• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-Time Fuzzy Sliding Mode Control for Nonlinear Descriptor Systems

    2021-06-18 03:28:18ZhixiongZhongXingyiWangandHakKeungLam
    IEEE/CAA Journal of Automatica Sinica 2021年6期

    Zhixiong Zhong,, Xingyi Wang, and Hak-Keung Lam,

    Abstract—This article addresses the finite-time boundedness(FTB) problem for nonlinear descriptor systems. Firstly, the nonlinear descriptor system is represented by the Takagi-Sugeno(T-S) model, where fuzzy representation is assumed to be appearing not only in both the state and input matrices but also in the derivative matrix. By using a descriptor redundancy approach, the fuzzy representation in the derivative matrix is reformulated into a linear one. Then, we introduce a fuzzy sliding mode control (FSMC) law, which ensures the finite-time boundedness (FTB) of closed-loop fuzzy control systems over the reaching phase and sliding motion phase. Moreover, by further employing the descriptor redundancy representation, the sufficient condition for designing FSMC law, which ensures the FTB of the closed-loop control systems over the entire finite-time interval, is derived in terms of linear matrix inequalities (LMIs).Finally, a simulation study with control of a photovoltaic (PV)nonlinear system is given to show the effectiveness of the proposed method.

    I. INTRODUCTION

    THE fuzzy control algorithm consists of a set of fuzzy logic, fuzzy sets, and heuristic control rules [1]-[3], and it has been used for the effective handling of control of complex nonlinear systems including robotic teleoperations [4],surgical robotics [5], and multiple robots [6]. Among these fuzzy control methods, Takagi-Sugeno (T-S) fuzzy model uses linear equations to represent each local system corresponding to their local rules, and then employs fuzzy reasoning to blend local linearity for implementing total nonlinearity. Nowadays, the T-S model has been very popular in the control society because of its ability to provide good approximation. Therefore, over the past few decades, the problems of stability analysis and control synthesis have been investigated for the T-S fuzzy model more frequently [7]-[9].

    Sliding mode control (SMC) has been regarded as one of the most powerful nonlinear control methods, and has been widely used due to its quick response and strong robustness in practical applications. The essence of SMC is to drive state trajectories toward the switching manifold. Such motion is motivated by imposing disruptive control actions, commonly in the form of switching control strategies. An ideal sliding mode exists only when the system state satisfies the dynamic equation that governs the sliding mode for all time. This requires an infinite switching, in general, to ensure the sliding motion. The past decades have witnessed the successfully practical application of SMC in several areas (see [10]-[13]).In addition, descriptor systems are referred to as implicit/singular systems, which enable describing a larger class of systems than the normal model representation [14].More recently, stability results of fuzzy descriptor systems using the SMC method have been reported in [15]-[17].However, note that the aforementioned works only highlighted the asymptotic behavior of the fuzzy control system over an infinite working time interval, and all aforementioned works of the SMC consider system dynamics within a sufficiently long time interval. In fact, in many practical applications, a finite-time stability (FTS) may be required when facing the prescribed restraints on transient dynamics, such as, for example, dual-arm robots [18], [19],input-delay systems [20], Markovian jump cyber-physical systems [21], multi-input and multi-output (MIMO) nonlinear systems [22], [23], and nonlinear systems with positive powers of odd rational numbers [24]. Both FTS and practical stability (PS) have a similar definition for stability analysis,and they work on the boundary of state trajectories starting from a desired initial region. However, the main distinction between FTS and PS is that FTS works with a finite period while PS works for an infinite amount of time [25]. When taking into account norm bounded disturbances, the concept should be changed from FTS to finite time boundedness(FTB). FTB ensures FTS, but its converse is not true [26]. We are aware that the finite-time SMC of fuzzy descriptor systems is of the wide practical applicability. However, few works studied the FTB of the FSMC descriptor system in both the reaching phase and the sliding one. It reflects the following two important control problems. One is determining how to partition the specified finite timeSinto two subintervals [0,S*] and [S*,S], which ensures the FTB of the corresponding FSMC descriptor system over the reaching phase and sliding motion phase. The other is determining how to design the FSMC law via linear matrix inequalities (LMIs),which ensure the FTB of the closed-loop fuzzy descriptor system over the whole finite-time interval [ 0,S].

