姚?衛(wèi),孫?超,劉?杭,吳?梅,楊少波,曹順利
局部時(shí)間步法在低馬赫燃燒模擬中的適用性研究
姚?衛(wèi)1, 2,孫?超3,劉?杭1,吳?梅4,楊少波3,曹順利3
(1. 中國(guó)科學(xué)院力學(xué)研究所高溫氣體動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100190;2. 中國(guó)科學(xué)院大學(xué)工程科學(xué)學(xué)院,北京 100049;3.中國(guó)船舶工業(yè)系統(tǒng)工程研究院,北京 100094;4.合肥工業(yè)大學(xué)土木與水利工程學(xué)院,合肥 230009)
在復(fù)雜燃燒模擬中由于整場(chǎng)流速的不均勻性和局部網(wǎng)格尺寸的差異,各局部流場(chǎng)區(qū)域的CFL數(shù)差異較大.傳統(tǒng)的基于整場(chǎng)最大CFL數(shù)定義的整體時(shí)間步法嚴(yán)重制約計(jì)算效率.本文首次考察了基于當(dāng)?shù)谻FL數(shù)限制的局部時(shí)間步法在低馬赫數(shù)湍流燃燒模擬中的適用性.對(duì)開(kāi)放空間中甲烷池火(1065萬(wàn)網(wǎng)格)和封閉空間建筑火災(zāi)(320萬(wàn)網(wǎng)格)的大渦模擬表明,采用局部時(shí)間步法相比于整體時(shí)間步法分別實(shí)現(xiàn)了6倍和8倍的加速比.加速比隨網(wǎng)格尺度減小呈增加趨勢(shì).研究進(jìn)一步從兩個(gè)方面驗(yàn)證了局部時(shí)間步法在低馬赫數(shù)燃燒模擬中的準(zhǔn)確性:①與實(shí)驗(yàn)數(shù)據(jù)的對(duì)比表明,由于低馬赫數(shù)燃燒的準(zhǔn)穩(wěn)態(tài)特性,局部和整體時(shí)間步法均較為準(zhǔn)確地預(yù)測(cè)了溫度的時(shí)間變化特性;②對(duì)時(shí)均流場(chǎng)的比較表明,除微量痕跡物(質(zhì)量分?jǐn)?shù)小于0.1%)以外,兩種方法對(duì)時(shí)均溫度、時(shí)均速度和氧氣體積分?jǐn)?shù)的預(yù)測(cè)差異均較?。芯恐羞€對(duì)現(xiàn)有的PaSR湍流燃燒模型和壓力求解算法進(jìn)行了改進(jìn)和優(yōu)化,以分別提高其物理準(zhǔn)確性和魯棒性.
湍流燃燒;局部時(shí)間步法;大渦模擬;CFL數(shù);OpenFOAM
低馬赫數(shù)燃燒是日常生活中最常見(jiàn)的一種燃燒形式,例如各類火災(zāi)和非動(dòng)力裝置類鍋爐內(nèi)部燃燒.在各類跨聲速甚至高超聲速航空航天發(fā)動(dòng)機(jī)燃燒室中也存在較大區(qū)域的局部低馬赫數(shù)燃燒.低馬赫數(shù)燃燒的特點(diǎn)是:①壓力波動(dòng)較小近似恒定,因此可按照不可壓縮流體處理;②燃燒化學(xué)反應(yīng)特征時(shí)間相對(duì)流動(dòng)特征時(shí)間較小,因此快速反應(yīng)假設(shè)成立且流動(dòng)化學(xué)反應(yīng)可以近似解耦計(jì)算;③流速遠(yuǎn)小于聲速,壓力波近似以無(wú)限快速度傳播,無(wú)黏流動(dòng)部分呈現(xiàn)橢圓型流動(dòng)特征.針對(duì)上述流動(dòng)特點(diǎn),低馬赫燃燒求解可以采取基于壓力驅(qū)動(dòng)速度原理的壓力求解器,并且基于氣體狀態(tài)方程耦合燃燒化學(xué)反應(yīng)效應(yīng)實(shí)現(xiàn)流動(dòng)和燃燒的隱式求解以降低對(duì)時(shí)間步的CFL(Courant-Friedrichs-Lewy)約束(CFL數(shù)=速度×?xí)r間步/網(wǎng)格尺度,一般要求此數(shù)小于某一定值以保證數(shù)值格式的穩(wěn)定性).在復(fù)雜燃燒流場(chǎng)中由于整場(chǎng)流速的不均勻性和局部網(wǎng)格尺寸的差異,各局部流場(chǎng)區(qū)域的CFL數(shù)差異較大.特別是在模擬復(fù)雜幾何結(jié)構(gòu)或需要捕捉局部精細(xì)流場(chǎng)結(jié)構(gòu)(如近壁邊界層或火焰反應(yīng)區(qū))時(shí)通常需要使用非均勻或局部自適應(yīng)網(wǎng)格,根據(jù)CFL約束時(shí)間步正比于網(wǎng)格尺度.傳統(tǒng)方法中整場(chǎng)使用單一時(shí)間步,通常使得時(shí)間步受限于整場(chǎng)最小網(wǎng)格尺度,因而顯著降低了計(jì)算效率.而如果能夠針對(duì)局部流場(chǎng)采用多重時(shí)間步,將可在滿足CFL約束的前提下顯著提高計(jì)算效率.
