• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers

    2021-06-18 03:27:06TingBaiShaoyuanLiandYuanyuanZou
    IEEE/CAA Journal of Automatica Sinica 2021年7期

    Ting Bai, Shaoyuan Li,, and Yuanyuan Zou,

    I. INTRODUCTION

    IN the past few decades, the advanced distributed model predictive control (DMPC) has received significant attention in both academia and industry for its outstanding advantages of dealing with multiple input/state constraints,better fault tolerance capabilities and a lower computational load. For geographically or physically distributed systems,DMPC provides an effective tool for control by effectively coordinating the optimal decisions of different local controllers with a guaranteed global performance. To date,numerous achievements in the research of DMPC strategies have been reached under fixed distributed frameworks [1]–[7].However, along with the system scale expansion and the continual function improvement, various application demands for the system structure reconstruction have risen, which incurs the issue of reconfiguration control. For instance, some partial failures in distributed systems [8], [9] may trigger the fault isolation to avoid a further fault propagation. Another example is the function extension to existing systems [10],which may bring in the insertion of several new components to existent systems. In order to achieve a dependable and renewed system functionality, it is of vital importance to study how to perform an efficient distributed control in the reconfigured architecture while maintaining a satisfactory dynamic performance.

    Indeed, reconfiguration control with non-fixed system architectures has become an essential capability [11], [12] for networked systems to adapt to various external environments and a switching control task. Nowadays, research on the highefficiency distributed reconfiguration control strategies is still lacking. In the existing study [13], a reconfigurable control scheme for decentralized systems was proposed, where the coupling changes between different subsystems were handled by resorting to robust control invariant sets. For distributed systems with strong couplings, [14] presented an iterative reconfiguration scheme to cope with the significant interactions among subsystems and a class of time-varying terminal sets was designed. Notwithstanding, most of the existing reconfiguration control methodologies are developed based on the assumption that every reconfigurable control signal can be obtained within each sampling time. That is to say, it is based on the assumption that each control period is shorter than each sampling period, and the elapsed time spent in calculating the reconfiguration control input can be ignored.However, the computation of the optimal reconfigurable control law is time consuming in substantial real-world applications (especially for large-scale MPC optimization problems with multiple constraints), and the calculation efficiency of local controllers directly affects the distributed coordination of reconfiguration control. For the sake of avoiding a serious trajectory deviation in the context of system architecture realignment, the quick response ability of every local controller is of particular importance in the distributed reconfiguration control design.

    As is known, the alternating direction method of multipliers(ADMM) is a high-efficiency iterative algorithm, which was originally introduced by Gabay and Mercier [15] in the 1970s and is well suited to large-scale convex optimization problems arising in statistics, machine learning, and other related areas.ADMM blends the benefits of dual decomposition and augmented Lagrangian algorithms for the constrained optimization and provides improved convergence properties under very mild hypotheses [16]–[20]. More precisely, the major advantages of ADMM can be summarized as follows:1) in theory, the convergence of the algorithm can be guaranteed for any convex cost functions and constraints;2) in practice, the augmented Lagrangian term often speeds up the convergence and computation. Although the powerful ADMM has been widely applied to solving convex optimization problems in the field of statistics, there is little research on the combination of ADMM and the reconfigurable DMPC scheme [21] to improve the computation efficiency and dynamic performance of reconfiguration control.Motivated by these reasons, in this technical note, we aim at proposing an efficient DMPC reconfiguration control scheme based on the powerful ADMM algorithm for linear networked systems with reconfigurable architectures. First, the distributed reconfiguration control strategy is presented with the consideration of three typical scenarios on the changeable system architecture. Next, the reconfigured controller design method is proposed and the iterative formulas based on ADMM algorithm for addressing the reconfiguration optimization problem are derived. Finally, the efficiency of the developed reconfigurable DMPC scheme is verified on the level control of a benchmark four-tank system.

    The rest of the paper is organized as follows. A formal problem formulation is provided in Section II. In Section III,we introduce the distributed reconfigurable control scheme,including the reconfiguration control strategy, the way of reconfigured controller redesign and the resolving procedure of the reconfiguration control problem based on ADMM algorithm. Section IV applies the proposed reconfigured control scheme to a four-tank system, followed by some concluding remarks in Section V.