    Motivated by the aforementioned considerations, this paper proposes a novel fuzzy sliding mode control strategy for nonlinear descriptor systems using a FTB method. Firstly, the nonlinear descriptor system is represented by the T-S model,where fuzzy representation is assumed to be appearing not only in both the state and input matrices but also in the derivative matrix, and the derivative matrix is assumed to not always be nonsingular. By using a descriptor redundancy formulation, the fuzzy representation in the derivative matrix is reformulated into one that is linear. Then, we introduce the fuzzy sliding mode control (FSMC) law, which ensures the FTB of the closed-loop fuzzy control systems through the reaching phase and sliding motion phase. Moreover, by employing the descriptor redundancy reformulation, it is shown that a sufficient condition for designing FSMC law,which ensures the FTB of the closed-loop control systems through the entire finite-time interval, is derived in terms of LMIs. Finally, a simulation study for the control of the photovoltaic (PV) nonlinear system is provided to show the effectiveness of the proposed method. The main contributions of this paper are summarized as follows: 1) For a specified time interval [ 0,S], we partition it into two subintervals [0,S*]and [S*,S], where the proposed FSMC law ensures the FTB of the corresponding FSMC descriptor system over reaching phase and sliding motion phase. 2) Sufficient conditions for designing the proposed FSMC law, which ensures the FTB of the fuzzy descriptor system over the whole finite-time interval[0,S], are derived in terms of LMIs.

    II. PROBLEM FORMULATION AND PRELIMINARIES

    Descriptor systems are referred to as implicit/singular systems, which enables us to describe a larger class of systems with normal model representation [14]. This paper considers a class of nonlinear descriptor systems Currently, the most attention is given to nonlinear systems with “sector nonlinearities” [8]. Thus, the considered nonlinear system (1) can be described by the following form of the T-S model:

    Remark 1:SinceE(h) is nonsingular, we can perform its inverse operation in the descriptor fuzzy system (2). In this case, the descriptor fuzzy system can be transformed into one that is nominal (nondescriptor). As pointed out in [27], when considering the T-S descriptor representation, the number of fuzzy inference rules will decrease so that the number of LMIs to controller design is remarkably reduced.

    Here, without loss of generality, we only consider that the class of norm-bounded square integrable disturbance acts over the time interval [t1,t2], which is defined as below [28]:

    This paper aims at to design a FSMC law, which can drive the system trajectories of the considered fuzzy descriptor model into the sliding surface function within a finite time,where the FTB subject to (c1,c2,[0,S],R,W[0,S],δ). Furthermore, sufficient conditions for designing the proposed FSMC law is derived in the form of LMIs.

    III. DESIGN OF FSMC LAW BASED ON FTB

    In this section, for the specified finite time and the initial state, we will perform the FTB of the FSMC descriptor system in both the reaching and sliding phases, and it will be shown that sufficient conditions for designing the proposed FSMC law is given in the form of LMIs.

    A. Model Transformation

    Firstly, motivated by [27] we can rewrite the T-S fuzzy descriptor model in (2) as below:

    Remark 2:Note that, by using a descriptor redundancy approach, the fuzzy representation in the derivative matrix (2)is reformulated into the linear approach as shown in (5). In that case, it is easy to choose the Lyapunov matrix as below:

    B. Design of FSMC Law

    Firstly, based on the fuzzy descriptor system (5), an integral-type sliding surface function is constructed as below[15]:

    with

    Fig. 1. Fuzzy sliding mode control of T-S fuzzy descriptor system.

    C. Reaching Phase of FTB Within[0,S*]

    Proof:Consider the Lyapunov function in the descriptorsystem domain,

    D. Sliding Motion Phase of FTB Within[S*,S]

    During the finite-time interval [S*,S] of the sliding phase,we will derive the sufficient conditions to ensure the FTB of the FSMC descriptor system. When the system trajectories arrive at the sliding surface, it has thats˙(t)=0. Thus, the equivalent controllerueq(t) is obtained as below:

    Motivated by [35], [36], by augmenting the system (5) and the equivalent controller (37), it yields

    Remark 4:Here, by further employing the descriptor redundancy representation we can avoid the inverse operation in the equivalent controller (37).

    In the following, we will derive a sufficient condition to ensure the FTB of the FSMC descriptor system (38) within the finite-time interval [S*,S].