基于局部時(shí)間步(local time-stepping)的局部時(shí)間步法由Osher與Sanders[1]在求解一維標(biāo)量守恒律方程時(shí)提出,其主要原理為在滿足局部穩(wěn)定性條件下,每個(gè)網(wǎng)格單元擁有獨(dú)立的局部時(shí)間步長(zhǎng)并可在計(jì)算過(guò)程中自適應(yīng)更新.相比于所有網(wǎng)格單元按統(tǒng)一時(shí)間層更新的方法,一方面提高了計(jì)算效率,另一方面也加速了流場(chǎng)收斂.空間差異的多重時(shí)間法等效于對(duì)控制方程的空間預(yù)處理,可以一定程度上消除空間梯度較大區(qū)域的剛性[2].多重時(shí)間法成功應(yīng)用于基于笛卡爾網(wǎng)格的自適應(yīng)網(wǎng)格加密(AMR)算例[3-4],其通過(guò)解耦非加密區(qū)域與局部加密區(qū)域的時(shí)間步有效提高了計(jì)算效率并且實(shí)現(xiàn)了對(duì)加密區(qū)域流場(chǎng)結(jié)構(gòu)(如激波)的準(zhǔn)確捕捉.Dumbser等[5]和Taube等[6]在涉及網(wǎng)格尺度劇烈變化的對(duì)彈性波和Maxwell方程的任意高階間斷有限元(DG-FEM)模擬中耦合了顯式局部時(shí)間步法以提高計(jì)算效率和收斂速率.Qi等[7]通過(guò)耦合間斷有限元和單步高階泰勒式時(shí)間積分格式實(shí)現(xiàn)了對(duì)局部時(shí)間步法在基于多尺度網(wǎng)格的瞬態(tài)電磁波模擬中的支持.Grote等[8]推導(dǎo)了局部時(shí)間步法與任意高階顯式Runge-Kutta方法的耦合形式并成功應(yīng)用于多尺度網(wǎng)格波方程求解. Lilia[9]在基于局部時(shí)間步的二階Runge-Kutta格式中構(gòu)造了更加準(zhǔn)確的二次多項(xiàng)式以計(jì)算時(shí)間步相異的相鄰網(wǎng)格界面值.Ashbourne[10]進(jìn)一步將Lilia[9]的方法拓展到三階和四階Runge-Kutta格式并改進(jìn)了網(wǎng)格界面插值的多項(xiàng)式逼近方法.杜永樂(lè)等[11]和姜婷婷等[12]在稀薄氣體的DSMC模擬中采用了類似的局部自適應(yīng)時(shí)間步方法表明其可以在保真的前提下顯著提高流場(chǎng)收斂速率.譚志軍等[13]基于局部時(shí)間步法和自適應(yīng)網(wǎng)格加密方法對(duì)一維對(duì)流擴(kuò)散方程所做的測(cè)試表明實(shí)現(xiàn)了2~3倍的加速,同時(shí)未見(jiàn)明顯的精度降低.吳迪等[14]基于局部時(shí)間步法在超聲速后臺(tái)階流的三維歐拉方程模擬中相比于整體時(shí)間步長(zhǎng)法最高取得了5倍的加速比.胡鵬等[15]基于局部時(shí)間步長(zhǎng)的水沙耦合模擬表明,該方法能夠在保證精度的前提下節(jié)省高達(dá)92%的計(jì)算時(shí)間.Espinoza等[16]在基于局部時(shí)間步法的可壓縮高速和超聲速穩(wěn)態(tài)流動(dòng)模擬中分別觀測(cè)到了2.56和8.96倍的迭代收斂速度.最近,除了基于當(dāng)?shù)谻FL數(shù)控制局部時(shí)間步以外,Kalkote等[17]提出了一種基于當(dāng)?shù)亟財(cái)嗾`差控制的局部自適應(yīng)時(shí)間步方法.Jeanmasson等[18]則對(duì)局部時(shí)間步法進(jìn)一步發(fā)展了通量守恒修正.
