• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dependence of Estimating Whitecap Coverage on Currents and Swells

    2021-06-25 10:38:06LIUMinYANGBailinJIANanandZOUZhongshui
    Journal of Ocean University of China 2021年3期

    LIU Min, YANGBailin, JIANan, and ZOU Zhongshui

    Dependence of Estimating Whitecap Coverage on Currents and Swells

    LIU Min1), YANGBailin2), JIANan3), and ZOU Zhongshui4), *

    1) Ocean College, Hebei Agriculture University, Qinhuangdao 066000, China 2) School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China 3) PLA Information Engineering University, Zhengzhou 450001, China 4) School of Marine Science, Sun Yat-Sen University, Zhuhai 519082, China

    The shipboard measurements of whitecap coverage () and the meteorological and oceanographic information from two cruises in the South China Sea and Western Pacific are explored for estimating. This study aims at evaluating how to improve the parameterizations ofwhile considering the effects of currents and swells on wave breaking. Currents indeed affectin a way that winds with following currents can decrease, whereas winds with opposing currents can increase. Then, 10-m wind speed over sea surface (10) is calibrated by subtracting the current velocity from10when the propagating directions of winds and currents are aligned. By contrast, when the direction is opposite,10is calibrated by adding the parallel velocity component of the opposing current to10. The power fits ofdependence on the10-related parameters of10, friction velocity, wind sea Reynolds number in terms of this calibrated-10obtain better results than those directly fitted to10. Different from the effect of currents on, wind blowing along the crest line of swells may contribute to the increase in. The conclusions suggest that10should be calibrated first before parameterizingin areas with a strong current or some swell-dominant areas.

    whitecap coverage; currents; friction velocity; wind sea Reynolds number; swells

    1 Introduction

    Wave breaking is important for air-sea interaction processes, which can be expressed as whitecap coverage () for easier observation and better description. The parameterizations ofare of great interest and traditionally fitted to 10-m wind speed over sea surface (10) (Monahan, 1971; Hanson and Phillips, 1999; Stramska and Petelski, 2003). As certain differences exist among10, onlyparameterizations are used in various studies. A considerable effort has been exerted to find other parameters, such as field statistics and meteorological factors, for newparameterizations. Till now, the overall parameters used for estimatingcan be divided into two kinds: one is the10-related parameters, such as friction velocity (*) and wind sea Reynolds number (H) (Wu, 1979; Guan, 2007; Yuan, 2009), the other is named secondary factors or10absence parameters, including current velocity (current), thermal stability of the lower atmosphere, seawater temperature, and fetch (Wu, 1988; Xu, 2000; Callaghan, 2008; Salisbury, 2013).

    Anguelova and Webster (2006), Ren(2016), and Brumer(2017) provided a chronological listing of whitecap fraction datasets during the period of 1971–2004, 1963–2013, and 2007–2016, respectively. The10-relatedpower law functions can be influenced by currents due to wave current interaction (Khojasteh, 2018). When the along-wind current velocity is large enough,Haus (2007) found that the relative winds shifted by the currents, thereby affecting wave growth rates.Pearman(2014) showed that the effect of the current field on the swell is negligible. Nevertheless, for the wind wave high-frequency tail of wave spectral, steepening on the opposing current may contribute to thewave breaking dissipation or observed decay. Novel airborne observationsaccomplished by Romero(2017)over areas withstrong wavecurrent interactionsshowedmaximum vertical vorticity with a largebecause of strengthened wave break- ing.

    Currents indeed have an influence on, which may change the ‘effective-10’ for wave growth. For example, although the10is in the range of 7–8ms?1, Kraan(1996) found no visual whitecaps and suggested that the absence of whitecaps was caused by strong tidal currents of up to 1ms?1. Callaghan(2008) believed that a directionalalignment of wind and currentaccompanied by an increase incurrentproduceda marked increase in. Meanwhile, the measurements ofin the presence of the recorded magnitude and direction ofcurrents are scarce. Therefore, the manner in which currents work is unclear.

    Apart from currents, swells are also under our consideration if they have the same effect as the currents on(Zheng, 2019a, 2019b, 2020). Woolf (2005) proposed the importance of swells for. Sugihara(2007) and Callaghan(2008) indicated that whitecaps tend to be suppressed by the presence of swells, especially under the condition of opposing swells. Hwang(2013) believed that swells could promote whitecaps.

    On the basis of the data measured by ship, we attempt to further explore how currents and swells affectand determine if they influencein the same way. The following are the remaining parts of the paper. Section 2 introduces the data used in this study. Section 3 discusses how the magnitudes and directions of currents and swells influenceand proposes the improved power fits ofto10-related parameters on the basis of the current calibrated-10. Section 4 describes some important conclusions.

    2 Whitecap Observation

    Meteorological and oceanographic data were collected from two cruises byfrom Ocean University of China: the South China Sea cruise from December 5, 2013 to January 4, 2014 and the Western Pacific Ocean cruise from November 7, 2015 to January 7, 2016. The two projects focused on the study areas around 102?–115?E, 1?S–21?N and 135?–161?E, 1?S–36?N (Fig.1).

    Fig.1 A map showing the geography of the zone and trajectory of the scientific cruises. The blue stars and red pluses represent the South China Sea cruise and the Western Pacific Ocean cruise, respectively.

    The field statistics of waves and currents were continually recorded by the X-band Radar of WaMoSII and measured by the Waverider and Conductance Temperature Depth at some fixed stations. Meteorological parameters were obtained by the automatic weather station, 16m in height above the sea surface. The observed wind speed values were corrected to10on the basis of the logarithmic wind profile formula. The measurements ofwere manually taken by a camera on the top of the vessel, and thenwas extracted from photographs using the automated white- cap extraction (AWE) method proposed by Callaghan and White (2009) and the improved AWE algorithm proposed by Jia and Zhao (2019).

    Here is a brief description of the improved AWE algorithm, that is, how the photos of the sea surface are converted to values of. For traditional AWE, each photo is first converted into a grayscale image with pixels ranging from 0 to 1, and the percentage increase in pixels is used to obtain potential thresholds for separating whitecaps with background water. To reduce the influence of strong sun- light, the light distribution and brightness contrast of the measured photo are adjusted by Jia and Zhao (2019) to obtain a precise intensity threshold. Avalue is then acquired after computing the ratio of white pixels to black pixels on the basis of the intensity threshold. Data are divided into two subsets: the deflection angle between the propagating directions of wind and current smaller (greater) than 90? is denoted as |wind?current|<90? (>90?), indicating the alignment (encounter) of wind and current. Considering the effect of currents on,10is calibrated on the basis of the above deflection angles. Using the least square method,10and current calibrated-10dependent parameterizations are individually fitted to each dataset and combined. Two fit statistics of correlation coefficients (2) and root mean square error (RMSE) are introduced to evaluate the parameterizations. Parameterization equations with higher2and lower RMSE provide better results.