    In addition, it can be seen from (44) that

    E. Design of Controller Gain

    Furthermore, the controller gain can be obtained as below:

    F. Design Procedure for the FTB Algorithm

    The detailed calculation steps of the proposed FTB algorithm for the FSMC descriptor system are summarized as follows:

    1) Use the T-S fuzzy model method to describe the nonlinear descriptor system as shown in (1), and rewrite the T-S fuzzy descriptor model as shown in (5).

    2) Choose a suitable matrix, so that(μ) is nonsingular,and solve Theorem 4 to obtain the controller gainKl. Given the initial statex(0), and the finite-timeS, and construct a FSMC lawu(t) as shown in (8) and (9);

    IV. SIMULATION STUDY

    The PV systems are built to transform sun irradiance into electrical power. However, building such systems come at a relatively high cost. All work done in the published literature focuses on increasing the efficiency of such systems and decreasing their cost. In order to show the effectiveness of the proposed control method, we consider a maximum power point tracking (MPPT) problem for a solar PV power system using a DC/DC boost converter as shown in Fig. 2, which consists of a solar PV array, an inductorL, a capacitorC0, and a load. Its dynamic model can be represented by the following differential equations [37]:

    Fig. 2. A solar PV power with DC/DC boost converter.

    In order to maximize the efficiency of PV power-generation systems, the electric characteristic of PV arrays is considered as follows [37]:

    The normalized membership functions are given in Fig. 3,and we rewrite the T-S fuzzy descriptor model of the nonlinear PV system as below:

    Fig. 3. Normalized membership functions.

    With the above solution, the response of the sliding surface function is shown in Fig. 4. It is easy to see that the proposed FSMC can force PV system states around the sliding surface withinS=0.3 s, which is less than the pre-specified finite timeS= 1 s. The responses of PV system states by the proposed FSMC control strategy are shown in Fig. 5. It can be seen that the approximated MPPT of the PV nonlinear system can be achieved withinS=0.05 s. Moreover, we further compare with non-fuzzy sliding mode control, and the corresponding results are respectively given in Fig. 6. It is easy to see that the proposed fuzzy sliding mode control achieves better control performance in comparison with nonfuzzy sliding mode control. Note that the state trajectories of open-loop PV system are unbounded. However, the proposed FSMC control strategy ensures the state trajectories boundness, and the comparison ofxT(t)Rx(t) between the open-loop system and the closed-loop one is given in Fig. 7.Responses of the derivative of the statex(t) and control inputu(t)are respectively given in Figs 8 and 9.

    Fig. 4. Response of the sliding surface function.

    Fig. 5. State responses for the fuzzy SMC system.

    Fig. 6. State responses for the linear SMC system.

    xT(t)Rx(t)Fig. 7. Comparison of between open- and closed-loop control.

    Fig. 8. Response of the derivative of the state x(t).

    Fig. 9. Response of the control input u (t).

    Remark 7:It is worth to point out that the proposed FSMC in (67) carries the advantages of both the fuzzy method and the sliding mode technique at the same time. The fuzzy method can be regarded as a powerful and flexible approximator, and the main feature of sliding mode approach is its fast response and robustness against uncertainties or disturbances. Figs. 5 and 6 have shown that the proposed FSMC achieves fast response against disturbances in comparison with non-fuzzy sliding mode control.

    Remark 8:It is noted that all computations in the sequel were done in MATLAB R2018b running under Windows 10 PC. The computer used was equipped with Intel Xeon E-2276M 2.8 GHz CPU and 16 GB RAM. First, the desired SMC controller gains are solved off-line. The computational time using the FSMC design proposed in Theorem 4 is 218.5 s while the times using the linear SMC result are within 2.8 s.Then, after the off-line controller gains are obtained, for the considered fuzzy system, the SMC is implemented on-line.The computational time of the FSMC is 3.52×10-4s in each iteration while the computational time of the linear SMC is 3.05×10-4s. Moreover, the number of total decision variables using the FSMC design in Theorem 4 is 205 but the number of total decision variables on the linear SMC result is 116. Therefore, it is a trade-off between design complexity and desired control performance when considering with the applications of the FSMS and linear SMC.