目前基于局部時(shí)間步的局部時(shí)間步法在湍流燃燒中的應(yīng)用還不多見(jiàn).而湍流燃燒通常需要對(duì)主要釋熱的反應(yīng)區(qū)域重點(diǎn)求解,意味著需要采用較密的局部網(wǎng)格,而對(duì)其余的無(wú)反應(yīng)區(qū)域可以采用相對(duì)較粗的網(wǎng)格.特別是在火災(zāi)模擬中,由于模擬場(chǎng)景相對(duì)火源區(qū)域一般較大,為了提高計(jì)算效率一般僅對(duì)火源區(qū)域局部加密.另外在涉及復(fù)雜幾何結(jié)構(gòu)的燃燒室或建筑火災(zāi)模擬中,對(duì)于曲率較大的結(jié)合拐角需要局部加密以逼近幾何外形.燃燒和火災(zāi)一般發(fā)生于受限空間內(nèi),如發(fā)動(dòng)機(jī)和室內(nèi),為了準(zhǔn)確模擬近壁效應(yīng)一般需要對(duì)壁面邊界層區(qū)域采用附加膨脹層的方法局部加密.因此針對(duì)湍流燃燒模擬,如果采用整體時(shí)間層統(tǒng)一的時(shí)間步,將使得時(shí)間推進(jìn)受限于火源、拐角和近壁等區(qū)域處的最小時(shí)間步.而通常局部加密區(qū)域僅占整體計(jì)算域較小的體積分?jǐn)?shù).按照通常火災(zāi)模擬中火源、拐角和近壁等區(qū)域局部加密設(shè)置,最大最小網(wǎng)格尺度一般相差3~5倍來(lái)估算,采用局部時(shí)間步法預(yù)計(jì)至少將可使計(jì)算效率提高3~5倍.在并行環(huán)境下,位于火源局部加密區(qū)域的分區(qū)節(jié)點(diǎn)因需求解化學(xué)反應(yīng)計(jì)算載荷通常較大,而其他對(duì)應(yīng)無(wú)反應(yīng)區(qū)的節(jié)點(diǎn)計(jì)算負(fù)擔(dān)較小,從而導(dǎo)致計(jì)算載荷的嚴(yán)重不均衡.而采用局部時(shí)間步法,對(duì)應(yīng)無(wú)反應(yīng)區(qū)的計(jì)算節(jié)點(diǎn)可將額外的計(jì)算資源用于時(shí)間上的加速推進(jìn)(大時(shí)間步一般意味著更多的迭代次數(shù)和收斂時(shí)間),因而也可以在一定程度上緩解計(jì)算載荷的不均衡性.