    II. PROBLEM FORMULATION

    Consider a distributed LTI (linear time-invariant) system composed byMsubsystems which are interconnected with each other through states and inputs. The local subsystemSiunder a fixed system architecture is described as

    In the existing system architecture and control framework,we assume that the initial global system represented by(A,B)is controllable. Meanwhile, every local controller is designed according to the traditional non-cooperative DMPC strategy,i.e., a local performance index is minimized in determining the optimal control input. The initial DMPC optimization problem of subsystem Si,i∈M is expressed as

    Fig. 1. Three typical reconfiguration scenarios. The red dotted lines denote the interconnections to be disconnected while the red solid lines represent the associated relationships to be newly established.

    wherex[i](k+h|k),u[i](k+h|k) denote the values ofx[i]andu[i]at the future time (k+h) predicted at the timek. The terminal invariant set Xifis devised with guaranteed stability of the global system in the existing system structure.

    Throughout this context, the communication protocol in controller design is provided by the following assumption.

    Assumption 1:The communication between two interconnected local subsystems Siand Sjis permitted if and only ifi∈Pjori∈Cj.In line with different reconfiguration demands in real applications, we focus on three typical reconfigurable scenarios in this paper: inserting new subsystems,disconnecting existing subsystems, and modifying the couplings between different local subsystems. As described earlier, inserting several new subsystems generally maps the requirement of system function extension, troubleshooting or subsystem recovery. Disconnecting existing subsystems often corresponds to failure isolation; modifying the couplings between interconnected subsystems arises from the need of system structure improvement. A more clear illustration to the three typical reconfiguration scenarios is given by Fig. 1. Note that the three scenarios cover the basic reconfiguration modes in a distributed system framework, and other complicated reconfigurable architecture requirements can be viewed as a combination of them.

    In the sequel, we propose to investigate the DMPC reconfiguration control scheme by employing the powerful ADMM algorithm with respect to the above three typical reconfiguration scenarios. It is attributed to achieving a quick control response capability and a satisfactory dynamic performance in the reconfigurable distributed control.

    III. RECONFIGURATION CONTROL SCHEME

    This section introduces the DMPC reconfiguration control scheme for linear systems with reconfigurable architectures.Specifically, in the first place, the reconfiguration control strategy in terms of three typical reconfiguration scenarios is presented. Secondly, we show how to redesign the local controllers for some selected subsystems in the reconfigured control. Then, the way to resolve the reconfiguration optimization problem via the powerful ADMM algorithm is provided, which equips local subsystems with a quickresponse ability to dynamical structure changes and helps to achieve a good distributed coordination during the whole reconfiguration control.

    A. Distributed Reconfiguration Strategy

    Due to the realignment of system architectures, the dynamics and interconnections of partial local subsystems are changed compared with those in the original system architecture. Here, we first provide a detailed analysis to the influence of three typical reconfiguration scenarios to every local subsystem. Later, the reconfiguration control strategy is presented accordingly.

    First, in the renewed system architecture,AreandBreare utilized to represent the reconfigured system matrix and input matrix, respectively. Then, the dynamics of the reconfigured global system can be described as

    Next, aiming at three typical reconfiguration scenarios, a reconfiguration strategy is proposed which determines the local subsystems whose controllers need to be redesigned in the further reconfigured control. In order to minimize changes to the existing controller designs while realizing an effective control of the global reconfigured system, the directly influenced subsystems are selected to re-conceive their local controllers. Specifically, taking into account the structure modification by means of subsystems removal, subsystems addition or coupling realignments between different subsystems, the directly influenced subsystems are referred to as the subsystems whose reconfigured subsystem dynamics is different from the original subsystem dynamics in the initial system architecture. By (1) and (6), the set of directly influenced subsystems R is determined by

    B. Reconfigurable Controller Redesign

    To equip live systems with a rapid response ability to various reconfiguration requirements and then achieve a good distributed coordination, we next provide an approach to transform the reconfigurable control problem (8) into a standard optimization formulation for employing the ADMM algorithm.

    C. Solution of the Reconfigured Control via ADMM

    Hereafter, the method for solving the reconfigured optimization problem (9) by resorting to the powerful ADMM algorithm is proposed. Generally, the constrained DMPC problem can be addressed by employing the fmincon function in Matlab if the available calculation time is sufficient. For many cases of the instant structure reconfiguration requirements, such as the isolation of several failed subsystems to prevent a further fault propagation, the time to prepare the reconfiguration control is quite limited.Furthermore, the slower the reconfiguration control response,the harder it is to achieve a satisfactory distributed coordination and the greater the system state deviation in the renewed system architecture. For these reasons, below we intend to solve the reconfigured DMPC problem (9) via the high-efficiency ADMM algorithm, which helps to significantly improve the computational efficiency of the reconfigured control response and then achieve a satisfactory reconfiguration control property.

