• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-Time Fuzzy Sliding Mode Control for Nonlinear Descriptor Systems

    2021-06-18 03:28:18ZhixiongZhongXingyiWangandHakKeungLam
    IEEE/CAA Journal of Automatica Sinica 2021年6期

    Zhixiong Zhong,, Xingyi Wang, and Hak-Keung Lam,

    Abstract—This article addresses the finite-time boundedness(FTB) problem for nonlinear descriptor systems. Firstly, the nonlinear descriptor system is represented by the Takagi-Sugeno(T-S) model, where fuzzy representation is assumed to be appearing not only in both the state and input matrices but also in the derivative matrix. By using a descriptor redundancy approach, the fuzzy representation in the derivative matrix is reformulated into a linear one. Then, we introduce a fuzzy sliding mode control (FSMC) law, which ensures the finite-time boundedness (FTB) of closed-loop fuzzy control systems over the reaching phase and sliding motion phase. Moreover, by further employing the descriptor redundancy representation, the sufficient condition for designing FSMC law, which ensures the FTB of the closed-loop control systems over the entire finite-time interval, is derived in terms of linear matrix inequalities (LMIs).Finally, a simulation study with control of a photovoltaic (PV)nonlinear system is given to show the effectiveness of the proposed method.

    I. INTRODUCTION

    THE fuzzy control algorithm consists of a set of fuzzy logic, fuzzy sets, and heuristic control rules [1]-[3], and it has been used for the effective handling of control of complex nonlinear systems including robotic teleoperations [4],surgical robotics [5], and multiple robots [6]. Among these fuzzy control methods, Takagi-Sugeno (T-S) fuzzy model uses linear equations to represent each local system corresponding to their local rules, and then employs fuzzy reasoning to blend local linearity for implementing total nonlinearity. Nowadays, the T-S model has been very popular in the control society because of its ability to provide good approximation. Therefore, over the past few decades, the problems of stability analysis and control synthesis have been investigated for the T-S fuzzy model more frequently [7]-[9].

    Sliding mode control (SMC) has been regarded as one of the most powerful nonlinear control methods, and has been widely used due to its quick response and strong robustness in practical applications. The essence of SMC is to drive state trajectories toward the switching manifold. Such motion is motivated by imposing disruptive control actions, commonly in the form of switching control strategies. An ideal sliding mode exists only when the system state satisfies the dynamic equation that governs the sliding mode for all time. This requires an infinite switching, in general, to ensure the sliding motion. The past decades have witnessed the successfully practical application of SMC in several areas (see [10]-[13]).In addition, descriptor systems are referred to as implicit/singular systems, which enable describing a larger class of systems than the normal model representation [14].More recently, stability results of fuzzy descriptor systems using the SMC method have been reported in [15]-[17].However, note that the aforementioned works only highlighted the asymptotic behavior of the fuzzy control system over an infinite working time interval, and all aforementioned works of the SMC consider system dynamics within a sufficiently long time interval. In fact, in many practical applications, a finite-time stability (FTS) may be required when facing the prescribed restraints on transient dynamics, such as, for example, dual-arm robots [18], [19],input-delay systems [20], Markovian jump cyber-physical systems [21], multi-input and multi-output (MIMO) nonlinear systems [22], [23], and nonlinear systems with positive powers of odd rational numbers [24]. Both FTS and practical stability (PS) have a similar definition for stability analysis,and they work on the boundary of state trajectories starting from a desired initial region. However, the main distinction between FTS and PS is that FTS works with a finite period while PS works for an infinite amount of time [25]. When taking into account norm bounded disturbances, the concept should be changed from FTS to finite time boundedness(FTB). FTB ensures FTS, but its converse is not true [26]. We are aware that the finite-time SMC of fuzzy descriptor systems is of the wide practical applicability. However, few works studied the FTB of the FSMC descriptor system in both the reaching phase and the sliding one. It reflects the following two important control problems. One is determining how to partition the specified finite timeSinto two subintervals [0,S*] and [S*,S], which ensures the FTB of the corresponding FSMC descriptor system over the reaching phase and sliding motion phase. The other is determining how to design the FSMC law via linear matrix inequalities (LMIs),which ensure the FTB of the closed-loop fuzzy descriptor system over the whole finite-time interval [ 0,S].