火災(zāi)和內(nèi)燃等面向?qū)嶋H應(yīng)用的低馬赫數(shù)燃燒模擬的兩大主要特點(diǎn)為:(1)模擬工況尺寸較大且內(nèi)部幾何結(jié)構(gòu)復(fù)雜,計(jì)算區(qū)域尺寸可跨越數(shù)十米甚至上百米;(2)完整的燃燒起始、發(fā)展和熄火過(guò)程模擬需要求解較長(zhǎng)的時(shí)間歷程,對(duì)應(yīng)物理時(shí)間可達(dá)數(shù)分鐘(約600s)甚至1h.例如大型建筑火災(zāi)[19-20]、隧道火??災(zāi)[21-22]、艦船火災(zāi)[23]、工業(yè)燃燒鍋爐[24-26]模擬等.這些低馬赫數(shù)燃燒場(chǎng)景模擬一方面對(duì)計(jì)算效率有特殊的實(shí)際需求,另一方面又存在需要著重求解的區(qū)域(如火源、疏散口、重點(diǎn)熱防護(hù)部件等).模擬中需要兼顧計(jì)算效率與求解精細(xì)度,而對(duì)最終結(jié)果一般僅關(guān)注重點(diǎn)區(qū)域的穩(wěn)態(tài)流場(chǎng).傳統(tǒng)的燃燒模擬程序側(cè)重于對(duì)小尺寸(如射流火焰)或局部燃燒場(chǎng)的高精度、高保真模擬,所采用的時(shí)空高階格式一方面顯著增加了計(jì)算代價(jià),另一方面也削弱了求解復(fù)雜流場(chǎng)的魯棒性,在工程燃燒模擬中的適用性較弱.
本研究針對(duì)火災(zāi)等低馬赫數(shù)燃燒模擬需求開(kāi)發(fā)了基于局部時(shí)間步法的壓力校正隱式燃燒求解器,并將其應(yīng)用于開(kāi)放空間池火和封閉空間建筑火災(zāi)模擬中以進(jìn)一步驗(yàn)證其準(zhǔn)確性和計(jì)算效率.本文將首先介紹局部時(shí)間步法的實(shí)現(xiàn)算法、對(duì)PaSR湍流燃燒模型的改進(jìn)以及對(duì)壓力求解算法的穩(wěn)定性優(yōu)化等技術(shù)細(xì)節(jié),進(jìn)而結(jié)合具體算例分析局部時(shí)間步法與整體時(shí)間步法對(duì)湍流燃燒時(shí)均流場(chǎng)的量化影響,以考察局部時(shí)間步法在低馬赫數(shù)湍流燃燒中的適用性.
本求解器開(kāi)發(fā)的主要目的是為火災(zāi)等低馬赫數(shù)準(zhǔn)穩(wěn)態(tài)燃燒模擬提供高效、準(zhǔn)確且魯棒性較好的計(jì)算平臺(tái).為提高算例的普適性,擬分別針對(duì)開(kāi)放和封閉空間兩種典型燃燒情形進(jìn)行計(jì)算驗(yàn)證.為提高算例的標(biāo)準(zhǔn)性,算例選取為FireFOAM自帶的標(biāo)準(zhǔn)開(kāi)放空間池火和封閉空間單室建筑火災(zāi)算例.其中開(kāi)放池火為理想算例,研究主要比較兩種方法預(yù)測(cè)的差異;而單室建筑火災(zāi)為實(shí)驗(yàn)測(cè)試算例,研究結(jié)合實(shí)驗(yàn)數(shù)據(jù)對(duì)兩種方法預(yù)測(cè)的準(zhǔn)確性進(jìn)行了驗(yàn)證.在以下計(jì)算中,整體時(shí)間步算例采用原FireFOAM求解器(不支持多重時(shí)間步功能)計(jì)算,多重時(shí)間步則采用改進(jìn)的求解器(命名為Amber)進(jìn)行.本研究主要目的為驗(yàn)證局部時(shí)間步法與傳統(tǒng)的整體時(shí)間步法在預(yù)測(cè)關(guān)鍵燃燒場(chǎng)特性(如溫度、速度、組分濃度等)的準(zhǔn)確性與計(jì)算效率.物理模型和數(shù)值方法對(duì)燃燒物理過(guò)程的影響分析不是本研究的重點(diǎn),擬在后續(xù)研究中開(kāi)展.