    3 Results and Discussion

    3.1 Influence of Currents on W

    10is the most traditional and effective way of estimating. To discover the effect of currents on, Fig.2 shows two original whitecap images taken during the Western Pacific Ocean cruise under the same10condition. Other meteorological information, wave parameters, andlisted in Table 1 are different for images (a) and (b). Although10is identical, the wave heights of mixed wave, swell, and wind wave for image (a) are much higher than those for image (b), which may be due to the effect of currents(Haus, 2007). Moreover, additional whitecaps can be seen from image (a), and a high(0.3486 in %) is obtained after averaging several hundreds of whitecap images taken at the same station asimage (a). However, averagedis only equal to 0.1474 forimage (b).

    The datasets analyzed here display nosignificantcurrentdependence (not shown), reminding us to find a new way to study the influence of currents on. The datasets are divided into two subsets to refit the(10) power laws: winds with following currents and winds with opposing currents. The parameterizations ofare displayed in Table 2 and Fig.3 where winds with followingcurrents labeled by a dot-dashed line obtain a small, whereas winds with opposing currents obtain a great. The direction difference between winds and currents(represented by |wind?current| wherewindandcurrentare directions of wind and current, respectively) can impact thepowerlaws, and the opposing (following) currentsare suggested to increase(decrease). |wind?current| should be considered for the continued improvement of whitecap para- meterizations.Intrigued by these findings, we introducecurrentinto whitecap parameterizations when considering the direction deviation of currents with winds.

    Fig.2 Two original whitecap images taken during the western Pacific Ocean cruise under the same wind speed condition. Meteorological information, wave parameters, and the whitecap ratio W (%) for (a) and (b) are listed in Table 1.

    Table 1 Summary of the meteorological and oceanographic conditions

    Notes:10, wind speed at 10m height;wind, wind direction;current, current speed;current, current direction;s, significant wave height;ss, wave height of swell;sw, wind sea;, whitecap coverage. The geographical locations for Figs.2(a) and 2(b) are also illustrated.

    Table 2 Parameterizations of W (%) as a function of U10 and Ucurrent calibrated-U10 (marked by ΔU)

    Notes: Numbers 1–3 (4–6) given in the first column are used as references in the legends in Fig.3 (Fig.4). The second column presents the data used when obtaining the formula, and |wind?current| are the deflection angles between the propagating directions of winds and currents. The Δin Numbers 5 and 6 represent the difference between10and the velocity of following currents and the sum of10and the parallel velocity component of opposing currents, respectively. The Δin Number 4 is a combination of the two Δin Numbers 5 and 6.2and RMSE represent the correlation coefficients and RMSE, respectively. The increase/decrease rate in the last column is the change rate of2and RMSE by fitting to Δinstead of10.

    10onlyparameterization, the most traditional and effective way of estimating, is improved by including wave field related parameters in this study. Considering the effect of currents on wave breaking, adjusting the parameters to include thecurrentin the10basedparameterization is performed in this section according to the value of |wind?current|. That is,10is calibrated with different methods separately for winds with following or opposing currents. When the value of |wind?current| is smaller than 90?,10is calibrated by subtracting thecurrentfrom10because the directional alignment of winds and currents accompanied by small wave steepness can weaken the wave breaking. On the contrary, when |wind?current| is greater than 90?, Δequals10is calibrated by adding the parallel velocity component of opposing currents. The calibrated-10marked by Δare as follows:

    ?=10?current, when |wind?current|<90?, (1)

    ?=10+currentcos(180?|wind?current|),

    when |wind?current|>90?. (2)

    Δbasedparameterizationsare refitted and displayed in Fig.4, which shows the same conclusions as those in Fig.3. For the directional alignment of wind and current situations,2increases from 0.5995 to 0.7107 and RMSE decreases from 0.1461 to 0.1242 when comparing the results in Rows 2 and 5 of Table 2. For the opposing current situation in Rows 3 and 6 of Table 2, we obtain the consistent conclusion that2increases up to 0.8048 accompanied by a decreasing RMSE. For the fit with the combined dataset, Δbasedparameterization provides a better fit than that fitted to10. Moreover, thelast column in Table 2 presents that the improvement of goodness of fit for the following current situation is the most significant; the increase rate of2is up to 18.55%, and the decrease rate of RMSE is down to ?15.00%. In summary, Δbased parameterizations show tighter correlations and better interdataset agreement than10only parameterizations for the methods of calibrating10in Eqs. (1) and (2).

    Fig.3 Dependence of W (%) on U10. The curves symbolize the best fit to the different datasets of Numbers 1–3 in Table 2: solid line, dot-dashed line, and dashed line are fitted by all winds, winds with followingcurrents, and winds with opposingcurrents, respectively. Stars and dots represent averagedW (%) when the winds and currents have a consistent and opposite direction, respectively.

    Fig.4 Dependence of W (%) on ΔU. ΔU (as in Eq. (1)) represents the difference between U10 and the velocity of following currents for star data and dot-dashed line. ΔU (as in Eq. (2)) represents the sum of U10 and the parallel velocity component of opposing currents for dot data and dashed line. ΔU for solid line is a combination of the two ΔU above.

    Inspired by the occurrences above, the contour map, which includes the combined effect of the difference in the magnitudes and directions of winds and currents, is displayed in Fig.5. Specifically, the contour suggests the effect of the magnitude and direction of currents on. We already fit theto10–currentregardless of |wind?current| (not shown). It shows that the greater10–currentmakes, the higher, as expected, which can also be inferred from Fig.5. Certainly, the improved parameterizations of, as a function of10–current, are still worse than those offitted to Δin Fig.4. Therefore, we confirm again that the currents significantly influenceand must be considered to calibrate-10before fittingto10-related parameters.

    Fig.5 W (%) as a function of ΔU and |Dwind?Dcurrent|. Black dots represent the original observations.