    Remark 9:Note that the choices of fuzzy premise variables and fuzzy rules have a great impact on control performance and computational complexities. Since the authors have tried different rules for this example, the selected premise variables are 5 and the selected fuzzy rules are 32, which have taken into account both the control performance and computational complexities. Thus, it will avoid the overfitting problem.

    V. CONCLUSIONS

    This paper proposes a novel fuzzy sliding mode control strategy to T-S fuzzy descriptor systems using a FTB method.By using a descriptor redundancy approach, the fuzzy representation in the derivative matrix is reformulated into a linear one. We introduce a fuzzy sliding mode control(FSMC) law, and it is shown that the proposed FSMC law ensures the FTB of the closed-loop fuzzy control systems over the reaching phase and sliding motion phase. Sufficient conditions for designing the proposed FSMC law is derived in terms of LMIs. The simulation study shows that the MPPT control of the PV nonlinear system can be achieved within a specified finite time..

    ACKNOWLEDGMENT

    The authors would like to thank Professor Chih-Min Lin’s help to this research and this paper’s writing and revision.

    国产成人精品一,二区 | 大型黄色视频在线免费观看| 成人午夜高清在线视频| 一区福利在线观看| 国产精品久久久久久久电影| 欧美日韩综合久久久久久| 久久久久网色| 国产成年人精品一区二区| 国产极品天堂在线| 精品久久久久久久人妻蜜臀av| 国产精品久久视频播放| 少妇丰满av| 欧美成人精品欧美一级黄| 99热网站在线观看| 一级黄色大片毛片| 人妻系列 视频| or卡值多少钱| 国产午夜福利久久久久久| av专区在线播放| 六月丁香七月| 国产三级在线视频| 日本-黄色视频高清免费观看| 又爽又黄a免费视频| 狂野欧美白嫩少妇大欣赏| 亚洲aⅴ乱码一区二区在线播放| 寂寞人妻少妇视频99o| 大又大粗又爽又黄少妇毛片口| 国产亚洲欧美98| 18禁在线无遮挡免费观看视频| 欧美性猛交黑人性爽| 最好的美女福利视频网| 人妻制服诱惑在线中文字幕| 久久精品国产亚洲av天美| 久久久色成人| 欧美一区二区国产精品久久精品| 国产午夜精品久久久久久一区二区三区| 日韩一区二区视频免费看| 最近中文字幕高清免费大全6| 国产精品嫩草影院av在线观看| 日本色播在线视频| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 日韩大尺度精品在线看网址| 91久久精品国产一区二区成人| 日韩精品青青久久久久久| 