    First, taking into account the general form of ADMM in solving optimization problems

    For the above general form of ADMM, the optimization problem (10a) is solvable in the precondition of the following two assumptions [22], which are used to guarantee the existence ofxandzthat can minimize the augmented Lagrangian function.

    Assumption 4:The functionsf(x) andg(z) are closed,proper and convex.

    Assumption 5:For simple Lagrangian

    On this basis, we aim to derive the iterative formulas that can be applied to solving the proposed reconfiguration control problem. In line with the general form of (10a) and (10b), the reconfigured DMPC optimization problem (9) can be redescribed as the following form

    Similarly, by minimizing (12a), we can obtain that

    As a result, the iterative formulas to solve the reconfigurable DMPC optimization problem (12) via the powerful ADMM algorithm are obtained as

    Meanwhile, as the iteration proceeds, the reasonable termination criterion is designed by

    Additionally, the thresholds of the primal residual ?priand the dual residual ?dualare respectively designed as

    Fig. 2. An algorithm flow chart of the proposed reconfiguration control scheme.

    IV. AN ACADEMIC EXAMPLE

    This section verifies the effectiveness of the proposed reconfiguration control scheme on the level control problem of a benchmark four-tank system [23]. The multi-variable laboratory plant is composed by four interconnected tanks with nonlinear dynamics and is subject to both state and input constraints. There are two inputs (i.e., pump throughputs)which can be used in controlling the tank levels. A schematic of the process for the four-tank system in the existing architecture is shown in Fig. 3. The water in bottom reservoir is transfered by the pumpsqaandqbto the upper tanks and the liquid levels of each tank can be measured by the local pressure sensors.

    To proceed, the state space continuous-time model of the existing four-tank plant is described by the following equations

    Fig. 3. A schematic description of the exiting four-tank system.

    In this example, the water level of each tank is constrained byhi∈[0.2,1.6], ?i∈{1,2} andhi∈[0.2,1.3], ?i∈{3,4},where the minimum level is used to prevent eddy effects in discharge of the tank. Meanwhile, the flow of pumpaandbare confined byqa∈[0,3.26] andqb∈[0,4]. The detailed nominal operating conditions and the parameters estimated on the real four-tank system are provided in Table I.

    TABLE I THE NOMINAL OPERATING CONDITIONS AND THE PARAMETER VALUES OF THE FOUR-TANK SYSTEM

    where τidenotes the time constant of each tank. The control objective of the four-tank system is to keep the levels of every tank at the specified reference values. In the existing system architecture, as shown in Fig. 2, the global system is divided into two subsystems withx[1]=[x1;x3],u[1]=u1andx[2]=[x2;x4],u[2]=u2. The two discretization subsystem models are expressed as

    To verify the presented reconfiguration control scheme, we modify the existing system architecture in Fig. 3 into the system structure shown in Fig. 4, where another branch from pumpais connected to tank 4 while a new branch from pumpbbecomes an input for tank 3.

    Fig. 4. The plant schema of the reconfigured four-tank system.

    In the renewed distributed system architecture, the reconfigured discrete-time subsystem models are given below.

    The prediction horizon is selected asN=5. In the reconfigured controller design based on the ADMM algorithm, the over-relaxation parameter α(k)=1.8 and ρ=0.2.Meanwhile, the state and input weighting matrices are

    The simulation results of the reconfiguration control in Case I are shown in Figs. 5 and 6. More precisely, Fig. 5 shows the dynamic performance of local subsystems without using the reconfiguration control scheme. During the control process of 0–2 00 steps, the system is controlled by initial controllers in the original system architecture. At iteration 200, the system structure changes in line with the architecture shown in Fig. 4.Similarly, in Case II, the simulation results are shown in Figs. 7 and 8, where the system architecture is modified at iteration 400. As can be seen from Figs. 5 and 7, the system dynamics in the existing controller design tends to be oscillating and divergent after the structure reconfiguration due to the strong input couplings between subsystems.

    Fig. 5. System performance in the existing controller design in Case I.