    3.2 Adjustment of u* and RH with Calibrated-U10

    Many parameterizations of, as a function ofu, have been used in previous studies (Lafon, 2007; Sugihara, 2007;Schwendeman and Thomson, 2015; Brumer, 2017).ucan be obtained through Eq. (3):

    whereis the wind stress, andis the air density.10represents a 10m drag coefficient over sea surface. The10used for calculatingufrom previous studies here is displayed in Fig.6 and summarized in Table 3.Compared with the fit statistics of formula from 1 to 14,10from Sheppard(1972) should be the best choice, and thisucan be applied for further analysis hereafter (Row 6 in Table 3). The fit to the calculatedumost closely follows that proposed by Schwendeman and Thomson (2015), as shown in Fig.6.

    The calculatedubased on the10from Sheppard(1972) is applied to obtain(u) parameterization. Following the same approach discussed in Section 3.1, the parameterizations of, as a function ofu, are determined by fitting the two subsets of data as defined, and the results are illustrated in Fig.7. Plots of theu, as a function of Δ, are shown here to illustrate the important influence of currents on. For example,2increasing from 0.7668 to 0.7958 and RMSE decreasing from 0.2157 to 0.2018 confirm the effect of currents onubased parameterizations. Overall, better fits are found whenuis expressed as a function of Δinstead of10, as in the case of10only parameterizations in Table 2.

    Table 3 Parameterizations of W (%) as a function of u* and RH

    Note: Numbers given in the first column are used as references to calculateuin the legends in Fig.6.

    Fig.6 W (%), as a function of u*calculated using a different CD10 formula concluded in Table 3, corresponds to lines 1–14. Lines 15, 16, 17, and 18 represent W (u*) power law fit summarized in Schwendeman and Thomson (2015), Sugihara et al. (2007), Lafon et al. (2007), and Brumer et al. (2017), respectively.

    Zhao and Toba (2001) first put forward a kind of dimensionless parameter defined asHand suggested thatHismore related withthan with10alone. However, significant wave heights are usually selected to computeH, even though it was originally applied exclusively for windsea circumstances (Goddijn-Murphy, 2011). In this study, we use Eq. (4) to calculateH:

    whereswis the wave height of the windsea, andwis the viscosity of seawater. Most air temperatures covered therange of 22℃–30℃ during the two cruises. Thus, in Eq. (4),wis fixed at the value of 1.0098×10?6m?2s when the temperature of seawater is 22℃. Aswis dependent ontemperature and the salinity of seawater (Monahan and Zietlow, 1969; Monahan and O’Muircheartaigh, 1986;Sharqawy, 2010),Hbased parameterizations can have a good fit if thewis variable. Fig.8 shows theplotted against theHin terms of10and Δ, and the fit statistics of2and RMSE are listed in Table 4. The power law fit of, in terms of Δ, obtains a greater2of 0.7499 and a smaller RMSE of 0.2483 than thein terms of10. Only 17 out of 128 data points have a current velocity of more than 1.00m·s?1, which may lead to a relatively low increase or decrease rate for2and RMSE by fitting Δin Tables 2 and 4, respectively. The currents do have an effect on. If many measurements are obtained from a cruise passing strong current areas, then the conclusions can be further confirmed.

    Fig.7 Dependence of W (%) onu*. u*–U10 (dots) and u*–ΔU (stars) refer to the parameters of u* calculated usingU10 and ΔU in Table 2, respectively. Thecorresponding best fit tou*is shown by the solid line and dashed line.

    To sum up, the parameterizations of, as a function of10,u, andH, are all in better agreement with observations when fitted to Δthan those directly fitted to10. We suggest that currents are important for the parameterizations of, as a function of10-related parameters, because currents can change the ‘effective wind speed’ for wave growth.

    3.3 Influence of Swell on W

    We consider wave current interaction and thus investigate the statistical distributions of wave height, wave direction for wind, wind sea, and swell, as illustrated in Fig.9. The distributions of wind and wind sea are consistent with each other, whereas the direction of swell is scattered. The directional overlap between wind and wind sea suggests that enhanced wave breaking or increasedwith opposing winds and currents is likely a result of opposing wind waves and currents and the wave current interaction between them. Wave breaking may be strength- ened when laminar flow changes into turbulent associated with horizontal shear instability. For horizontally sheared currents, MacIver(2006) provided evidence that opposing(following) waves bend toward the currentnormal(parallel) andincrease (decrease) in height based on laboratory experiments. Similarly, for uniform currents, wave heights increase(decrease), and wave wavelength isshortened (lengthened), leading to large (small) wave steepness when waves move against an opposing(following) current (Haus, 2007). The scattered swells in Fig.9 urge us to reconsider if swells are insignificant for, especially in swell-dominant waters whenis parameterized usingHor if swells influencethe same way as currents.

    Fig.8 Dependence of W (%) on RH. RH–U10 (dots) and RH–ΔU (stars) mean the parameters of RH calculated usingU10 and ΔU, respectively. The corresponding best fit toRHis represented by the solid line and dashed line.

    Table 4 Parameterizations of W (%) as a function of u* and RH.

    Notes:u(H)–10andu(H)–Δmean the parameters ofu(H) calculated using10and Δ, respectively. The increase/decrease rate in the last column is the change rate of2and RMSE by fitting to Δinstead of10.

    Fig.9 Measurements ofprobability distributions by the X-band radarof WaMoS II: wind, wind sea, and swell.

    To implore the reason whyis suppressed by swells shown in Fig.10,, as a function of10, and the deflection angle between wind and swell (|wind?swell|) are displayed in Fig.11. The most striking feature of Fig.11 is the conspicuously high values of10and |wind–swell| that are approximately 11ms?1and 90?, respectively. Lowvalues ofare found where the propagating directions of winds and swells are parallel. Sugihara(2007) found no certain relationship betweenand the deflection angle between the propagating directions of wind waves and swells. Fig.11 summarizes that the perpendicular (parallel) winds to the propagating direction of swells can increase (decrease). An explanation for a greatwhen the deflection angle is approximately 90? may rest on that wave breaking occurs easily on the wave crest through disturbance when the wind blows along the crest line of swells.

    Fig.10 Parameterizations of W (%) as a function of the wave height of swell (Hss) and wind sea (Hsw).

    3.4 Discussion

    Kraan(1996) found no visual whitecaps at10of 7–8ms?1and suggested that it is caused by strong tidal currents. Given the absence of direction information, we guess that such tidal currents and their observedwindare in the same direction, which contributes to this extremely smallaccording to the theory we proposed above. Callaghan(2008) observed a sharp increase inwhen10decreases steadily. Whencurrentincreases rapidly,windremains the same, butcurrentchanges abruptly. We disagree with Callaghan(2008), who believed that the directional alignment of winds and currents and increase incurrentco-produce an increase in. Here, we propose that the enlarged difference in magnitude and direction between winds and currents increases.