亚洲一区高清亚洲精品| 欧美高清成人免费视频www| 亚洲av熟女| 不卡视频在线观看欧美| 黄色视频,在线免费观看| 国产91av在线免费观看| 久久亚洲精品不卡| 久久久欧美国产精品| 两个人视频免费观看高清| 精品久久久久久久久亚洲| 国产精品人妻久久久久久| 亚洲久久久久久中文字幕| 五月玫瑰六月丁香| 亚洲国产日韩欧美精品在线观看| 草草在线视频免费看| 天堂影院成人在线观看| 一个人免费在线观看电影| 在线播放无遮挡| 亚洲最大成人手机在线| 成人国产麻豆网| 一个人看视频在线观看www免费| 三级毛片av免费| 久久久精品94久久精品| 熟妇人妻久久中文字幕3abv| 哪个播放器可以免费观看大片| 1000部很黄的大片| 一进一出抽搐动态| 少妇人妻一区二区三区视频| 一进一出抽搐gif免费好疼| 亚洲不卡免费看| 麻豆国产97在线/欧美| 午夜福利在线观看免费完整高清在 | 麻豆精品久久久久久蜜桃| 综合色丁香网| 你懂的网址亚洲精品在线观看 | 亚洲成人中文字幕在线播放| kizo精华| 极品教师在线视频| 国产三级中文精品| 亚洲欧美精品综合久久99| 国产精品1区2区在线观看.| 超碰av人人做人人爽久久| 人人妻人人澡人人爽人人夜夜 | 国产精品嫩草影院av在线观看| 神马国产精品三级电影在线观看| 精品人妻一区二区三区麻豆| av免费在线看不卡| 亚洲五月天丁香| 美女大奶头视频| 一进一出抽搐动态| 亚洲自拍偷在线| 久久久久久久久久成人| 精品久久久久久久久久久久久| 亚洲欧美日韩高清专用| 免费看美女性在线毛片视频| 欧美不卡视频在线免费观看| 插阴视频在线观看视频| 麻豆久久精品国产亚洲av| 国产大屁股一区二区在线视频| 男女视频在线观看网站免费| 亚洲激情五月婷婷啪啪| 欧美另类亚洲清纯唯美| 欧美xxxx黑人xx丫x性爽| 免费观看a级毛片全部| 午夜福利成人在线免费观看| 综合色丁香网| 国产精品国产高清国产av| 夜夜看夜夜爽夜夜摸| 久久九九热精品免费| 国产蜜桃级精品一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 麻豆国产97在线/欧美| 岛国毛片在线播放| 少妇熟女欧美另类| 成人特级av手机在线观看| 黄色视频,在线免费观看| 国产一区二区在线av高清观看| 日韩 亚洲 欧美在线| 国产成年人精品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美精品自产自拍| 日韩高清综合在线| 菩萨蛮人人尽说江南好唐韦庄 | 好男人在线观看高清免费视频| 色吧在线观看| 岛国毛片在线播放| 99久久人妻综合| 搡老妇女老女人老熟妇| 草草在线视频免费看| ponron亚洲| 欧美不卡视频在线免费观看| 亚洲三级黄色毛片| 日韩 亚洲 欧美在线| 国产一区二区在线av高清观看| 成人一区二区视频在线观看| 亚洲精品国产av成人精品| 国产精品久久久久久亚洲av鲁大| 啦啦啦观看免费观看视频高清| 在线播放国产精品三级| 一夜夜www| 少妇丰满av| 99热只有精品国产| 亚洲av成人av| ponron亚洲| 成人欧美大片| 人妻久久中文字幕网| 日本欧美国产在线视频| 国产视频首页在线观看| 亚洲欧洲日产国产| 日韩制服骚丝袜av| 神马国产精品三级电影在线观看| 边亲边吃奶的免费视频| 熟女电影av网| 欧美日本视频| 日日摸夜夜添夜夜添av毛片| 亚洲丝袜综合中文字幕| 国产精品永久免费网站| 久久午夜福利片| 男人舔女人下体高潮全视频| 不卡视频在线观看欧美| 日韩中字成人| 日本黄大片高清| 白带黄色成豆腐渣| av专区在线播放| av黄色大香蕉| 久久久久性生活片| 亚洲av免费高清在线观看| 99riav亚洲国产免费| 亚洲五月天丁香| 91久久精品国产一区二区三区| 精华霜和精华液先用哪个| 夫妻性生交免费视频一级片| 国产精品野战在线观看| 日本在线视频免费播放| 免费看日本二区| 欧美3d第一页| 免费黄网站久久成人精品| 直男gayav资源| 国产在视频线在精品| 级片在线观看| 黄色欧美视频在线观看| 亚洲天堂国产精品一区在线| 最后的刺客免费高清国语| 有码 亚洲区| 国产精品国产三级国产av玫瑰| 亚洲美女视频黄频| 久久精品久久久久久噜噜老黄 | 夜夜夜夜夜久久久久| 精品一区二区三区视频在线| 国产亚洲av嫩草精品影院| 一个人观看的视频www高清免费观看| 久久6这里有精品| 国产一区亚洲一区在线观看| 精品午夜福利在线看| 国产一区二区亚洲精品在线观看| 日本免费一区二区三区高清不卡| 欧美又色又爽又黄视频| 亚洲,欧美,日韩| 少妇高潮的动态图| 国产亚洲av片在线观看秒播厂 | 日本-黄色视频高清免费观看| 国产黄片美女视频| 亚洲第一区二区三区不卡| 久久久午夜欧美精品| 黄片wwwwww| 国产精品av视频在线免费观看| 蜜臀久久99精品久久宅男| 久久久久久九九精品二区国产| 欧美激情国产日韩精品一区| 中文字幕免费在线视频6| 午夜老司机福利剧场| 91av网一区二区| 国产免费一级a男人的天堂| 黄色一级大片看看| 国产毛片a区久久久久| 少妇熟女aⅴ在线视频| 不卡视频在线观看欧美| 久久久久久久久久久免费av| 麻豆成人av视频| 国产精品乱码一区二三区的特点| 啦啦啦韩国在线观看视频| 99久久成人亚洲精品观看| 国产激情偷乱视频一区二区| 啦啦啦韩国在线观看视频| 国产久久久一区二区三区| 午夜精品国产一区二区电影 | 国内精品一区二区在线观看| 联通29元200g的流量卡| 人妻制服诱惑在线中文字幕| 免费无遮挡裸体视频| .国产精品久久| 大型黄色视频在线免费观看| 身体一侧抽搐| 欧美区成人在线视频| av在线亚洲专区| 国产精品久久电影中文字幕| 国产精品一区www在线观看| 99热6这里只有精品| 亚洲精品国产av成人精品| 99riav亚洲国产免费| or卡值多少钱| 两个人视频免费观看高清| 午夜免费激情av| 有码 亚洲区| 我的女老师完整版在线观看| 亚洲精品久久久久久婷婷小说 | 国产精品一二三区在线看| 日日干狠狠操夜夜爽| 爱豆传媒免费全集在线观看| 国产爱豆传媒在线观看| 99久久久亚洲精品蜜臀av| 一个人看视频在线观看www免费| 99精品在免费线老司机午夜| 成人综合一区亚洲| 干丝袜人妻中文字幕| 国产精品美女特级片免费视频播放器| 亚洲精品国产av成人精品| 美女内射精品一级片tv| 乱系列少妇在线播放| 中文字幕制服av| 中文字幕久久专区| 99精品在免费线老司机午夜| 中文资源天堂在线| 你懂的网址亚洲精品在线观看 | 99久久人妻综合| av黄色大香蕉| av女优亚洲男人天堂| a级毛片免费高清观看在线播放| 午夜a级毛片| 人人妻人人澡欧美一区二区| 日韩精品青青久久久久久| 人人妻人人澡欧美一区二区| 成人鲁丝片一二三区免费| 国产精品一二三区在线看| 中文字幕制服av| 乱码一卡2卡4卡精品| 午夜精品一区二区三区免费看| 天堂av国产一区二区熟女人妻| 亚洲,欧美,日韩| 精品不卡国产一区二区三区| 免费av不卡在线播放| 熟妇人妻久久中文字幕3abv| 99热精品在线国产| 国产大屁股一区二区在线视频| 亚洲美女搞黄在线观看| 国产亚洲精品久久久com| 精品久久久久久久末码| 国产中年淑女户外野战色| 亚洲久久久久久中文字幕| 亚洲精华国产精华液的使用体验 | 草草在线视频免费看| 亚洲欧洲日产国产| 亚洲精品影视一区二区三区av| 亚洲内射少妇av| 亚洲18禁久久av| 五月玫瑰六月丁香| 97在线视频观看| 两个人视频免费观看高清| 麻豆国产av国片精品| 免费在线观看成人毛片| 亚洲av电影不卡..在线观看| 美女被艹到高潮喷水动态| .国产精品久久| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 中文精品一卡2卡3卡4更新| 偷拍熟女少妇极品色| 欧美在线一区亚洲| 麻豆成人午夜福利视频| 精品99又大又爽又粗少妇毛片| 亚洲图色成人| 99久久成人亚洲精品观看| 亚洲精品久久国产高清桃花| 国产一区二区三区在线臀色熟女| 我要搜黄色片| 成人av在线播放网站| 日本撒尿小便嘘嘘汇集6| 热99re8久久精品国产| 久久国内精品自在自线图片| 99热6这里只有精品| 亚洲欧美日韩高清专用| a级毛色黄片| 日本三级黄在线观看| 蜜桃久久精品国产亚洲av| 成人一区二区视频在线观看| 亚洲电影在线观看av| 在线观看av片永久免费下载| 高清日韩中文字幕在线| 色综合亚洲欧美另类图片| 综合色丁香网| 