    Fig. 6. System performance in the proposed reconfiguration control scheme in Case I.

    For comparison, the control performance of the proposed reconfigurable DMPC scheme via the ADMM algorithm in both Cases I and II are depicted in Figs. 6 and 8. As is shown,although a small fluctuation appears at the reconfiguration point, the global system state converges to the steady point in a short period of time, which illustrates the effectiveness of the presented reconfiguration control scheme.

    Fig. 7. System performance in the existing controller design in Case II.

    Fig. 8. System performance in the proposed reconfiguration control scheme in Case II.

    Moreover, to illustrate the high efficiency of the proposed reconfigured control method combined with the ADMM algorithm, the time consumed in calculating the optimal reconfigured DMPC input via the traditional fmincon function(RDMPC(fmincon)) and the powerful ADMM (RDMPC(ADMM)) are compared. As is shown in Table II, the mean computational time in each iteration with using fmincon and ADMM are 0.145 s and 0.005 s, respectively. During the600 iterations, the comparison of the accumulated computation time is shown in Fig. 9. From these results we can see that, the calculation efficiency via ADMM is greatly improved in computing the optimal reconfigured input, which helps to ensure a quick-response ability and a satisfactory dynamic performance in the reconfiguration control.

    TABLE II COMPARISON OF THE TIME CONSUMED IN SOLVING RDMPC VIA FMINCON AND ADMM

    V. CONCLUSION

    Fig. 9. Comparison of the accumulated computation time in solving the RDMPC via fmincon and ADMM.

    This paper proposed a novel reconfiguration DMPC scheme for linear systems combined with the high-efficiency ADMM algorithm. First, taking into account three typical scenarios, a distributed reconfiguration control strategy applying to any reconfigurable requirements was presented. Secondly, based on the powerful ADMM algorithm, the way to redesign the reconfigured DMPC controller was provided and the iterative formulas employed in solving the reconfiguration optimization problem via ADMM algorithm were derived.Finally, the proposed reconfiguration control method was applied to a benchmark four-tank system to illustrate its higher efficiency and good reconfigured control performance.