    Fig.11 W (%) as a function of U10 and |Dwind–Dswell|. The black dots represent the original observations.

    Moreover, we consider that the effect of |wind–current| onis caused by wave current interaction because of the basically consistent directions of winds and wind seas. In areas with strong currents, such as the western boundary current, the calibration of10is necessary. Swells indeed affectbut in a different way compared with currents. We suppose that the propagating direction of swells perpendicular to winds contributes to a great. We cannot avoid scarce observations, including current information in previous studies. The theory here can be a good explanation for the phenomenon in Kraan(1996) and Callaghan(2008) and should be verified with additional data in further studies.

    4 Conclusions

    Using the ship-based observations from two cruises in the South China Sea and Western Pacific, we present an analysis of the influence of currents and swells on whitecap fraction.

    First, according to the deflection angle between the propagating directions of winds and currents smaller or greater than 90?, data are divided into two subsets.10-dependent parameterizations are fitted using the two subsets individually and combined to find that the following (opposing) currents can decrease (increase). On the basis of the result,10is calibrated by subtractingcurrentfrom10in the condition of following currents, whereas the opposite situation10is calibrated by adding the parallel velocity component of opposing currents to10. The power law fits in terms of Δand provides an increasing R2and decreasing RMSE, illustrating better estimates ofthan those directly fitting to10. Second, Δis introduced touandH, leading to an improvement on theparameterizations.

    Overall, swells can cause a negative impact on. Nevertheless, wave breaking is enhanced when the winds blow along the crest line of swells. Considering that we lack information about wave velocity, swells withparameterizations are yet to be studied and may be discussed in the future.

    Acknowledgements

    This work was financially supported by the Hebei Agricultural University Research Project for Talented Scholars (No. YJ201835), the National Natural Science Foundation of China (No. 41806028), the China Postdoctoral Science Foundation (No. 2019M65206), and the Fundamental Research Funds for the Central Universities (No. N182303031). The efforts of the researchers who obtained and published the data adopted in this study are much appreciated. We thank the crew, scientists, and students infor the help in the process of collecting observation data.

    Anguelova, M. D., and Webster, F., 2006. Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps., 111 (C3): C03017, DOI: 10.1029/2005JC003158.

    Brocks, K., and Krugermeyer, L., 1970. The hydrodynamic rough- ness of the sea surface. In:.No. 14, University of Hamburg, 55pp.

    Brumer, S. E., Zappa, C. J., Brooks, I. M., Tamura, H., Brown, S. M., Blomquist, B. W., Fairall, C. W., and Cifuentes-Lorenzen,A., 2017.Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS., 47 (9): 2211-2235, DOI: 10.1175/JPO-D-17-0005.1.

    Callaghan, A.H., and White, M., 2009. Automated processing of sea surface images for the determination of whitecap coverage., 26 (2): 383-394, DOI: 10.1175/2008JTECHO634.1.

    Callaghan, A. H., Deane, G. B., and Stokes, M. D., 2008. Observed physical and environmental causes of scatter in whitecap coverage values in a fetch-limited coastal zone., 113 (C5): C05022, DOI: 10.1029/2007JC004453.

    Deacon, E. L., and Webb, E. K., 1962. Interchange of properties between sea and air, Chapter 3, small-scale interactions.In:. Hill, M. N., ed., Interscience, New York, 43-87.

    Donelan, M. A., 1982. The dependence of the aerodynamic drag coefficient on wave parameters. In:. The Hague, Netherlands, American Meteorological Society, 381-387.

    Geernaert, G. L., 1987.On the importance of the drag coefficient in air-sea interactions., 11(1): 19-38, DOI:10.1016/0377-0265(87)90012-1.

    Goddijn-Murphy, L., Woolf, D. K., and Callaghan, A. H., 2011. Parameterizations and algorithms for oceanic whitecap coverage., 41 (4): 742-756, DOI: 10.1175/2010JPO4533.1.

    Guan, C. L., Hu, W., and Sun, J., 2007. The whitecap coverage model from breaking dissipation parameterizations of wind waves., 112 (C5): C05031, DOI: 10.1029/2006JC003714.

    Hanson, J. L., and Phillips, O. M., 1999. Wind sea growth and dissipation in the open ocean., 29 (3): 1633-1648, DOI: 10.1175/1520-0485(1999)029<1633:wsgadi>2.0.co;2.

    Haus, B. K., 2007. Surface current effects on the fetch-limited growth of wave energy., 112: C03003, DOI:10.1029/2006JC003924.

    Hwang, P. A., Toporkov, J. V., Sletten, M. A., and Menk, S. P., 2013. Mapping surface currents and waves with interferometric synthetic aperture radar in coastal waters: Observations of wave breaking in swell-dominant conditions., 43 (3): 563-582, DOI: 10.1175/JPOD-12-0128.1.

    Jia, N., and Zhao, D. L., 2019. The influence of wind speed and sea states on whitecap coverage., 18 (2): 282-292, https://doi.org/10.1007/s11802-019-3808-7.

    Khojasteh, D., Mousavi, S. M., Glamore, W., and Iglesias, G., 2018. Wave energy status in Asia., 169: 344-358, DOI: 10.1016/j.oceaneng.2018.09.034.

    Kondo, J., 1975.Air-sea bulk transfer coefficients in diabatic conditions., 9(1): 91-112, DOI:10.1007/bf00232256.

    Kraan, G., Oost, W. A., and Janssen, P. A. E. M., 1996. Wave energy dissipation by whitecaps., 13(1): 262-267, DOI: 10.1175/1520-0426(1996)0132.0.CO;2.

    Lafon, C., Piazzola, J., Forget, P., and Despiau, S., 2007. Whitecap coverage in coastal environment for steady and unsteady wave field conditions., 66: 38-46, DOI: 10.1016/j.jmarsys.2006.02.013.

    MacIver, R. D., Simons, R. R., and Thomas, G. P., 2006. Gravity waves interacting with a narrow jet-like current., 111: C03009, DOI:10.1029/2005JC003030.

    Miller, B. I., 1964. A study of filling of hurricane Donna (1960) over land., 92: 389-406, DOI: 10.1175/1520-0493(1964)0922.3.CO;2.

    Monahan, E. C., 1971. Oceanic whitecaps., 1(2): 139-144, DOI: 10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2.