    Motivated by the aforementioned considerations, this paper proposes a novel fuzzy sliding mode control strategy for nonlinear descriptor systems using a FTB method. Firstly, the nonlinear descriptor system is represented by the T-S model,where fuzzy representation is assumed to be appearing not only in both the state and input matrices but also in the derivative matrix, and the derivative matrix is assumed to not always be nonsingular. By using a descriptor redundancy formulation, the fuzzy representation in the derivative matrix is reformulated into one that is linear. Then, we introduce the fuzzy sliding mode control (FSMC) law, which ensures the FTB of the closed-loop fuzzy control systems through the reaching phase and sliding motion phase. Moreover, by employing the descriptor redundancy reformulation, it is shown that a sufficient condition for designing FSMC law,which ensures the FTB of the closed-loop control systems through the entire finite-time interval, is derived in terms of LMIs. Finally, a simulation study for the control of the photovoltaic (PV) nonlinear system is provided to show the effectiveness of the proposed method. The main contributions of this paper are summarized as follows: 1) For a specified time interval [ 0,S], we partition it into two subintervals [0,S*]and [S*,S], where the proposed FSMC law ensures the FTB of the corresponding FSMC descriptor system over reaching phase and sliding motion phase. 2) Sufficient conditions for designing the proposed FSMC law, which ensures the FTB of the fuzzy descriptor system over the whole finite-time interval[0,S], are derived in terms of LMIs.

    II. PROBLEM FORMULATION AND PRELIMINARIES

    Descriptor systems are referred to as implicit/singular systems, which enables us to describe a larger class of systems with normal model representation [14]. This paper considers a class of nonlinear descriptor systems Currently, the most attention is given to nonlinear systems with “sector nonlinearities” [8]. Thus, the considered nonlinear system (1) can be described by the following form of the T-S model:

    Remark 1:SinceE(h) is nonsingular, we can perform its inverse operation in the descriptor fuzzy system (2). In this case, the descriptor fuzzy system can be transformed into one that is nominal (nondescriptor). As pointed out in [27], when considering the T-S descriptor representation, the number of fuzzy inference rules will decrease so that the number of LMIs to controller design is remarkably reduced.

    Here, without loss of generality, we only consider that the class of norm-bounded square integrable disturbance acts over the time interval [t1,t2], which is defined as below [28]:

    This paper aims at to design a FSMC law, which can drive the system trajectories of the considered fuzzy descriptor model into the sliding surface function within a finite time,where the FTB subject to (c1,c2,[0,S],R,W[0,S],δ). Furthermore, sufficient conditions for designing the proposed FSMC law is derived in the form of LMIs.

    III. DESIGN OF FSMC LAW BASED ON FTB

    In this section, for the specified finite time and the initial state, we will perform the FTB of the FSMC descriptor system in both the reaching and sliding phases, and it will be shown that sufficient conditions for designing the proposed FSMC law is given in the form of LMIs.

    A. Model Transformation

    Firstly, motivated by [27] we can rewrite the T-S fuzzy descriptor model in (2) as below:

    Remark 2:Note that, by using a descriptor redundancy approach, the fuzzy representation in the derivative matrix (2)is reformulated into the linear approach as shown in (5). In that case, it is easy to choose the Lyapunov matrix as below:

    B. Design of FSMC Law

    Firstly, based on the fuzzy descriptor system (5), an integral-type sliding surface function is constructed as below[15]:

    with

    Fig. 1. Fuzzy sliding mode control of T-S fuzzy descriptor system.

    C. Reaching Phase of FTB Within[0,S*]

    Proof:Consider the Lyapunov function in the descriptorsystem domain,

    D. Sliding Motion Phase of FTB Within[S*,S]

    During the finite-time interval [S*,S] of the sliding phase,we will derive the sufficient conditions to ensure the FTB of the FSMC descriptor system. When the system trajectories arrive at the sliding surface, it has thats˙(t)=0. Thus, the equivalent controllerueq(t) is obtained as below:

    Motivated by [35], [36], by augmenting the system (5) and the equivalent controller (37), it yields

    Remark 4:Here, by further employing the descriptor redundancy representation we can avoid the inverse operation in the equivalent controller (37).