    亚洲精品一区蜜桃| 亚洲精品乱码久久久v下载方式| 啦啦啦啦在线视频资源| 精品亚洲乱码少妇综合久久| 丝瓜视频免费看黄片| h视频一区二区三区| 看免费成人av毛片| 欧美激情极品国产一区二区三区 | 一级二级三级毛片免费看| 亚州av有码| 日韩强制内射视频| 国产精品久久久久久av不卡| videossex国产| 黄色视频在线播放观看不卡| 亚洲成人一二三区av| 亚洲av在线观看美女高潮| 久久毛片免费看一区二区三区| av线在线观看网站| 精品亚洲成国产av| 欧美97在线视频| 黄色一级大片看看| 男人舔奶头视频| 3wmmmm亚洲av在线观看| 国国产精品蜜臀av免费| 亚洲,一卡二卡三卡| 色婷婷久久久亚洲欧美| 成人二区视频| 国产欧美日韩精品一区二区| 欧美日本中文国产一区发布| 黄色配什么色好看| 国产精品久久久久久久电影| 蜜臀久久99精品久久宅男| 最新中文字幕久久久久| 97超视频在线观看视频| 激情五月婷婷亚洲| 啦啦啦中文免费视频观看日本| 九色成人免费人妻av| 日韩精品有码人妻一区| 国产欧美日韩综合在线一区二区 | 亚洲欧洲精品一区二区精品久久久 | 成人毛片60女人毛片免费| 亚洲精品aⅴ在线观看| 亚洲av日韩在线播放| 日韩av在线免费看完整版不卡| 国产黄频视频在线观看| 精品人妻偷拍中文字幕| 精品国产一区二区三区久久久樱花| 日本-黄色视频高清免费观看| 交换朋友夫妻互换小说| 亚洲精品视频女| 国产免费福利视频在线观看| 国产在线免费精品| 美女大奶头黄色视频| 2022亚洲国产成人精品| 亚洲精品视频女| 亚洲欧洲国产日韩| 少妇被粗大猛烈的视频| 国产一区二区在线观看av| 国内少妇人妻偷人精品xxx网站| 中文天堂在线官网| 免费av不卡在线播放| 国产欧美日韩精品一区二区| 国产色婷婷99| 丁香六月天网| 免费黄网站久久成人精品| 国产视频内射| 男人和女人高潮做爰伦理| 色婷婷久久久亚洲欧美| 六月丁香七月| av天堂久久9| 美女国产视频在线观看| 色婷婷av一区二区三区视频| 最黄视频免费看| 伊人亚洲综合成人网| 国产有黄有色有爽视频| av天堂中文字幕网| 全区人妻精品视频| 在线看a的网站| 国产白丝娇喘喷水9色精品| 久久婷婷青草| 精品久久久噜噜| 精品亚洲乱码少妇综合久久| 亚洲精品中文字幕在线视频 | 亚洲欧美日韩卡通动漫| 狂野欧美激情性xxxx在线观看| 精品久久国产蜜桃| 各种免费的搞黄视频| 久久久久久伊人网av| 又大又黄又爽视频免费| 亚洲天堂av无毛| 国产免费一级a男人的天堂| 欧美xxⅹ黑人| 三级经典国产精品| 99re6热这里在线精品视频| 中文资源天堂在线| 免费看日本二区| 下体分泌物呈黄色| 国产亚洲精品久久久com| 毛片一级片免费看久久久久| 国产精品国产三级国产av玫瑰| 久久精品国产自在天天线| 国产精品福利在线免费观看| 91午夜精品亚洲一区二区三区| 人妻夜夜爽99麻豆av| 免费av不卡在线播放| 免费大片黄手机在线观看| 午夜福利,免费看| 欧美人与善性xxx| 精品一品国产午夜福利视频| 国产色婷婷99| 久久毛片免费看一区二区三区| 秋霞伦理黄片| 久久久久久人妻| 久久99热6这里只有精品| 狂野欧美白嫩少妇大欣赏| 熟女人妻精品中文字幕| 简卡轻食公司| 热99国产精品久久久久久7| 日韩成人av中文字幕在线观看| 亚洲欧洲精品一区二区精品久久久 | 高清黄色对白视频在线免费看 | 少妇 在线观看| 国产精品久久久久久精品电影小说| 高清欧美精品videossex| 麻豆精品久久久久久蜜桃| 美女视频免费永久观看网站| 免费黄色在线免费观看| 日本猛色少妇xxxxx猛交久久| 亚洲av国产av综合av卡| 国产免费又黄又爽又色| 十八禁网站网址无遮挡 | 亚洲国产日韩一区二区| av专区在线播放| 美女中出高潮动态图| 日韩欧美一区视频在线观看 | 亚洲熟女精品中文字幕| 国产黄频视频在线观看| 亚洲欧美精品专区久久| 国产精品福利在线免费观看| 亚洲真实伦在线观看| 日韩欧美 国产精品| av播播在线观看一区| 这个男人来自地球电影免费观看 | 日韩免费高清中文字幕av| 精品卡一卡二卡四卡免费| 观看美女的网站| 久久青草综合色| 亚洲色图综合在线观看| 久久午夜福利片| 国产免费一区二区三区四区乱码| 国产av国产精品国产| 99九九线精品视频在线观看视频| 精品久久久久久久久av| 国产精品三级大全| 在线观看国产h片| 国产高清国产精品国产三级| 国产亚洲午夜精品一区二区久久| 各种免费的搞黄视频| 国产成人精品婷婷| 五月玫瑰六月丁香| 精品午夜福利在线看| 18禁裸乳无遮挡动漫免费视频| 