lián)苯的洗脫[J].環(huán)境科學(xué)研究,2014,27(3):287-294.
ZHANG Fangli,DANG Zhi,SUN Beili,etal.Study on the desorption of polychlorinated biphenyls (PCBs) by different eluents from contaminated soils[J].Research of Environmental Sciences,2014,27(3):287-294.
[33] 丁寧,徐貝妮,彭燦,等.表面活性劑淋洗去除高嶺土中鎘和鉛的研究[J].環(huán)境科學(xué)與技術(shù),2017,40(8):184-188.
DING Ning,XU Beini,PENG Can,etal.Research on washing of kaolinite to remove cadmium and lead by surfactants[J].Environmental Science & Technology (China),2017,40(8):184-188.
[34] 魏世強(qiáng),木志堅(jiān),青長樂.幾種有機(jī)物對紫色土鎘的溶出效應(yīng)與吸附-解吸行為影響的研究[J].土壤學(xué)報(bào),2003,40(1):110-117.
WEI Shiqiang,MU Zhijian,QING Changle.Effect of several organic substances on the solubility and adsorption-desorption behaviors of cadmium in purplish soil[J].Acta Pedologica Sinica,2003,40(1):110-117.
[35] WEI Meng,CHEN Jiajun,LIU Yunsong.The Combination of Na2EDTA and reducing organic acid on remediation of soil contaminated by heavy metals[J].Key Engineering Materials,2017,744:531-535.
[36] BOULANGé M,LORGEOUX C,BIACHE C,etal.Fenton-like and potassium permanganate oxidations of PAH-contaminated soils:impact of oxidant doses on PAH and polar PAC (polycyclic aromatic compound) behavior[J].Chemosphere,2019,224:437-444.
[37] AKPOVETA O V,MEDJOR W O,MEDJOR E A.Fenton treatment via oxidative mechanism and its kinetics on soil polluted with automatic gas oil[J].Petroleum,2018,4(4):452-456.
[38] GOI A,VIISIMAA M.Integration of ozonation and sonication with hydrogen peroxide and persulfate oxidation for polychlorinated biphenyls-contaminated soil treatment[J].Journal of Environmental Chemical Engineering,2015,3(4):2039-2047.
[39] MEDINA R,DAVID-GARA P M,FERNNDEZ-GONZLEZ A J,etal.Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation[J].Science of the Total Environment,2018,618:518-530.
[40] AHMAD R,HASAN I.L-cystein modified bentonite-cellulose nanocomposite (cellu/cys-bent) for adsorption of Cu2+,Pb2+,and Cd2+ions from aqueous solution[J].Separation Science and Technology,2015,51(3):381-394.
[41] MAHAR A,WANG P,ALI A,etal.(Im)mobilization of soil heavy metals using CaO,FA,sulfur,and Na2S:a 1-year incubation study[J].International Journal of Environmental Science and Technology,2017,15(3):607-620.
[42] MAZLOOMI S,NASSERI S,NABIZADEH R,etal.Remediation of fuel oil contaminated soils by activated persulfate in the presence of MnO2[J].Soil and Water Research,2016,11(2):131-138.
[43] WAZNE M,JAGUPILLA S C,MOON D H,etal.Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore proc essing residue (COPR)[J].Journal of Hazardous Materials,2007,143(3):620-628.
[44] 黃占斌,李昉澤.土壤重金屬固化穩(wěn)定化的環(huán)境材料研究進(jìn)展[J].中國材料進(jìn)展,2017,36(11):840-851.
HUANG Zhanbin,LI Fangze.Research progress of environmental meterials on solidification and stabilization of heavy metals in soil[J].Materials China,2017,36(11):840-851.
[45] 可欣,李培軍,鞏宗強(qiáng),等.重金屬污染土壤修復(fù)技術(shù)中有關(guān)淋洗劑的研究進(jìn)展[J].生態(tài)學(xué)雜志,2004,23(5):145-149.
KE Xin,LI Peijun,GONG Zongqiang,etal.Advances in flushing agents used for remediation of heavy metal-contaminated soil[J].Chinese Journal of Ecology,2004,23(5):145-149.
[46] 于穎,周啟星.污染土壤化學(xué)修復(fù)技術(shù)研究與進(jìn)展[J].環(huán)境污染治理技術(shù)與設(shè)備,2005(7):1-7.