該算例模擬了一個(gè)典型的開(kāi)放空間內(nèi)池火工況.計(jì)算域?yàn)?m×1m×1m的立方形空間,在底部中央有一0.2m×0.2m的方形火源區(qū)域.燃料為氣態(tài)甲烷,常溫(300K)常壓(101325Pa)下以法向速度0.01m/s噴入并發(fā)生燃燒.模擬中考慮重力效應(yīng),火焰受浮力誘導(dǎo)的自然對(duì)流驅(qū)動(dòng).由于計(jì)算區(qū)域的規(guī)則性,網(wǎng)格多為正六面體正交網(wǎng)格,整體區(qū)域網(wǎng)格尺度為0.5mm,由于整場(chǎng)網(wǎng)格尺度已經(jīng)滿足大渦模擬要求(由網(wǎng)格尺度決定的截?cái)嗖〝?shù)位于慣性子區(qū)),火源區(qū)域不再局部加密,整體網(wǎng)格數(shù)目為800萬(wàn).該算例總模擬時(shí)間為100s,以特征速度1m/s計(jì)算約為100個(gè)整場(chǎng)流通時(shí)間(FTT),其單FTT時(shí)間為0=1s.圖1(a)比較了不同網(wǎng)格條件下的中心軸線速度分布,可見(jiàn)隨著網(wǎng)格密度增加,預(yù)測(cè)結(jié)果趨于相同,并且最終與整體時(shí)間步法的預(yù)測(cè)接近.這里定義誤差為與最密網(wǎng)格(1065萬(wàn))預(yù)測(cè)的相對(duì)誤差.由圖1(b)可見(jiàn),平均誤差與最大誤差均隨網(wǎng)格尺度減小而減小,平均誤差隨網(wǎng)格尺度近似呈指數(shù)衰減(對(duì)數(shù)空間表現(xiàn)為線性).在網(wǎng)格密度大于800萬(wàn)的情況下,平均誤差小于0.5%,最大誤差小于2%,滿足網(wǎng)格獨(dú)立性要求.以下分析如不特殊指明,均基于1065萬(wàn)網(wǎng)格結(jié)果.
圖1?局部時(shí)間步法的網(wǎng)格收斂性分析
圖2?火焰中心剖面局步時(shí)間步分布
圖3 無(wú)量綱計(jì)算周期和加速比對(duì)網(wǎng)格尺寸的依賴性關(guān)系
圖5定量比較了中心軸線的時(shí)均值.火焰高度(=0.6m)以下的時(shí)均值分布幾乎相同,之后差異越往下游越大,但整體差異仍較?。捎镁植繒r(shí)間步法,溫度和速度峰值與采用整體時(shí)間步法預(yù)測(cè)基本一致,但平均氧氣消耗率略低,火焰溫度和最終浮力驅(qū)動(dòng)速度也略低于整體時(shí)間步法的預(yù)測(cè).在中心軸線上各關(guān)鍵變量的平均差異分別為1.3%(溫度),0.7%(速度),3.9%(CH4),3.7%(O2),均小于5%,可以近似認(rèn)為采用局部時(shí)間法和整體時(shí)間法對(duì)時(shí)均結(jié)果的預(yù)測(cè)一致.
多重時(shí)間步法等效于對(duì)時(shí)間項(xiàng)的權(quán)重預(yù)處理,有限體積方法中,相鄰網(wǎng)格單元交界面的質(zhì)量通量計(jì)算與時(shí)間無(wú)關(guān),根據(jù)單元內(nèi)質(zhì)量、動(dòng)量、組分和能量等的守恒原則時(shí)間權(quán)重影響各網(wǎng)格單元值更新的快慢.時(shí)間步較大的區(qū)域快速演化迅速趨于準(zhǔn)穩(wěn)態(tài),而時(shí)間步較小的區(qū)域各變量相當(dāng)于處于相對(duì)“凍結(jié)”狀態(tài).不同區(qū)域交界處互為邊界條件,意味著時(shí)間演化較快的區(qū)域通過(guò)提供一個(gè)快速趨于準(zhǔn)穩(wěn)態(tài)的邊界加速了其相鄰時(shí)間演化較慢區(qū)域的收斂.本算例中,以射流邊界為區(qū)分,可將火焰流場(chǎng)分為演化較慢的火焰中心區(qū)域和快速趨于穩(wěn)態(tài)的伴流.伴流通過(guò)為中心射流提供了更趨于穩(wěn)態(tài)的射流邊界條件,加速了中心火焰區(qū)的收斂,類似于Espinoza等[16]在可壓縮高速流動(dòng)中的觀察.因而采用局部時(shí)間步法從兩個(gè)方面促進(jìn)了準(zhǔn)穩(wěn)態(tài)流場(chǎng)的建立:一方面通過(guò)增加時(shí)間步加速了無(wú)反應(yīng)區(qū)域的演化,另一方面通過(guò)邊界效應(yīng)促進(jìn)了相對(duì)演化較慢的火焰區(qū)域往準(zhǔn)穩(wěn)態(tài)收斂的進(jìn)度.