精品久久久久久电影网| 欧美日韩视频精品一区| 又大又黄又爽视频免费| 亚洲av成人精品一二三区| 日本wwww免费看| 精品国产乱码久久久久久小说| 制服丝袜香蕉在线| 久久人妻熟女aⅴ| 日韩熟女老妇一区二区性免费视频| 看十八女毛片水多多多| 黄色配什么色好看| 免费大片黄手机在线观看| 欧美日韩一区二区视频在线观看视频在线| 精华霜和精华液先用哪个| 国产日韩一区二区三区精品不卡 | 亚洲欧美成人综合另类久久久| 男女国产视频网站| 午夜激情福利司机影院| 精品视频人人做人人爽| 波野结衣二区三区在线| 欧美bdsm另类| 欧美国产精品一级二级三级 | 国产女主播在线喷水免费视频网站| 久久国产乱子免费精品| 国产一区亚洲一区在线观看| freevideosex欧美| 亚洲国产精品专区欧美| 亚洲国产精品一区三区| 啦啦啦啦在线视频资源| 久久精品国产亚洲av涩爱| 国产极品天堂在线| 2018国产大陆天天弄谢| 午夜免费鲁丝| 中文字幕精品免费在线观看视频 | 日日啪夜夜爽| 日韩视频在线欧美| 国产伦在线观看视频一区| 久久鲁丝午夜福利片| av天堂中文字幕网| 国产精品福利在线免费观看| 日产精品乱码卡一卡2卡三| 国产精品无大码| 日本wwww免费看| 国产精品一区二区在线不卡| av不卡在线播放| 日韩视频在线欧美| 制服丝袜香蕉在线| 国产亚洲欧美精品永久| 亚洲综合精品二区| 日本91视频免费播放| 国产日韩欧美亚洲二区| 国产精品99久久99久久久不卡 | 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩东京热| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产色婷婷电影| 嘟嘟电影网在线观看| 在线天堂最新版资源| 成人特级av手机在线观看| 国产无遮挡羞羞视频在线观看| 少妇的逼水好多| 亚洲精品aⅴ在线观看| 高清av免费在线| 曰老女人黄片| 日本欧美视频一区| av福利片在线观看| 欧美精品一区二区大全| 蜜臀久久99精品久久宅男| 午夜久久久在线观看| 亚洲四区av| 精品亚洲成国产av| 欧美日韩综合久久久久久| av在线观看视频网站免费| √禁漫天堂资源中文www| 国产在视频线精品| 国产91av在线免费观看| 国产在线男女| 亚洲电影在线观看av| 一区二区av电影网| 成人影院久久| 午夜老司机福利剧场| 丝袜在线中文字幕| 80岁老熟妇乱子伦牲交| 国产高清不卡午夜福利| 街头女战士在线观看网站| av天堂久久9| 丰满饥渴人妻一区二区三| 麻豆成人av视频| 男女免费视频国产| 国产成人91sexporn| av在线播放精品| 51国产日韩欧美| 欧美精品高潮呻吟av久久| h日本视频在线播放| av福利片在线| 啦啦啦视频在线资源免费观看| 超碰97精品在线观看| 日韩视频在线欧美| 老司机影院毛片| 最新中文字幕久久久久| 久久久久久久精品精品| 51国产日韩欧美| 久久狼人影院| 国产有黄有色有爽视频| 成人国产麻豆网| 天美传媒精品一区二区| 97精品久久久久久久久久精品| 亚洲丝袜综合中文字幕| 在线天堂最新版资源| 日本色播在线视频| a级毛片免费高清观看在线播放| 18禁在线无遮挡免费观看视频| 99热这里只有是精品在线观看| 国产免费又黄又爽又色| 插逼视频在线观看| 亚洲精品日韩av片在线观看| 国产成人精品婷婷| 亚洲成人手机| 在线免费观看不下载黄p国产| 少妇精品久久久久久久| 黄色一级大片看看| 22中文网久久字幕| 3wmmmm亚洲av在线观看| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区国产| 精品亚洲成国产av| 22中文网久久字幕| 久久99热这里只频精品6学生| 国产在线一区二区三区精| 久久国产精品大桥未久av | 国产国拍精品亚洲av在线观看| 一二三四中文在线观看免费高清| 日韩 亚洲 欧美在线| 中文字幕人妻熟人妻熟丝袜美| 一个人看视频在线观看www免费| 国内少妇人妻偷人精品xxx网站| av又黄又爽大尺度在线免费看| 少妇猛男粗大的猛烈进出视频| 另类精品久久| 国产在线免费精品| 少妇人妻久久综合中文| 人妻人人澡人人爽人人| 国产日韩欧美在线精品| 亚洲精品日韩av片在线观看| 春色校园在线视频观看| 午夜免费观看性视频| 日本与韩国留学比较| 久久人人爽av亚洲精品天堂| 中文在线观看免费www的网站| 亚洲精品久久久久久婷婷小说| 精品国产国语对白av| 丁香六月天网| 日韩人妻高清精品专区| 久久久久人妻精品一区果冻| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 