[47] KUMPIENE J,LAGERKVIST A,MAURICE C.Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments:a review[J].Waste Management,2006,28(1):215-225.
[48] 華珞,白鈴玉,韋東普,等.有機(jī)肥-鎘-鋅交互作用對土壤鎘鋅形態(tài)和小麥生長的影響[J].中國環(huán)境科學(xué),2002,22(4):59-63.
HUA Luo,BAI Yuling,WEI Dongpu,etal.Effects of interaction by organic manure-Cd-Zn on Cd,Zn formation in soil and wheat growth[J].China Environmental Science,2002,22(4):59-63.
[49] BIEDERMAN L A,HARPOLE W S.Biochar and its effects on plant productivity and nutrient cycling:a meta-analysis[J].Global Change Biology Bioenergy,2013,5(2):202-214.
[50] QIAO Jiangbo,SUN Huimin,LUO Xiuhua,etal.EDTA-assisted leaching of Pb and Cd from contaminated soil[J].Chemosphere,2017,167:422-428.
[51] JOHNSON D N,PEDIT J A,MILLER C T.Efficient,near-complete removal of DNAPL from three-dimensional,heterogeneous porous media using a novel combination of treatment technologies[J].Environmental Science & Technology,2004,38(19):5149-5156.
[52] LADBURY J W,CULLIS C F.Kinetics and mechanism of oxidation by permanganate[J].Chemical Reviews,1958,58(2):403-438.
[53] YAN Ni,LIU Fei,HUANG Weiying.Interaction of oxidants in siderite catalyzed hydrogen peroxide and persulfate system using trichloroethylene as a target contaminant[J].Chemical Engineering Journal,2013,219:149-154.
[54] WEI Cuilan,GAO Weida,WHALLEY W R,etal.Shrinkage characteristics of lime concretion black soil as affected by biochar amendment[J].Pedosphere,2018,28(5):713-725.
[55] 王興照.表面活性劑對土壤毛細(xì)水上升特性的影響研究[D].昆明:昆明理工大學(xué),2018.
[56] 戚興超.離子型表面活性劑在土壤上的吸附及其對土壤性質(zhì)的影響[D].泰安:山東農(nóng)業(yè)大學(xué),2016.
[57] HARTLEY W,DICKINSON N M,RIBY P,etal.Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus[J].Environmental Pollution,2009,157(10):2654-2662.
[58] GUO Xiaofang,ZHAO Guohui,ZHANG Guixiang,etal.Effect of mixed chelators of EDTA,GLDA,and citric acid on bioavailability of residual heavy metals in soils and soil properties[J].Chemosphere,2018,209:776-782.
[59] 陳玉,任文會,文國濤,等.化學(xué)氧化修復(fù)二甲四氯污染土壤研究[J].環(huán)境工程,2016,34(S1):1008-1111.
CHEN Yu,REN Wenhui,WEN Guotao,etal.Remediation of 2-meythyl-4-chlorophenoxyacetic acid contaminated soil by chemical oxidation[J].Environmental Engineering,2016,34(S1):1008-1111.
[60] 尹勇,劉靈.三種納米材料對水稻幼苗生長及根際土壤肥力的影響[J].農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2020,37(5):736-743.
YIN Yong,LIU Ling.Effects of three nanomaterials on the growth and rhizospheric soil fertility of rice seedlings[J].Journal of Agricultural Resources and Environment,2020,37(5):736-743.
[61] TILSTON E L,COLLINS C D,MITCHELL G R,etal.Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil[J].Environmental Pollution,2013,173:38-46.
[62] PALMROTH M R T,LANGWALDT J H,AUNOLA T A,etal.Effect of modified fenton′s reaction on microbial activity and removal of pahs in creosote oil contaminated soil[J].Biodegradation,2006,17(2):29-39.
[63] TU Chen,GUAN Feng,SUN Yuhuan,etal.Stabilizing effects on a Cd polluted coastal wetland soil using calcium polysulphide[J].Geoderma,2018,332:190-197.
[64] 祝方,商執(zhí)峰,陳雨,等.螯合劑-大白菜修復(fù)電子垃圾拆解場地土壤中鋅與磷酸酶活性的研究[J].安全與環(huán)境工程,2014,21(3):41-45.