    In the following, we will derive a sufficient condition to ensure the FTB of the FSMC descriptor system (38) within the finite-time interval [S*,S].

    In addition, it can be seen from (44) that

    E. Design of Controller Gain

    Furthermore, the controller gain can be obtained as below:

    F. Design Procedure for the FTB Algorithm

    The detailed calculation steps of the proposed FTB algorithm for the FSMC descriptor system are summarized as follows:

    1) Use the T-S fuzzy model method to describe the nonlinear descriptor system as shown in (1), and rewrite the T-S fuzzy descriptor model as shown in (5).

    2) Choose a suitable matrix, so that(μ) is nonsingular,and solve Theorem 4 to obtain the controller gainKl. Given the initial statex(0), and the finite-timeS, and construct a FSMC lawu(t) as shown in (8) and (9);

    IV. SIMULATION STUDY

    The PV systems are built to transform sun irradiance into electrical power. However, building such systems come at a relatively high cost. All work done in the published literature focuses on increasing the efficiency of such systems and decreasing their cost. In order to show the effectiveness of the proposed control method, we consider a maximum power point tracking (MPPT) problem for a solar PV power system using a DC/DC boost converter as shown in Fig. 2, which consists of a solar PV array, an inductorL, a capacitorC0, and a load. Its dynamic model can be represented by the following differential equations [37]:

    Fig. 2. A solar PV power with DC/DC boost converter.

    In order to maximize the efficiency of PV power-generation systems, the electric characteristic of PV arrays is considered as follows [37]:

    The normalized membership functions are given in Fig. 3,and we rewrite the T-S fuzzy descriptor model of the nonlinear PV system as below:

    Fig. 3. Normalized membership functions.

    With the above solution, the response of the sliding surface function is shown in Fig. 4. It is easy to see that the proposed FSMC can force PV system states around the sliding surface withinS=0.3 s, which is less than the pre-specified finite timeS= 1 s. The responses of PV system states by the proposed FSMC control strategy are shown in Fig. 5. It can be seen that the approximated MPPT of the PV nonlinear system can be achieved withinS=0.05 s. Moreover, we further compare with non-fuzzy sliding mode control, and the corresponding results are respectively given in Fig. 6. It is easy to see that the proposed fuzzy sliding mode control achieves better control performance in comparison with nonfuzzy sliding mode control. Note that the state trajectories of open-loop PV system are unbounded. However, the proposed FSMC control strategy ensures the state trajectories boundness, and the comparison ofxT(t)Rx(t) between the open-loop system and the closed-loop one is given in Fig. 7.Responses of the derivative of the statex(t) and control inputu(t)are respectively given in Figs 8 and 9.

    Fig. 4. Response of the sliding surface function.

    Fig. 5. State responses for the fuzzy SMC system.

    Fig. 6. State responses for the linear SMC system.

    xT(t)Rx(t)Fig. 7. Comparison of between open- and closed-loop control.

    Fig. 8. Response of the derivative of the state x(t).

    Fig. 9. Response of the control input u (t).

    Remark 7:It is worth to point out that the proposed FSMC in (67) carries the advantages of both the fuzzy method and the sliding mode technique at the same time. The fuzzy method can be regarded as a powerful and flexible approximator, and the main feature of sliding mode approach is its fast response and robustness against uncertainties or disturbances. Figs. 5 and 6 have shown that the proposed FSMC achieves fast response against disturbances in comparison with non-fuzzy sliding mode control.

    Remark 8:It is noted that all computations in the sequel were done in MATLAB R2018b running under Windows 10 PC. The computer used was equipped with Intel Xeon E-2276M 2.8 GHz CPU and 16 GB RAM. First, the desired SMC controller gains are solved off-line. The computational time using the FSMC design proposed in Theorem 4 is 218.5 s while the times using the linear SMC result are within 2.8 s.Then, after the off-line controller gains are obtained, for the considered fuzzy system, the SMC is implemented on-line.The computational time of the FSMC is 3.52×10-4s in each iteration while the computational time of the linear SMC is 3.05×10-4s. Moreover, the number of total decision variables using the FSMC design in Theorem 4 is 205 but the number of total decision variables on the linear SMC result is 116. Therefore, it is a trade-off between design complexity and desired control performance when considering with the applications of the FSMS and linear SMC.