    Monahan, E. C., and O’Muircheartaigh, I. G., 1986. Whitecaps and the passive remote sensing of the ocean surface., 7(5): 627-642, DOI: 10.1080/01431168608954716.

    Monahan, E. C., and Zietlow, C. R., 1969. Laboratory comparisons of fresh-water and salt-water whitecaps., 74 (28): 6961-6966, DOI: 10.1029/JC074i028p06961.

    Pearman, D. W.,Herbers, T. H. C., Janssen,T. T., van Ettinger, H. D., McIntyre, S. A., and Jessen,P. F., 2014. Drifter observations of the effects of shoals and tidal-currents on wave evolution in San Francisco Bight., 91: 109-119, DOI:10.1016/j.csr.2014.08.011.

    Ren, D. Q., Hua, F., Yang, Y. Z., and Sun, B. N., 2016. The improved model of estimating global whitecap coverage based on satellite data., 35(5): 66-72, DOI: 10.1007/s13131-016-0848-3.

    Romero, L., Lenain, L., and Melville, W. K., 2017. Observations of surface wave-current interaction.,47(3): 615-632, DOI: 10.1175/jpo-d-16-0108.1.

    Salisbury, D. J., Anguelova, M. D., and Brooks, I. M., 2013. On the variability of whitecap fraction using satellite-based observations., 118 (11): 6201-6222, DOI: 10.1002/2013JC008797.

    Schwendeman, M., and Thomson, J., 2015. Observations of white- cap coverage and the relation to wind stress, wave slope, and turbulent dissipation.,120: 8346-8363, DOI: 10.1002/2015jc011196.

    Sharqawy, M. H., Lienhard, J. H., and Zubair, S. M., 2010. Thermophysical properties ofseawater: A review of existing correlations and data., 16: 354-380, DOI: 10.5004/dwt.2010.1079.

    Sheppard, P. A., 1958.Transfer across the earth’s surface and through the air above., 84(361): 205-224, DOI:10.1002/qj.49708436102.

    Sheppard, P. A., Tribble, D. T., and Garratt, J. R., 1972.Studies of turbulence in the surface layer over water (Lough Neagh). Part I. Instrumentation, programme, profiles., 98(417): 627-641, DOI:10.1002/qj.49709841711.

    Smith, S. D., 1980.Wind stress and heat flux over the ocean in gale force winds., 10(5): 709-726, DOI:10.1175/1520-0485(1980)010<0709:wsahfo>2.0.co;2.

    Smith, S. D., and Banke, E. G., 1975.Variation of the sea surface drag coefficient with wind speed., 101(429): 665-673, DOI:10.1002/qj.49710142920.

    Stramska, M., and Petelski, T., 2003. Observations of oceanic whitecaps in the north polar waters of the Atlantic., 108 (C3): 3086, DOI: 10.1029/2002JC001321.

    Sugihara, Y., Tsumori, H., Ohga, T., Yoshioka, H., and Serizawa, S., 2007. Variation of whitecap coverage with wave-field conditions., 66: 47-60, DOI: 10.1016/j.jmarsys.2006.01.014.

    Wieringa, J., 1974. Comparison of three methods for determining strong wind stress over Lake Flevo., 7(1): 3-19, DOI: 10.1007/bf00224969.

    Woolf, D. K., 2005. Parameterization of gas transfer velocities and sea-state-dependent wave breaking., 57(2): 87-94, DOI: 10.3402/tellusb.v57i2.16783.

    Wu, J., 1979. Oceanic whitecaps and sea state., 9 (3): 531-554, http://dx.doi.org/10.1175/1520-0485(1979)0092.0.CO;2.

    Wu, J., 1980.Wind-stress coefficients over sea surface near neutralconditions–Arevisit., 10(5): 727-740, DOI:10.1175/1520-0485(1980)010<0727:wscoss>2.0.co;2.

    Wu, J., 1988. Variations of whitecap coverage with wind stress and water temperature., 18 (10): 1448-1453, DOI: 10.1175/1520-0485(1988)018<1448:VOWCWW>2.0.CO;2.

    Xu, D., Liu, X., and Yu, D., 2000. Probability of wave breaking and whitecap coverage in a fetch-limited sea., 105 (C6): 14253-14259, DOI: 10.1029/2000jc900040.

    Yelland, M., and Taylor, P. K., 1996.Wind stress measurements from the open ocean., 26(4): 541-558, DOI:10.1175/1520-0485(1996)026<0541:wsmfto>2.0.co;2.

    Yuan, Y. L., Han, L., Hua, F., Zhang, S. W., Qiao, F. L., Yang, Y. Z., and Xia, C. S., 2009. The statistical theory of breaking entrainment depth and surface whitecap coverage of real sea waves., 39 (1): 143-161, DOI: 10.1175/2008JPO3944.1.

    Zhao, D. L., and Toba, Y., 2001. Dependence of whitecap coverage on wind and wind-wave properties., 57: 603-616, DOI: 10.1023/a:1021215904955.

    Zheng, C. W., Chen, Y. G., Zhan, C., and Wang, Q., 2019a. Source tracing of the swell energy: A case study of the Pacific Ccean.,99: 1-1,DOI: 10.1109/ACCESS.2019.2943903.

    Zheng, C. W., Liang, B. C., Chen, X., Wu, G. X., Sun, X. F., and Yao, J. L., 2020.Diffusion characteristics of swells in the North Indian Ocean., 19(3):479-488.DOI: 10.1007/s11802-020-4282-y.

    Zheng, C. W., Wu, G. X., Chen, X., Wang, Q., Gao, Z. S., Chen, Y. G.,and Luo, X., 2019b. CMIP5-based wave energy projection: Case studies of the South China Sea and the East China Sea., 7: 82753-82763, DOI: 10.1109/ACCESS.2019.2924197.

    Zubkovskii, S. L., and Kravchenko, T. K., 1967. Direct measurements of some characteristics of atmosphere turbulence in the near water layer.,3: 73-77.