圖5?中心軸線上時(shí)均值比較
計(jì)算區(qū)域?yàn)榈湫偷膬墒医ㄖ?,其中左邊房間尺寸為0.4m(長(zhǎng))×0.4m(寬)×0.6m(高),右邊緊鄰房間的尺寸為0.4m(長(zhǎng))×0.4m(寬)×0.4m(高).直徑0.095m的圓形火源位于右側(cè)房間底部中央.在兩個(gè)相鄰房間由一堵厚度為25.4cm的墻隔開(kāi),墻的底部和頂部各留有30cm的間隙分別用于通風(fēng)和排煙.整體網(wǎng)格數(shù)目為320萬(wàn),其中圍繞火源區(qū)域的0.2m(長(zhǎng))×0.2m(寬)×0.3m(高)的區(qū)域局部加密網(wǎng)格.左側(cè)房間頂部和側(cè)邊為開(kāi)放邊界條件,固定壓力為環(huán)境大氣壓(101325Pa).右側(cè)房間為完全封閉空間,僅通過(guò)通風(fēng)口和排煙孔和外界平衡壓力.
在火焰的發(fā)展演化過(guò)程中,新鮮空氣從左側(cè)吹入帶來(lái)的動(dòng)量使火焰偏向右方.同時(shí)由于左側(cè)頂部的抽吸,熱煙氣層向左上方移動(dòng).相比較而言,右側(cè)房間中靠近右壁面一側(cè)的氣流速度較大,相應(yīng)地,圖6中的局部時(shí)間步右側(cè)較?。髠?cè)房間通過(guò)快速時(shí)間演化相當(dāng)于為右側(cè)房間的流場(chǎng)發(fā)展提供了一個(gè)穩(wěn)定的邊界條件,而右側(cè)房間內(nèi)的計(jì)算域時(shí)間步較小,數(shù)值耗散更低,有利于捕捉到更加豐富的火焰瞬態(tài)效應(yīng).這也意味著,通過(guò)采用多重時(shí)間步,對(duì)著重關(guān)注的瞬態(tài)流動(dòng)區(qū)域指定較小的時(shí)間步,在對(duì)物理過(guò)程精細(xì)捕捉的同時(shí)兼顧計(jì)算效率.
圖6?時(shí)間步分布
圖7比較了采用局部時(shí)間步法和整體時(shí)間步法的瞬態(tài)溫度和O2體積分?jǐn)?shù)預(yù)測(cè)結(jié)果.總體上兩種方法的預(yù)測(cè)與實(shí)驗(yàn)測(cè)量值的趨勢(shì)均吻合較好.局部時(shí)間步法可以比整體時(shí)間步法更快地收斂到穩(wěn)態(tài)解[16],因此局部時(shí)間步法更適用于穩(wěn)態(tài)流場(chǎng)模擬.對(duì)于低馬赫數(shù)燃燒問(wèn)題流動(dòng)速度遠(yuǎn)小于聲速,壓力波以近乎無(wú)限快的速度在整場(chǎng)傳播,驅(qū)動(dòng)速度場(chǎng)更快地達(dá)到平衡,并且流動(dòng)特征時(shí)間遠(yuǎn)大于化學(xué)反應(yīng)特征時(shí)間,流動(dòng)和燃燒均趨于準(zhǔn)穩(wěn)態(tài),因此局部時(shí)間步法較為適用.局部時(shí)間步方法更適用于最終達(dá)到穩(wěn)態(tài)或準(zhǔn)穩(wěn)態(tài)的流場(chǎng)模擬,通過(guò)快速演化區(qū)域與慢演化區(qū)域的互為邊界原理實(shí)現(xiàn)了整體的加速收斂.由于時(shí)間步較大區(qū)域的單步時(shí)間內(nèi)變量增幅較大,相應(yīng)地會(huì)表現(xiàn)出較大的脈動(dòng)值,如圖中所示.在火源上方0.14m和0.26m高度位置整體時(shí)間步法的預(yù)測(cè)更貼近實(shí)驗(yàn)值,0.38m處前半段整體時(shí)間步法預(yù)測(cè)較好而后半段局部時(shí)間步預(yù)測(cè)更貼近測(cè)量值.在初始點(diǎn)火(0~40s)和熄火階段(310~350s),由于釋熱速率的急劇變化導(dǎo)致瞬態(tài)效應(yīng)較強(qiáng),兩種方法的預(yù)測(cè)均存在一定偏差.靠近火源根部(=0.14m高度處)燃料和空氣摻混后反應(yīng)劇烈,表現(xiàn)在測(cè)量和預(yù)測(cè)上溫度空間波動(dòng)均較大,而高處羽流區(qū)反應(yīng)微弱因而溫度波動(dòng)更為平穩(wěn).圖7(d)中兩種方法對(duì)氧氣濃度的預(yù)測(cè)在中間準(zhǔn)穩(wěn)態(tài)階段均與實(shí)驗(yàn)測(cè)量值吻合較好,其中由于時(shí)間步的增加,局部時(shí)間步法的預(yù)測(cè)表現(xiàn)出較大的脈動(dòng).