国产成人精品福利久久| 国产国拍精品亚洲av在线观看| 极品教师在线视频| 麻豆成人av视频| 亚洲国产精品专区欧美| 丝袜脚勾引网站| 国产伦理片在线播放av一区| 桃花免费在线播放| 最近2019中文字幕mv第一页| 80岁老熟妇乱子伦牲交| 美女主播在线视频| 王馨瑶露胸无遮挡在线观看| 伊人久久国产一区二区| 黑丝袜美女国产一区| 久久久久久伊人网av| 99九九在线精品视频 | 久久久午夜欧美精品| 中国国产av一级| 亚洲成人一二三区av| 国产成人一区二区在线| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 又黄又爽又刺激的免费视频.| 熟女电影av网| 日韩中文字幕视频在线看片| 日本欧美国产在线视频| 亚洲第一av免费看| 免费观看av网站的网址| 我的女老师完整版在线观看| 能在线免费看毛片的网站| 亚洲人成网站在线播| 久久久久久久久久成人| 欧美日韩在线观看h| 久久99热这里只频精品6学生| 久久精品久久久久久久性| 久久亚洲国产成人精品v| 2022亚洲国产成人精品| 中国国产av一级| 乱人伦中国视频| 国产av精品麻豆| 在线观看三级黄色| 一本一本综合久久| 久久狼人影院| 亚洲av欧美aⅴ国产| 日本猛色少妇xxxxx猛交久久| av女优亚洲男人天堂| 国产伦精品一区二区三区四那| 亚洲精品视频女| 9色porny在线观看| 亚洲国产欧美日韩在线播放 | 九色成人免费人妻av| 最近2019中文字幕mv第一页| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 久久精品熟女亚洲av麻豆精品| 久久国产乱子免费精品| 国产美女午夜福利| 99视频精品全部免费 在线| 亚洲av电影在线观看一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头黄色视频| 18禁裸乳无遮挡动漫免费视频| 男人狂女人下面高潮的视频| 三级国产精品欧美在线观看| 大片免费播放器 马上看| 日韩一区二区视频免费看| 国产亚洲5aaaaa淫片| av国产久精品久网站免费入址| 赤兔流量卡办理| 国内揄拍国产精品人妻在线| 丝袜脚勾引网站| 日韩,欧美,国产一区二区三区| 日韩中文字幕视频在线看片| 国产精品久久久久久久久免| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| 99热全是精品| 国产黄片美女视频| 男女边吃奶边做爰视频| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 成人国产av品久久久| 久久久国产一区二区| 建设人人有责人人尽责人人享有的| 欧美高清成人免费视频www| 国产午夜精品久久久久久一区二区三区| 最近中文字幕高清免费大全6| 亚洲图色成人| 久久99一区二区三区| 久久久久人妻精品一区果冻| 久久久久久人妻| 寂寞人妻少妇视频99o| 日韩av免费高清视频| a级毛色黄片| 亚洲电影在线观看av| 亚洲av电影在线观看一区二区三区| 亚洲人成网站在线播| 在线看a的网站| 午夜福利影视在线免费观看| 岛国毛片在线播放| 高清av免费在线| 国产在线一区二区三区精| 国产免费一级a男人的天堂| 久久影院123| 久久精品国产a三级三级三级| 交换朋友夫妻互换小说| 久久久久久久精品精品| 老女人水多毛片| 亚洲精品自拍成人| 综合色丁香网| 中文字幕人妻熟人妻熟丝袜美| 欧美精品人与动牲交sv欧美| 一级二级三级毛片免费看| 久久久久久久国产电影| 日本黄大片高清| 色视频在线一区二区三区| 亚洲人成网站在线播| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲成人av在线免费| 色哟哟·www| 极品教师在线视频| 亚洲欧美一区二区三区黑人 | 黑人猛操日本美女一级片| 麻豆乱淫一区二区| av.