    March 6, 2020;

    January 21, 2021;

    February 19, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . E-mail: zouzhongshui@126.com

    (Edited by Xie Jun)

    波多野结衣一区麻豆| 久久久久久久国产电影| 一区二区三区乱码不卡18| 国产在视频线精品| 男男h啪啪无遮挡| 人妻人人澡人人爽人人| 999久久久国产精品视频| 久久亚洲国产成人精品v| 成年美女黄网站色视频大全免费| 日韩中文字幕视频在线看片| 国语对白做爰xxxⅹ性视频网站| 纯流量卡能插随身wifi吗| 国产av一区二区精品久久| 亚洲国产精品一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品久久精品一区二区三区| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 国产 一区精品| 精品第一国产精品| 青春草国产在线视频| 午夜免费观看性视频| 90打野战视频偷拍视频| 亚洲欧美成人综合另类久久久| 免费观看性生交大片5| 在线观看www视频免费| 考比视频在线观看| 久久免费观看电影| 青春草亚洲视频在线观看| 丝袜脚勾引网站| 美女午夜性视频免费| 欧美激情高清一区二区三区 | 高清在线视频一区二区三区| 久久久精品94久久精品| 国产精品嫩草影院av在线观看| 丁香六月天网| 男女之事视频高清在线观看 | 午夜久久久在线观看| 99九九在线精品视频| av线在线观看网站| 成年美女黄网站色视频大全免费| 亚洲成国产人片在线观看| av卡一久久| 久久久久久免费高清国产稀缺| 欧美老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 激情五月婷婷亚洲| 丰满饥渴人妻一区二区三| 蜜桃在线观看..| 1024视频免费在线观看| 丰满迷人的少妇在线观看| 秋霞在线观看毛片| 国产精品久久久人人做人人爽| 亚洲一码二码三码区别大吗| 免费av中文字幕在线| 成年人午夜在线观看视频| 亚洲第一av免费看| 亚洲欧美一区二区三区黑人| 久久久久国产一级毛片高清牌| 日韩成人av中文字幕在线观看| 国产精品免费大片| 国产午夜精品一二区理论片| kizo精华| 啦啦啦 在线观看视频| 精品酒店卫生间| 在线看a的网站| 欧美激情高清一区二区三区 | 国产精品一区二区在线不卡| 久久国产亚洲av麻豆专区| 热99国产精品久久久久久7| 亚洲五月色婷婷综合| 纯流量卡能插随身wifi吗| 亚洲国产毛片av蜜桃av| 国产不卡av网站在线观看| 亚洲av日韩在线播放| 女人精品久久久久毛片| 老司机深夜福利视频在线观看 | 在线免费观看不下载黄p国产| 亚洲精品久久成人aⅴ小说| 纵有疾风起免费观看全集完整版| 成人三级做爰电影| 777久久人妻少妇嫩草av网站| 国产免费又黄又爽又色| 日韩大码丰满熟妇| 丁香六月欧美| 久久精品国产a三级三级三级| 国产成人精品福利久久| 看非洲黑人一级黄片| 国产免费视频播放在线视频| 国产在线一区二区三区精| 欧美最新免费一区二区三区| 国产男人的电影天堂91| 97人妻天天添夜夜摸| 午夜免费男女啪啪视频观看| 91aial.com中文字幕在线观看| 久久精品久久精品一区二区三区| 一级爰片在线观看| 伊人亚洲综合成人网| www.熟女人妻精品国产| 一区二区三区激情视频| 亚洲成色77777| 色婷婷av一区二区三区视频| a级毛片黄视频| 午夜免费观看性视频| 国产极品天堂在线| 99久久99久久久精品蜜桃| videos熟女内射| 在线看a的网站| 激情五月婷婷亚洲| 久久久久久人妻| 天天添夜夜摸| 亚洲一级一片aⅴ在线观看| 日本爱情动作片www.在线观看| 一级毛片电影观看| 国产男女超爽视频在线观看| 美女高潮到喷水免费观看| 中文天堂在线官网| 欧美日韩福利视频一区二区| 亚洲国产中文字幕在线视频| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区国产| 老熟女久久久| 亚洲男人天堂网一区| 人体艺术视频欧美日本| 日本av免费视频播放| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 欧美成人精品欧美一级黄| 国产成人精品在线电影| 久久久久精品国产欧美久久久 | 精品久久蜜臀av无| 一区二区三区激情视频| 欧美日韩亚洲综合一区二区三区_| av网站在线播放免费| 亚洲精品成人av观看孕妇| 精品少妇黑人巨大在线播放| 大片电影免费在线观看免费| 亚洲精品国产av蜜桃| 香蕉丝袜av| 国产激情久久老熟女| 亚洲三区欧美一区| av.在线天堂| 国产激情久久老熟女| 久久久精品区二区三区| 黑丝袜美女国产一区| 中文精品一卡2卡3卡4更新| 97精品久久久久久久久久精品| 老汉色av国产亚洲站长工具| 大片电影免费在线观看免费| 九九爱精品视频在线观看| 国产免费福利视频在线观看| 久久99热这里只频精品6学生| 亚洲图色成人| 国产福利在线免费观看视频| 久久 成人 亚洲| av在线老鸭窝| 又大又爽又粗| 欧美人与性动交α欧美软件| 国产一区二区三区综合在线观看| 精品午夜福利在线看| √禁漫天堂资源中文www| 亚洲精品在线美女| 大陆偷拍与自拍| 成年女人毛片免费观看观看9 | 中文字幕亚洲精品专区| 一级毛片黄色毛片免费观看视频| 精品少妇久久久久久888优播| 国产日韩欧美亚洲二区| 欧美亚洲 丝袜 人妻 在线| 国产99久久九九免费精品| 免费黄频网站在线观看国产| 天天操日日干夜夜撸| 国产精品欧美亚洲77777| 久久久精品区二区三区| 午夜福利在线免费观看网站| 午夜久久久在线观看| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区91 | avwww免费| 国产黄频视频在线观看| 在线 av 中文字幕| 波野结衣二区三区在线| 久久热在线av| 美女午夜性视频免费| 大香蕉久久成人网| 久久久久人妻精品一区果冻| 国产1区2区3区精品| 欧美精品一区二区大全| 免费观看a级毛片全部| 久久ye,这里只有精品| 