    Remark 9:Note that the choices of fuzzy premise variables and fuzzy rules have a great impact on control performance and computational complexities. Since the authors have tried different rules for this example, the selected premise variables are 5 and the selected fuzzy rules are 32, which have taken into account both the control performance and computational complexities. Thus, it will avoid the overfitting problem.

    V. CONCLUSIONS

    This paper proposes a novel fuzzy sliding mode control strategy to T-S fuzzy descriptor systems using a FTB method.By using a descriptor redundancy approach, the fuzzy representation in the derivative matrix is reformulated into a linear one. We introduce a fuzzy sliding mode control(FSMC) law, and it is shown that the proposed FSMC law ensures the FTB of the closed-loop fuzzy control systems over the reaching phase and sliding motion phase. Sufficient conditions for designing the proposed FSMC law is derived in terms of LMIs. The simulation study shows that the MPPT control of the PV nonlinear system can be achieved within a specified finite time..

    ACKNOWLEDGMENT

    The authors would like to thank Professor Chih-Min Lin’s help to this research and this paper’s writing and revision.

    aaaaa片日本免费| 此物有八面人人有两片| 久久久久久久精品吃奶| 热99在线观看视频| 国产精华一区二区三区| 亚洲中文日韩欧美视频| 一个人免费在线观看电影| 成人三级黄色视频| 熟妇人妻久久中文字幕3abv| 成人精品一区二区免费| 免费av观看视频| 午夜免费男女啪啪视频观看 | 午夜久久久久精精品| 精品久久久久久久久久免费视频| 久久久久免费精品人妻一区二区| 在线a可以看的网站| 在线天堂最新版资源| 国产毛片a区久久久久| 国产精品1区2区在线观看.| 在线观看免费视频日本深夜| 人人妻,人人澡人人爽秒播| 久久亚洲真实| 97超级碰碰碰精品色视频在线观看| 老司机福利观看| 午夜久久久久精精品| 可以在线观看毛片的网站| 欧美激情国产日韩精品一区| 757午夜福利合集在线观看| 午夜两性在线视频| 自拍偷自拍亚洲精品老妇| 无遮挡黄片免费观看| 婷婷六月久久综合丁香| 18禁黄网站禁片免费观看直播| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久大精品| 国产精品爽爽va在线观看网站| 亚洲熟妇中文字幕五十中出| 色哟哟·www| 免费看美女性在线毛片视频| 嫁个100分男人电影在线观看| 最近在线观看免费完整版| 亚洲一区高清亚洲精品| 久久久国产成人精品二区| 国产精品永久免费网站| 欧美乱色亚洲激情| 全区人妻精品视频| av国产免费在线观看| 