国产精品美女特级片免费视频播放器| 亚洲久久久久久中文字幕| av专区在线播放| 小说图片视频综合网站| 国产一级毛片七仙女欲春2| 看片在线看免费视频| a级毛色黄片| 午夜爱爱视频在线播放| 久久九九热精品免费| 高清在线视频一区二区三区 | 麻豆久久精品国产亚洲av| 亚洲色图av天堂| 九九在线视频观看精品| 我的老师免费观看完整版| 久久中文看片网| 夜夜爽天天搞| 99热这里只有是精品在线观看| 久久人妻av系列| 色综合色国产| 精华霜和精华液先用哪个| 男女边吃奶边做爰视频| 观看美女的网站| 男人的好看免费观看在线视频| 青春草国产在线视频 | 久久精品国产亚洲av天美| 国产欧美日韩精品一区二区| 日韩成人伦理影院| 欧美三级亚洲精品| 亚洲精品成人久久久久久| 国产精品女同一区二区软件| 国产人妻一区二区三区在| 久久久精品大字幕| 夜夜爽天天搞| 免费观看精品视频网站| 变态另类成人亚洲欧美熟女| 欧美一级a爱片免费观看看| 日本成人三级电影网站| 日产精品乱码卡一卡2卡三| 国产精品日韩av在线免费观看| 在现免费观看毛片| a级一级毛片免费在线观看| av国产免费在线观看| 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 一个人免费在线观看电影| 一卡2卡三卡四卡精品乱码亚洲| 国产激情偷乱视频一区二区| 久久人人精品亚洲av| 女人十人毛片免费观看3o分钟| 别揉我奶头 嗯啊视频| 一区二区三区高清视频在线| 狂野欧美激情性xxxx在线观看| 91精品国产九色| 在线观看66精品国产| 亚洲国产欧美在线一区| a级毛色黄片| 国产欧美日韩精品一区二区| 欧美+亚洲+日韩+国产| 狂野欧美激情性xxxx在线观看| 如何舔出高潮| 欧美三级亚洲精品| 淫秽高清视频在线观看| 免费看日本二区| 国产免费男女视频| 日韩中字成人| 一本一本综合久久| 午夜免费男女啪啪视频观看| eeuss影院久久| 性色avwww在线观看| 大又大粗又爽又黄少妇毛片口| 91aial.com中文字幕在线观看| 岛国在线免费视频观看| 亚洲不卡免费看| 男女啪啪激烈高潮av片| 一夜夜www| 色尼玛亚洲综合影院| 国产免费一级a男人的天堂| a级毛片a级免费在线| 人妻久久中文字幕网| 国产午夜福利久久久久久| 嫩草影院精品99| 一卡2卡三卡四卡精品乱码亚洲| www.av在线官网国产| 我的女老师完整版在线观看| 成人av在线播放网站| 岛国毛片在线播放| 国产亚洲91精品色在线| 久久国内精品自在自线图片| 麻豆一二三区av精品| 日韩中字成人| 国产人妻一区二区三区在| 小蜜桃在线观看免费完整版高清| 中文亚洲av片在线观看爽| 国产黄a三级三级三级人| 国产人妻一区二区三区在| 九草在线视频观看| 久久99热这里只有精品18| 亚洲精品国产av成人精品| 联通29元200g的流量卡| 91av网一区二区| 嫩草影院入口| 国产伦精品一区二区三区四那| 日韩欧美 国产精品| 91久久精品国产一区二区三区| 成人无遮挡网站| 联通29元200g的流量卡| 我的老师免费观看完整版| 免费电影在线观看免费观看| 久久久久性生活片| 老熟妇乱子伦视频在线观看| 波多野结衣高清作品| 一级av片app| 美女cb高潮喷水在线观看| 你懂的网址亚洲精品在线观看 | 午夜精品一区二区三区免费看| 神马国产精品三级电影在线观看| 18禁在线无遮挡免费观看视频| 尤物成人国产欧美一区二区三区| 久久热精品热| 校园人妻丝袜中文字幕| 久久久久久久亚洲中文字幕| 黄片无遮挡物在线观看| 麻豆国产av国片精品| 少妇熟女aⅴ在线视频| 又粗又硬又长又爽又黄的视频 | 国产精品野战在线观看| av国产免费在线观看| 国产美女午夜福利| 国产黄片美女视频| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 神马国产精品三级电影在线观看| 91久久精品国产一区二区成人| 看黄色毛片网站| 国产高清激情床上av| 美女 人体艺术 gogo| 国产亚洲精品久久久久久毛片| 久久久久久久午夜电影| 又爽又黄a免费视频| 国产高清激情床上av| 在线播放国产精品三级| 欧美三级亚洲精品| 日本免费a在线| 国产日韩欧美在线精品| 