免费日韩欧美在线观看| 精品亚洲成a人片在线观看| 久久久国产精品麻豆| 别揉我奶头~嗯~啊~动态视频 | 久久av网站| 日韩一本色道免费dvd| 国产精品欧美亚洲77777| 最近2019中文字幕mv第一页| 精品国产一区二区三区四区第35| 制服丝袜香蕉在线| 亚洲av男天堂| 一本久久精品| 一个人免费看片子| 国产成人精品无人区| 免费久久久久久久精品成人欧美视频| 亚洲国产欧美日韩在线播放| 中文天堂在线官网| 亚洲精品国产av成人精品| 欧美老熟妇乱子伦牲交| 亚洲av福利一区| 老司机靠b影院| 狠狠婷婷综合久久久久久88av| 丰满迷人的少妇在线观看| 91成人精品电影| 国产极品天堂在线| 亚洲自偷自拍图片 自拍| 国产毛片在线视频| 国产成人欧美在线观看 | 19禁男女啪啪无遮挡网站| 亚洲国产欧美在线一区| 国产在线一区二区三区精| 十八禁人妻一区二区| 欧美日韩国产mv在线观看视频| 少妇被粗大的猛进出69影院| 精品午夜福利在线看| 中文字幕亚洲精品专区| 青草久久国产| 97人妻天天添夜夜摸| 国产精品一区二区在线观看99| 男女国产视频网站| videos熟女内射| 欧美日韩视频精品一区| 在线免费观看不下载黄p国产| 天天添夜夜摸| 少妇猛男粗大的猛烈进出视频| 两个人免费观看高清视频| 99久久精品国产亚洲精品| 国产精品国产三级国产专区5o| 色网站视频免费| 久久人人爽av亚洲精品天堂| 久久精品aⅴ一区二区三区四区| 亚洲国产av新网站| 18禁动态无遮挡网站| 亚洲精品aⅴ在线观看| 久久韩国三级中文字幕| kizo精华| 欧美少妇被猛烈插入视频| videos熟女内射| 超色免费av| 日本爱情动作片www.在线观看| 久久久久网色| 黑人猛操日本美女一级片| 亚洲国产最新在线播放| 国产深夜福利视频在线观看| 天天添夜夜摸| 日韩大片免费观看网站| a 毛片基地| 久久亚洲国产成人精品v| 最黄视频免费看| 精品国产国语对白av| 波多野结衣av一区二区av| 午夜福利网站1000一区二区三区| 日韩av免费高清视频| 久久人人爽人人片av| 亚洲精品美女久久久久99蜜臀 | 亚洲精品日韩在线中文字幕| 我的亚洲天堂| 美女视频免费永久观看网站| 午夜福利免费观看在线| 成人国产av品久久久| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区三区| 男女无遮挡免费网站观看| 精品久久久久久电影网| 天天躁夜夜躁狠狠躁躁| 最黄视频免费看| 欧美成人午夜精品| 久久免费观看电影| 国产 精品1| 精品国产露脸久久av麻豆| xxxhd国产人妻xxx| 亚洲,欧美,日韩| 亚洲欧洲日产国产| 91成人精品电影| 视频区图区小说| 在线观看www视频免费| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 女性生殖器流出的白浆| 中文字幕av电影在线播放| 宅男免费午夜| 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 波多野结衣一区麻豆| 一边摸一边做爽爽视频免费| 久久天躁狠狠躁夜夜2o2o | 久久久国产欧美日韩av| 精品福利永久在线观看| 国产成人欧美在线观看 | 最近最新中文字幕大全免费视频 | 国产伦人伦偷精品视频| 青草久久国产| 国产成人免费无遮挡视频| 伊人久久大香线蕉亚洲五| 一本一本久久a久久精品综合妖精| 亚洲第一区二区三区不卡| 国产亚洲午夜精品一区二区久久| 国产精品免费视频内射| 亚洲,欧美精品.| 亚洲美女视频黄频| 不卡av一区二区三区| 亚洲人成网站在线观看播放| 中文字幕人妻熟女乱码| 欧美人与性动交α欧美软件| 午夜免费男女啪啪视频观看| 免费在线观看黄色视频的| 免费在线观看视频国产中文字幕亚洲 | 亚洲图色成人| 午夜福利网站1000一区二区三区| 黄片播放在线免费| 九九爱精品视频在线观看| 久久久国产精品麻豆| 午夜免费观看性视频| 国产黄频视频在线观看| 午夜免费鲁丝| 亚洲国产精品国产精品| 久久免费观看电影| 卡戴珊不雅视频在线播放| 国产淫语在线视频| 制服诱惑二区| av女优亚洲男人天堂| 美女脱内裤让男人舔精品视频| 欧美少妇被猛烈插入视频| 18禁观看日本| 精品福利永久在线观看| 国精品久久久久久国模美| 日本欧美视频一区| 亚洲精品,欧美精品| 无限看片的www在线观看| 亚洲视频免费观看视频| 国产精品秋霞免费鲁丝片| 中文乱码字字幕精品一区二区三区| 国产伦理片在线播放av一区| 性少妇av在线| 免费黄频网站在线观看国产| 在线观看三级黄色| 国产精品香港三级国产av潘金莲 | 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 一二三四中文在线观看免费高清| 日韩熟女老妇一区二区性免费视频| av国产精品久久久久影院| 亚洲男人天堂网一区| 精品第一国产精品| 精品少妇黑人巨大在线播放| 丁香六月欧美| 免费高清在线观看日韩| 人妻人人澡人人爽人人| 亚洲七黄色美女视频| 国产精品嫩草影院av在线观看| 亚洲欧美精品自产自拍| 亚洲国产精品成人久久小说| 永久免费av网站大全| 亚洲一区中文字幕在线| 亚洲激情五月婷婷啪啪| 久久精品久久久久久久性| 亚洲精品,欧美精品| 国产精品一二三区在线看| 日韩大码丰满熟妇| 蜜桃国产av成人99| av福利片在线| 十八禁高潮呻吟视频| 七月丁香在线播放| 一级爰片在线观看| 国产成人啪精品午夜网站| 精品人妻在线不人妻| 一级毛片电影观看| 深夜精品福利| 日日摸夜夜添夜夜爱| videosex国产| 一本久久精品| 欧美在线一区亚洲| 日韩一区二区三区影片| 久久久亚洲精品成人影院| 2018国产大陆天天弄谢| 夫妻午夜视频| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频| 飞空精品影院首页| 91国产中文字幕| 少妇 在线观看| 免费观看人在逋| 啦啦啦在线免费观看视频4| 18禁国产床啪视频网站| 又粗又硬又长又爽又黄的视频| 另类精品久久| 中文天堂在线官网| av国产久精品久网站免费入址| 久久天堂一区二区三区四区| 成人国产av品久久久| 黄色视频在线播放观看不卡| videosex国产| 