ZHU Fang,SHANG Zhifeng,CHEN Yu,etal.Experimental study on the remediation of soils in the E-waste disassembling sites by chelator and Chinese cabbage[J].Safety and Environmental Engineering,2014,21(3):41-45.
[65] BASTA N T,MCGOWEN S L.Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J].Environmental Pollution,2004,127(1):73-82.
[66] WEN Jia,STACEY S P,MCLAUGHLIN M J,etal.Biodegradation of rhamnolipid,EDTA and citric acid in cadmium and zinc contaminated soils[J].Soil Biology & Biochemistry,2009,41(10):2214-2221.
[67] 中華人民共和國農(nóng)業(yè)部.NY/T 3034—2016 土壤調(diào)理劑 通用要求[S].北京:中國農(nóng)業(yè)出版社,2016.
[68] 國家市場監(jiān)督管理總局,中國國家標(biāo)準(zhǔn)化管理委員會.GB 38400—2019 肥料中有毒有害物質(zhì)的限量要求[S].北京:中國標(biāo)準(zhǔn)出版社,2019.
[69] 農(nóng)業(yè)部.NY/T 1980—2018 肥料和土壤調(diào)理劑 急性經(jīng)口毒性試驗(yàn)及評價(jià)要求[S].北京:中國標(biāo)準(zhǔn)出版社,2019.
[70] US EPA.The Frank R. Lautenberg chemical safety for the 21stcentury act[Z].Washington DC:Senate and House of Representatives of the United States of America in Congress assembled,2016:114-182.
[71] 生態(tài)環(huán)境部.中國現(xiàn)有化學(xué)物質(zhì)名錄[M].北京:中國環(huán)境科學(xué)出版社, 2013.
[72] 白利強(qiáng).歐盟REACH法規(guī)對中國化學(xué)品管理啟示[C]//白利強(qiáng).中國毒理學(xué)會管理毒理與風(fēng)險(xiǎn)評估專業(yè)委員會第四屆全國會員代表大會暨學(xué)術(shù)交流會.蘇州:中國毒理學(xué)會,2013:108-111.
[73] LI Xiaoyan,WANG Dongyan,REN Yongxing,etal.Soil quality assessment of croplands in the black soil zone of Jilin Province,China:establishing a minimum data set model[J].Ecological Indicators,2019,107:105251.
[74] LI Peng,SHI Kun,WANG Yuanyuan,etal.Soil quality assessment of wheat-maize cropping system with different productivities in China:establishing a minimum data set[J].Soil & Tillage Research,2019,190:31-40.
[75] LI Peng,WU Mengchen,KANG Guodong,etal.Soil quality response to organic amendments on dryland red soil in subtropical China[J].Geoderma,2020,373:114416.
[76] SHAO Guodong,AI Juanjuan,SUN Qiyu,etal.Soil quality assessment under different forest types in the Mount Tai,central eastern China[J].Ecological Indicators,2020,115:106439.
[77] YU Pujia,LIU Shiwei,ZHANG Liang,etal.Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China[J].Science of the Total Environment,2018,616/617:564-571.
[78] WU Chunsheng,LIU Gaohuan,HUANG Chong,etal.Soil quality assessment in Yellow River Delta:establishing a minimum data set and fuzzy logic model[J].Geoderma,2019,334:82-89.
[79] LIU Jie,WU Lichao,CHEN Dong,etal.Development of a soil quality index forCamelliaoleiferaforestland yield under three different parent materials in southern China[J].Soil and Tillage Research,2018,176:45-50.
[80] YU Pujia,HAN Dongliang,LIU Shiwei,etal.Soil quality assessment under different land uses in an alpine grassland[J].Catena,2018,171:280-287.
[81] PANG Danbo,CAO Jianhua,DAN Xinqiu,etal.Recovery approach affects soil quality in fragile karst ecosystems of southwest China:implications for vegetation restoration[J].Ecological Engineering,2018,123:151-160.
[83] 生態(tài)環(huán)境部.HJ 25.5—2018 污染場地風(fēng)險(xiǎn)管控與土壤修復(fù)技術(shù)效果評估技術(shù)導(dǎo)則[Z].北京:中國環(huán)境科學(xué)出版社,2018.