久久久久久久久大av| 高清日韩中文字幕在线| 制服丝袜大香蕉在线| 一个人免费在线观看的高清视频| 最近最新免费中文字幕在线| 午夜激情福利司机影院| 亚洲美女搞黄在线观看 | 乱码一卡2卡4卡精品| 床上黄色一级片| 成人毛片a级毛片在线播放| 亚洲av五月六月丁香网| 中文资源天堂在线| 蜜桃久久精品国产亚洲av| 久久九九热精品免费| 乱人视频在线观看| 欧美黑人欧美精品刺激| 日本免费一区二区三区高清不卡| 欧美日韩黄片免| 国产成+人综合+亚洲专区| 精品久久久久久成人av| 成人国产综合亚洲| 国产午夜精品久久久久久一区二区三区 | 精品一区二区三区av网在线观看| 在线观看66精品国产| 亚洲精品亚洲一区二区| 一a级毛片在线观看| 亚洲精品在线观看二区| 欧美又色又爽又黄视频| 99在线人妻在线中文字幕| 日日干狠狠操夜夜爽| 99在线视频只有这里精品首页| 精品午夜福利视频在线观看一区| 99热精品在线国产| 欧美精品啪啪一区二区三区| 亚洲精品一区av在线观看| 久久婷婷人人爽人人干人人爱| 天堂√8在线中文| 国产精品自产拍在线观看55亚洲| 嫩草影院新地址| 一个人免费在线观看电影| 国产精华一区二区三区| 三级毛片av免费| 国产精品久久电影中文字幕| 国产精品人妻久久久久久| 三级男女做爰猛烈吃奶摸视频| 91午夜精品亚洲一区二区三区 | 午夜福利视频1000在线观看| 最新在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆 | 国产麻豆成人av免费视频| 国产欧美日韩一区二区三| 国产白丝娇喘喷水9色精品| 国产精品美女特级片免费视频播放器| 一区福利在线观看| 男人舔奶头视频| 精品福利观看| 日韩精品中文字幕看吧| 午夜免费男女啪啪视频观看 | 精品熟女少妇八av免费久了| 成人无遮挡网站| 久久久久久国产a免费观看| 欧美黄色片欧美黄色片| 不卡一级毛片| 久久99热这里只有精品18| 90打野战视频偷拍视频| 亚洲成av人片免费观看| 99热这里只有精品一区| 美女被艹到高潮喷水动态| 亚洲经典国产精华液单 | 亚洲精品影视一区二区三区av| 一夜夜www| 免费观看人在逋| 亚洲五月婷婷丁香| aaaaa片日本免费| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩无卡精品| 舔av片在线| 1024手机看黄色片| 久久国产精品人妻蜜桃| 在线观看免费视频日本深夜| 精品国产三级普通话版| 亚洲最大成人av| 成年人黄色毛片网站| 蜜桃久久精品国产亚洲av| 久久久久久久久久成人| 午夜影院日韩av| 九色成人免费人妻av| 一本久久中文字幕| 久久人妻av系列| 国产精品国产高清国产av| av天堂在线播放| 亚洲精品色激情综合| 国产精品久久久久久人妻精品电影| aaaaa片日本免费| 啦啦啦韩国在线观看视频| 日日夜夜操网爽| 久久香蕉精品热| 在线天堂最新版资源| 欧美乱色亚洲激情| 久久精品综合一区二区三区| 亚洲18禁久久av| 国产精品久久久久久人妻精品电影| 欧美色欧美亚洲另类二区| 日本一本二区三区精品| 最近在线观看免费完整版| 天堂网av新在线| 简卡轻食公司| 能在线免费观看的黄片| 直男gayav资源| 国产综合懂色| 真人一进一出gif抽搐免费| 真人一进一出gif抽搐免费| 老司机福利观看| 级片在线观看| 波多野结衣巨乳人妻| 激情在线观看视频在线高清| .国产精品久久| 午夜a级毛片| 亚洲黑人精品在线| 特大巨黑吊av在线直播| 人妻制服诱惑在线中文字幕| 99热精品在线国产| 欧美潮喷喷水| 成人一区二区视频在线观看| 日本一本二区三区精品| 99精品在免费线老司机午夜| 直男gayav资源| 看片在线看免费视频| 国产精品国产高清国产av| 激情在线观看视频在线高清| 日本熟妇午夜| 亚洲 欧美 日韩 在线 免费| 成人av一区二区三区在线看| 精品福利观看| 成年女人看的毛片在线观看| 一区二区三区高清视频在线| 国产精品影院久久| 日韩免费av在线播放| 成年女人看的毛片在线观看| 成人国产一区最新在线观看| 999久久久精品免费观看国产| 不卡一级毛片| 亚洲自拍偷在线| 国产精品影院久久| 在线观看一区二区三区| 国产精品av视频在线免费观看| 97超视频在线观看视频| 国产精品日韩av在线免费观看| 