在线天堂| 最近中文字幕高清免费大全6| 日韩电影二区| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 天堂8中文在线网| 国产一区有黄有色的免费视频| 亚洲精品乱码久久久久久按摩| 大片免费播放器 马上看| 人妻 亚洲 视频| 久久毛片免费看一区二区三区| 国产精品蜜桃在线观看| 日韩成人伦理影院| av免费观看日本| 老司机亚洲免费影院| 日本黄色日本黄色录像| 亚洲怡红院男人天堂| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 最近最新中文字幕免费大全7| 97精品久久久久久久久久精品| h日本视频在线播放| 国产精品免费大片| 欧美日韩亚洲高清精品| 永久网站在线| 精品久久久精品久久久| 亚洲欧美日韩东京热| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| av播播在线观看一区| 亚洲精品亚洲一区二区| 毛片一级片免费看久久久久| 国产免费又黄又爽又色| 黑人巨大精品欧美一区二区蜜桃 | 99九九在线精品视频 | 日韩欧美精品免费久久| 国产一区二区三区综合在线观看 | 夜夜爽夜夜爽视频| 日韩不卡一区二区三区视频在线| 国产亚洲一区二区精品| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 亚洲激情五月婷婷啪啪| 99久国产av精品国产电影| 亚洲欧美精品自产自拍| 欧美日韩国产mv在线观看视频| 成人免费观看视频高清| 免费高清在线观看视频在线观看| 又粗又硬又长又爽又黄的视频| 国产精品熟女久久久久浪| 看十八女毛片水多多多| 青青草视频在线视频观看| 日韩精品免费视频一区二区三区 | 一区在线观看完整版| 国产精品嫩草影院av在线观看| 免费看光身美女| 九色成人免费人妻av| 亚洲美女搞黄在线观看| 这个男人来自地球电影免费观看 | 人体艺术视频欧美日本| 色视频在线一区二区三区| 大又大粗又爽又黄少妇毛片口| 少妇人妻 视频| 国产日韩欧美视频二区| 国产免费福利视频在线观看| 在线观看免费高清a一片| 赤兔流量卡办理| 成人国产av品久久久| 在线观看国产h片| 成人综合一区亚洲| 女人精品久久久久毛片| 久久久久久久大尺度免费视频| 亚洲精品aⅴ在线观看| 亚洲高清免费不卡视频| 国产探花极品一区二区| 一级毛片电影观看| 欧美一级a爱片免费观看看| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 欧美精品一区二区免费开放| 婷婷色综合www| 岛国毛片在线播放| 久久综合国产亚洲精品| 日韩在线高清观看一区二区三区| 午夜激情久久久久久久| 中文在线观看免费www的网站| 又大又黄又爽视频免费| 亚洲精品中文字幕在线视频 | 日韩中文字幕视频在线看片| 国产爽快片一区二区三区| 日本午夜av视频| 色视频www国产| 一级,二级,三级黄色视频| 99久国产av精品国产电影| 在线天堂最新版资源| 亚洲成人手机| 在线精品无人区一区二区三| 亚洲精品国产成人久久av| 国产免费又黄又爽又色| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三区在线 | 两个人的视频大全免费| 国内精品宾馆在线| 国产av码专区亚洲av| 久久午夜福利片| 国产黄片美女视频| 一区二区三区四区激情视频| 国产毛片在线视频| 搡老乐熟女国产| 国产欧美日韩精品一区二区| 日韩三级伦理在线观看| av黄色大香蕉| 亚洲美女视频黄频| 欧美成人午夜免费资源| 最新中文字幕久久久久| 久久久久久久大尺度免费视频| 黄片无遮挡物在线观看| 国产乱来视频区| 国产精品国产三级专区第一集| 国产成人aa在线观看| 两个人的视频大全免费| 国产精品熟女久久久久浪| 在线天堂最新版资源| 日韩欧美精品免费久久| 人体艺术视频欧美日本| 99久久综合免费| 成人免费观看视频高清| 日日爽夜夜爽网站| 国产欧美亚洲国产| 日本爱情动作片www.在线观看| 亚洲久久久国产精品| 色视频在线一区二区三区| 欧美+日韩+精品| 国产综合精华液| 国产伦在线观看视频一区| 精品一区在线观看国产| 久久久精品免费免费高清| 又粗又硬又长又爽又黄的视频| 美女中出高潮动态图| 夫妻午夜视频| 少妇的逼水好多| 国产亚洲最大av| 91精品一卡2卡3卡4卡| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 搡老乐熟女国产| 麻豆成人av视频| 观看美女的网站| 国产精品99久久久久久久久| 欧美日韩视频高清一区二区三区二| 久久毛片免费看一区二区三区| 有码 亚洲区| 国产又色又爽无遮挡免| 一级毛片久久久久久久久女| 97超碰精品成人国产| 伦理电影免费视频| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲婷婷狠狠爱综合网| 国产黄片美女视频| 国产精品久久久久久av不卡| 免费av不卡在线播放| 久久97久久精品| 免费大片黄手机在线观看| 91精品伊人久久大香线蕉| 精品国产露脸久久av麻豆| 在现免费观看毛片| 22中文网久久字幕|