黄片无遮挡物在线观看| 一本久久中文字幕| 欧美激情国产日韩精品一区| 亚洲一级一片aⅴ在线观看| 极品教师在线视频| 麻豆久久精品国产亚洲av| 色播亚洲综合网| 欧美高清成人免费视频www| 精品一区二区免费观看| 干丝袜人妻中文字幕| 亚洲成人久久性| 免费人成视频x8x8入口观看| 国产精品人妻久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 91在线精品国自产拍蜜月| 午夜视频国产福利| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 不卡一级毛片| 亚洲av熟女| 国产激情偷乱视频一区二区| 高清日韩中文字幕在线| 免费看日本二区| 日本免费一区二区三区高清不卡| videossex国产| 亚洲人成网站高清观看| 免费观看a级毛片全部| 国产黄色视频一区二区在线观看 | 日韩,欧美,国产一区二区三区 | 免费不卡的大黄色大毛片视频在线观看 | av专区在线播放| 国产蜜桃级精品一区二区三区| 国产精品一二三区在线看| 不卡一级毛片| 久久午夜福利片| 久久精品国产亚洲av涩爱 | 国产探花在线观看一区二区| 久久久成人免费电影| 蜜桃亚洲精品一区二区三区| 国产爱豆传媒在线观看| 给我免费播放毛片高清在线观看| 国产成人a区在线观看| 少妇丰满av| 桃色一区二区三区在线观看| 在线观看免费视频日本深夜| 91在线精品国自产拍蜜月| 欧美潮喷喷水| 男人舔女人下体高潮全视频| 国产视频内射| 麻豆久久精品国产亚洲av| 美女内射精品一级片tv| 亚洲,欧美,日韩| 亚洲精品粉嫩美女一区| 精品人妻一区二区三区麻豆| 亚洲精品乱码久久久久久按摩| 能在线免费看毛片的网站| 一个人看视频在线观看www免费| 91久久精品国产一区二区三区| 国产成人精品一,二区 | 韩国av在线不卡| 两个人的视频大全免费| 97热精品久久久久久| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 国产av一区在线观看免费| 深夜a级毛片| 秋霞在线观看毛片| 两个人的视频大全免费| 亚洲四区av| 国产精品一区二区在线观看99 | 韩国av在线不卡| av在线蜜桃| 男人的好看免费观看在线视频| 三级男女做爰猛烈吃奶摸视频| 一夜夜www| 国产伦理片在线播放av一区 | 听说在线观看完整版免费高清| 99热这里只有是精品50| 久久99蜜桃精品久久| 人妻少妇偷人精品九色| ponron亚洲| 国产片特级美女逼逼视频| 我的老师免费观看完整版| 高清毛片免费观看视频网站| www.av在线官网国产| 一级毛片久久久久久久久女| 99精品在免费线老司机午夜| 美女国产视频在线观看| 亚洲av电影不卡..在线观看| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 成人毛片a级毛片在线播放| 日韩高清综合在线| 欧美不卡视频在线免费观看| 欧美日韩乱码在线| 日韩成人伦理影院| 舔av片在线| a级一级毛片免费在线观看| 一边亲一边摸免费视频| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 久久精品国产99精品国产亚洲性色| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| 亚洲人成网站在线播放欧美日韩| 免费人成视频x8x8入口观看| 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 99在线人妻在线中文字幕| 成人综合一区亚洲| 日韩中字成人| 内地一区二区视频在线| 亚洲美女视频黄频| 欧美3d第一页| 欧美日韩在线观看h| 99热全是精品| 国产极品天堂在线| 久久精品国产亚洲网站| av在线观看视频网站免费| 夜夜夜夜夜久久久久| 久久99精品国语久久久| 韩国av在线不卡| 蜜臀久久99精品久久宅男| 日本撒尿小便嘘嘘汇集6| 亚洲精品自拍成人| 非洲黑人性xxxx精品又粗又长| 人妻夜夜爽99麻豆av| 51国产日韩欧美| 亚洲精品自拍成人| 久久99热6这里只有精品| 男人舔奶头视频| 少妇人妻精品综合一区二区 |