一个人免费在线观看电影| 日韩高清综合在线| 国产美女午夜福利| 婷婷丁香在线五月| 国内精品久久久久精免费| 国产精品不卡视频一区二区 | 亚洲人成伊人成综合网2020| 别揉我奶头~嗯~啊~动态视频| 国产精品美女特级片免费视频播放器| 禁无遮挡网站| 极品教师在线视频| 亚洲中文日韩欧美视频| 日韩精品青青久久久久久| www.999成人在线观看| av视频在线观看入口| 亚洲欧美日韩高清专用| 欧美性感艳星| 亚洲自偷自拍三级| 国产成年人精品一区二区| 又粗又爽又猛毛片免费看| 婷婷精品国产亚洲av| 在线观看免费视频日本深夜| 美女大奶头视频| 搡老岳熟女国产| 色在线成人网| 精品一区二区免费观看| 国产三级黄色录像| 欧美激情在线99| 性色avwww在线观看| 在现免费观看毛片| 精品久久久久久久久av| 一进一出好大好爽视频| 免费看a级黄色片| 久久人人爽人人爽人人片va | 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 国产高清三级在线| 久久精品91蜜桃| 国产私拍福利视频在线观看| 欧美成人一区二区免费高清观看| 十八禁国产超污无遮挡网站| 不卡一级毛片| or卡值多少钱| 精品无人区乱码1区二区| 亚洲欧美激情综合另类| 免费人成在线观看视频色| 999久久久精品免费观看国产| 在线观看av片永久免费下载| 成年女人永久免费观看视频| 51国产日韩欧美| 搡老妇女老女人老熟妇| 男女那种视频在线观看| 美女 人体艺术 gogo| 成年女人毛片免费观看观看9| 国产单亲对白刺激| 国产精品乱码一区二三区的特点| h日本视频在线播放| 久久精品久久久久久噜噜老黄 | 99在线视频只有这里精品首页| 欧美黑人欧美精品刺激| 高清日韩中文字幕在线| 成人三级黄色视频| 久久6这里有精品| 99久久成人亚洲精品观看| 国产精品1区2区在线观看.| www日本黄色视频网| 国产精品一及| 免费看美女性在线毛片视频| 欧美色欧美亚洲另类二区| 怎么达到女性高潮| 国产爱豆传媒在线观看| 国产黄色小视频在线观看| 亚洲在线观看片| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 午夜日韩欧美国产| www.999成人在线观看| 又爽又黄无遮挡网站| 日本成人三级电影网站| 欧美成人性av电影在线观看| 国产av麻豆久久久久久久| 国产av在哪里看| 午夜福利视频1000在线观看| 网址你懂的国产日韩在线| 国产一区二区亚洲精品在线观看| 丰满人妻熟妇乱又伦精品不卡| 91午夜精品亚洲一区二区三区 | 国产成人欧美在线观看| 亚洲成人久久性| 色播亚洲综合网| 久久久久久久久中文| 久久精品国产亚洲av香蕉五月| 99热6这里只有精品| 九九在线视频观看精品| 免费搜索国产男女视频| 亚洲欧美日韩东京热| 国产三级黄色录像| 天堂网av新在线| 最新中文字幕久久久久| 亚洲成a人片在线一区二区| 国产极品精品免费视频能看的| 久久6这里有精品| netflix在线观看网站| 宅男免费午夜| 久久精品国产亚洲av天美| 国产野战对白在线观看| 亚洲人与动物交配视频| 国产精品一区二区性色av| 亚洲av熟女| 看黄色毛片网站| 97超视频在线观看视频| 中文在线观看免费www的网站| 少妇人妻一区二区三区视频| 亚洲欧美激情综合另类| 91字幕亚洲| 国产精华一区二区三区| 女同久久另类99精品国产91| 久久亚洲真实| 看十八女毛片水多多多| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费| 亚洲内射少妇av| 欧美另类亚洲清纯唯美| 搡老岳熟女国产| 成人性生交大片免费视频hd| 在线天堂最新版资源| 一个人观看的视频www高清免费观看| 亚洲国产日韩欧美精品在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一区二区免费欧美| 久久婷婷人人爽人人干人人爱| 色av中文字幕| 赤兔流量卡办理| 亚洲熟妇中文字幕五十中出| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 最后的刺客免费高清国语| 欧美+日韩+精品| 精品久久久久久久久av| 欧美成人免费av一区二区三区| 日韩精品青青久久久久久| 