9色porny在线观看| avwww免费| 亚洲av男天堂| 亚洲精品中文字幕在线视频| 亚洲精品aⅴ在线观看| 丝袜美足系列| 精品少妇黑人巨大在线播放| 国产高清国产精品国产三级| 亚洲国产毛片av蜜桃av| 日韩精品有码人妻一区| 最近的中文字幕免费完整| 丝袜美腿诱惑在线| 日日摸夜夜添夜夜爱| 亚洲男人天堂网一区| 男女边吃奶边做爰视频| 91成人精品电影| 99香蕉大伊视频| 久久人人爽人人片av| 亚洲第一区二区三区不卡| 热re99久久国产66热| 高清视频免费观看一区二区| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 免费在线观看黄色视频的| 天堂俺去俺来也www色官网| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美软件| 久久久国产精品麻豆| 午夜免费鲁丝| 蜜桃在线观看..| svipshipincom国产片| 久久久国产欧美日韩av| 日韩不卡一区二区三区视频在线| 国产无遮挡羞羞视频在线观看| 老鸭窝网址在线观看| 亚洲综合精品二区| videosex国产| av在线播放精品| 亚洲,欧美,日韩| 免费av中文字幕在线| 亚洲国产看品久久| 精品久久久久久电影网| 午夜精品国产一区二区电影| 国产精品成人在线| 久久人人爽人人片av| 日韩人妻精品一区2区三区| 男人爽女人下面视频在线观看| 中文字幕人妻丝袜制服| 精品少妇内射三级| 国产一区二区三区综合在线观看| 国产一区二区 视频在线| 国产午夜精品一二区理论片| 久热爱精品视频在线9| 国产免费一区二区三区四区乱码| 狠狠婷婷综合久久久久久88av| av视频免费观看在线观看| 男女无遮挡免费网站观看| 80岁老熟妇乱子伦牲交| 99久久人妻综合| 欧美黑人精品巨大| 国产日韩欧美在线精品| 亚洲精品美女久久av网站| 欧美激情高清一区二区三区 | 日韩伦理黄色片| 黄片播放在线免费| 国产片特级美女逼逼视频| 日本一区二区免费在线视频| 成人三级做爰电影| 男男h啪啪无遮挡| 晚上一个人看的免费电影| 亚洲男人天堂网一区| 免费人妻精品一区二区三区视频| 国产97色在线日韩免费| 久久国产亚洲av麻豆专区| 欧美 日韩 精品 国产| 亚洲成av片中文字幕在线观看| 超色免费av| 精品一区在线观看国产| 中文乱码字字幕精品一区二区三区| 丝袜喷水一区| 免费观看av网站的网址| e午夜精品久久久久久久| 天天躁日日躁夜夜躁夜夜| 丝瓜视频免费看黄片| 国产成人精品在线电影| 日本一区二区免费在线视频| 91精品伊人久久大香线蕉| 伊人久久大香线蕉亚洲五| 女性生殖器流出的白浆| 午夜老司机福利片| 亚洲国产欧美网| 亚洲伊人色综图| 99精国产麻豆久久婷婷| 国产一区二区在线观看av| 亚洲精品国产av成人精品| av在线老鸭窝| 大话2 男鬼变身卡| 免费久久久久久久精品成人欧美视频| 亚洲国产精品成人久久小说| 欧美黑人精品巨大| 国产黄频视频在线观看| 久久久久久久精品精品| 亚洲国产成人一精品久久久| 看十八女毛片水多多多| 精品一区二区免费观看| 我要看黄色一级片免费的| 欧美97在线视频| 一级片免费观看大全| 国产高清国产精品国产三级| 久久精品久久久久久久性| 看免费成人av毛片| 日韩一卡2卡3卡4卡2021年| 国产在视频线精品| 国产精品香港三级国产av潘金莲 | 尾随美女入室| 日韩精品有码人妻一区| 亚洲欧美一区二区三区久久| 欧美精品高潮呻吟av久久| 国产精品久久久久久人妻精品电影 | 亚洲av福利一区| 亚洲av在线观看美女高潮| 国产精品一国产av| 一边摸一边做爽爽视频免费| 日韩av在线免费看完整版不卡| 亚洲综合精品二区| 国产精品二区激情视频| 大片电影免费在线观看免费| 晚上一个人看的免费电影| 麻豆av在线久日| 亚洲综合精品二区| 女人久久www免费人成看片| 久久久久久久久免费视频了| 亚洲国产毛片av蜜桃av| 超色免费av| 一本大道久久a久久精品| 国产伦理片在线播放av一区| 精品久久久久久电影网| 黄色视频在线播放观看不卡| 国产探花极品一区二区| 女人精品久久久久毛片| 一级黄片播放器| 亚洲中文av在线| 亚洲av福利一区| 18禁动态无遮挡网站| 亚洲欧美精品自产自拍| 久久久久久久精品精品| 美女午夜性视频免费| 国产精品无大码| 人妻人人澡人人爽人人| 久久天堂一区二区三区四区| 99香蕉大伊视频| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 高清av免费在线| 日韩电影二区| 日本猛色少妇xxxxx猛交久久| 男女午夜视频在线观看| 亚洲伊人久久精品综合| 天天躁夜夜躁狠狠躁躁| 黄片无遮挡物在线观看| 国产黄色视频一区二区在线观看| 精品国产露脸久久av麻豆| 在线观看免费高清a一片| 国产精品二区激情视频| 精品第一国产精品| 久久天堂一区二区三区四区| www.熟女人妻精品国产| 精品人妻一区二区三区麻豆| 成人手机av| 国产片特级美女逼逼视频| 亚洲av日韩精品久久久久久密 | 欧美黄色片欧美黄色片| 久久久久视频综合| 欧美日韩亚洲高清精品| 老鸭窝网址在线观看| 最近手机中文字幕大全| 91精品三级在线观看| 夫妻午夜视频| 日本欧美视频一区| 日本wwww免费看| 建设人人有责人人尽责人人享有的| 肉色欧美久久久久久久蜜桃| 一级毛片电影观看| 亚洲第一av免费看| 精品国产一区二区久久| 国产精品国产三级国产专区5o| 狠狠婷婷综合久久久久久88av| 久久 成人 亚洲| 国产一卡二卡三卡精品 | 久久人人爽av亚洲精品天堂| 成年动漫av网址| 女人精品久久久久毛片| 天天躁夜夜躁狠狠躁躁| 午夜av观看不卡| 亚洲欧美精品综合一区二区三区| 最近中文字幕2019免费版| 国产精品三级大全| 亚洲三区欧美一区| 久久99一区二区三区| 人人妻人人添人人爽欧美一区卜| 18禁动态无遮挡网站| 超色免费av| 在线免费观看不下载黄p国产| 欧美日韩一区二区视频在线观看视频在线| 看免费av毛片| 欧美激情 高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费日韩欧美大片| 亚洲国产精品成人久久小说| 久久精品国产亚洲av高清一级| 精品国产国语对白av|