免费观看的影片在线观看| 精品福利观看| 少妇裸体淫交视频免费看高清| 成人欧美大片| 97人妻精品一区二区三区麻豆| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久| 在线看三级毛片| av在线蜜桃| 91在线精品国自产拍蜜月| 午夜免费男女啪啪视频观看 | 中文字幕人成人乱码亚洲影| xxxwww97欧美| 99国产极品粉嫩在线观看| 国产精品美女特级片免费视频播放器| 大型黄色视频在线免费观看| 欧美日韩福利视频一区二区| 中文字幕av成人在线电影| 久久午夜亚洲精品久久| 午夜福利在线观看免费完整高清在 | 午夜老司机福利剧场| 成人国产综合亚洲| 一区二区三区四区激情视频 | 欧美性感艳星| 精品午夜福利视频在线观看一区| 免费av观看视频| 变态另类成人亚洲欧美熟女| 国产野战对白在线观看| 国产美女午夜福利| 国产精品久久久久久亚洲av鲁大| 精品无人区乱码1区二区| 国产三级中文精品| 免费在线观看亚洲国产| 久久国产乱子伦精品免费另类| x7x7x7水蜜桃| 久久人人精品亚洲av| 国产成人av教育| ponron亚洲| 久久午夜亚洲精品久久| 色哟哟哟哟哟哟| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 岛国在线免费视频观看| 国产毛片a区久久久久| 国内毛片毛片毛片毛片毛片| 亚洲无线观看免费| 亚洲性夜色夜夜综合| 9191精品国产免费久久| 午夜福利免费观看在线| 久久久久免费精品人妻一区二区| 极品教师在线免费播放| 亚洲,欧美,日韩| 免费观看人在逋| 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| 网址你懂的国产日韩在线| 亚洲国产精品成人综合色| 人妻制服诱惑在线中文字幕| 免费人成视频x8x8入口观看| 国产白丝娇喘喷水9色精品| 成人午夜高清在线视频| 麻豆成人av在线观看| 男女视频在线观看网站免费| 99视频精品全部免费 在线| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| 国模一区二区三区四区视频| 午夜两性在线视频| 久久久色成人| 嫩草影视91久久| 桃色一区二区三区在线观看| 久久人人精品亚洲av| 亚洲第一欧美日韩一区二区三区| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 久久亚洲精品不卡| 真实男女啪啪啪动态图| 亚洲18禁久久av| 国产色婷婷99| 精品久久国产蜜桃| 欧美日本视频| 亚洲七黄色美女视频| 人妻制服诱惑在线中文字幕| 欧美xxxx黑人xx丫x性爽| 小说图片视频综合网站| 国模一区二区三区四区视频| 日本黄大片高清| 日韩有码中文字幕| 午夜福利在线在线| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 99久久成人亚洲精品观看| 欧美黄色片欧美黄色片| 国产欧美日韩精品一区二区| 一个人免费在线观看的高清视频| 国产免费男女视频| 免费人成视频x8x8入口观看| 亚洲第一区二区三区不卡| 最近在线观看免费完整版| 麻豆久久精品国产亚洲av| 少妇人妻精品综合一区二区 | 69人妻影院| 国产精品电影一区二区三区| 亚洲电影在线观看av| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 成年人黄色毛片网站| 日韩大尺度精品在线看网址| 午夜福利欧美成人| 97超级碰碰碰精品色视频在线观看| 亚洲第一区二区三区不卡| 男女视频在线观看网站免费| 国产亚洲精品综合一区在线观看| 国产主播在线观看一区二区| 热99re8久久精品国产| 午夜福利在线观看免费完整高清在 | 久久久久久九九精品二区国产| 69人妻影院| 丁香六月欧美| 久久精品综合一区二区三区| 欧美+日韩+精品| 国产精品久久久久久人妻精品电影| 伦理电影大哥的女人| 久久久久国内视频| 亚洲成人久久性| 很黄的视频免费| 久久国产乱子免费精品| 成人亚洲精品av一区二区| 国产私拍福利视频在线观看| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清| a级毛片免费高清观看在线播放| 亚洲一区二区三区不卡视频| 天天躁日日操中文字幕| 亚洲av五月六月丁香网| 18禁裸乳无遮挡免费网站照片| ponron亚洲| 麻豆av噜噜一区二区三区| 日韩成人在线观看一区二区三区| 99久久成人亚洲精品观看| 欧美精品国产亚洲| 91在线观看av| 麻豆一二三区av精品| 亚洲18禁久久av| 99精品在免费线老司机午夜| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 欧美黑人巨大hd| 国产一级毛片七仙女欲春2| 午夜福利视频1000在线观看| 日韩精品青青久久久久久| 色av中文字幕| 亚洲精品色激情综合| 真实男女啪啪啪动态图| 亚洲性夜色夜夜综合| 老熟妇乱子伦视频在线观看| 给我免费播放毛片高清在线观看| 国产爱豆传媒在线观看| 特大巨黑吊av在线直播| 国产精品免费一区二区三区在线| 国产欧美日韩精品一区二区| 国产伦人伦偷精品视频| 三级男女做爰猛烈吃奶摸视频| 成人av在线播放网站| 少妇人妻一区二区三区视频| 国产在线精品亚洲第一网站| 偷拍熟女少妇极品色| av天堂中文字幕网| 国产真实乱freesex| 日韩成人在线观看一区二区三区| 真实男女啪啪啪动态图| 一个人免费在线观看的高清视频| 国产黄片美女视频| 久久久国产成人免费| av在线观看视频网站免费| 欧美高清性xxxxhd video| 国产国拍精品亚洲av在线观看| netflix在线观看网站| 一区二区三区免费毛片| 大型黄色视频在线免费观看| 麻豆av噜噜一区二区三区| 亚洲欧美日韩无卡精品| 乱码一卡2卡4卡精品| 久久人人爽人人爽人人片va | 国产一区二区亚洲精品在线观看| 黄色配什么色好看| 一区二区三区免费毛片| 婷婷精品国产亚洲av在线| 欧美高清性xxxxhd video| 亚洲av成人av| av专区在线播放| 精品免费久久久久久久清纯| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| 亚洲国产精品999在线| 又黄又爽又刺激的免费视频.| 欧美一区二区亚洲| 亚洲电影在线观看av| 欧美3d第一页| 亚洲av免费在线观看| 特级一级黄色大片| 午夜精品在线福利| 精品久久久久久久久亚洲 | 身体一侧抽搐| 简卡轻食公司| 精品一区二区三区人妻视频| 99riav亚洲国产免费| 级片在线观看| 国产黄片美女视频| 欧美激情在线99| 少妇的逼水好多| 欧美黑人欧美精品刺激| 真实男女啪啪啪动态图| 我要看日韩黄色一级片| 变态另类成人亚洲欧美熟女| 美女 人体艺术 gogo| 久久亚洲精品不卡| 人人妻人人看人人澡| 日韩高清综合在线| 亚洲美女黄片视频| 国产精品一区二区免费欧美| 天美传媒精品一区二区| 日本黄色视频三级网站网址| 狂野欧美白嫩少妇大欣赏| 久久精品久久久久久噜噜老黄 | 国内精品一区二区在线观看| 国产亚洲精品久久久com| 美女免费视频网站| 脱女人内裤的视频| 丝袜美腿在线中文| 亚洲精品亚洲一区二区| 99久久成人亚洲精品观看| 美女xxoo啪啪120秒动态图 | 一级黄片播放器| 他把我摸到了高潮在线观看| 国产大屁股一区二区在线视频| 18禁在线播放成人免费| 欧美日韩黄片免| 美女高潮的动态| 99热只有精品国产| 亚洲,欧美,日韩| 精品一区二区三区视频在线| 色噜噜av男人的天堂激情| 小蜜桃在线观看免费完整版高清| 中国美女看黄片| 午夜福利18| 亚洲三级黄色毛片| 狠狠狠狠99中文字幕| 成人毛片a级毛片在线播放| 欧美高清性xxxxhd video| 嫩草影院精品99| 精品国产亚洲在线| 老司机福利观看| 90打野战视频偷拍视频| 日本成人三级电影网站| 亚洲精品456在线播放app | 日韩有码中文字幕| 日韩欧美一区二区三区在线观看| 欧美日本视频| 午夜精品在线福利| 久久精品夜夜夜夜夜久久蜜豆| av专区在线播放| 18禁裸乳无遮挡免费网站照片| 亚洲成人精品中文字幕电影| 国内精品久久久久精免费| 成人午夜高清在线视频| 日本免费一区二区三区高清不卡| 亚洲第一电影网av| 最近视频中文字幕2019在线8| 动漫黄色视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人特级av手机在线观看| 在线观看66精品国产| 久久精品国产99精品国产亚洲性色| 欧美精品国产亚洲| 波野结衣二区三区在线|