圖8比較了穩(wěn)定燃燒階段(?。?00s處燃燒速率)基于局部時(shí)間步法和整體時(shí)間步法預(yù)測(cè)的時(shí)均值分布.為方便對(duì)比,在圖例范圍內(nèi)標(biāo)識(shí)了5條等間距輪廓線.整體而言,兩種方法預(yù)測(cè)的時(shí)均流場(chǎng)相似度較高.對(duì)于時(shí)均溫度,采用局部時(shí)間法預(yù)測(cè)的火焰高溫核心區(qū)域略寬而高度相似.時(shí)均速度未見(jiàn)明顯差異.從溫度和速度分布可以明顯看出,由于左下部空氣的通入,使得火焰向右側(cè)傾斜明顯.又由于左上部的抽吸作用,熱羽流向左側(cè)移動(dòng).整體火羽流路徑呈現(xiàn)反C字型.從產(chǎn)物H2O和CO2的分布看,熱燃燒產(chǎn)物在浮力作用下上升到頂棚以后,左側(cè)的部分被排煙通道抽吸走,右側(cè)的部分被右側(cè)倉(cāng)壁阻擋后沿著壁面向下堆積.與溫度的分布類似,采用局部時(shí)間步法預(yù)測(cè)的核心羽流區(qū)(高溫高產(chǎn)物濃度輪廓線標(biāo)識(shí))的寬度稍窄.在火災(zāi)發(fā)展過(guò)程中,左房間為半開(kāi)放空間(上、左、前、后均為自由開(kāi)放邊界條件),因而左側(cè)房間的流場(chǎng)趨于穩(wěn)態(tài),兩種方法的預(yù)測(cè)更為相似.
圖8?火源中心剖面時(shí)均溫度、速度、CO2和H2O質(zhì)量分?jǐn)?shù)分布
圖9量化比較了圖8中從火源到頂棚(=0.1~0.39m)不同高度處橫向的時(shí)均量分布.對(duì)于燃料C7H16,在=0.1m靠近火源底部濃度較大兩種方法預(yù)測(cè)的偏差較小.隨著高度增加,燃料濃度逐漸降低至千分之一量級(jí),微量痕跡物的預(yù)測(cè)相對(duì)誤差增加.對(duì)于氧氣質(zhì)量分?jǐn)?shù),兩種方法的預(yù)測(cè)在不同高度處量級(jí)和趨勢(shì)均較為相似.對(duì)于溫度分布二者的預(yù)測(cè)幾乎沒(méi)有差別,尤其是對(duì)于火源區(qū)域的溫度峰值和近壁區(qū)域的溫度陡降均吻合較好.在反C型流場(chǎng)的中部,由于底部進(jìn)氣道向右氣流動(dòng)量和火羽流向上浮力的驅(qū)動(dòng)會(huì)形成一回流區(qū).速度分布顯示該回流區(qū)底部(0.1m)進(jìn)氣口位置在采用局部時(shí)間法時(shí)略低于整體時(shí)間步法.0.3m高度處局部時(shí)間步法預(yù)測(cè)的速度峰值略低,這也對(duì)應(yīng)圖8中較窄的高溫區(qū)域(浮力較弱).各時(shí)均量在4個(gè)高度處的平均相對(duì)誤差分別為1.1%(溫度,0.1~0.39m)、6.1%(速度,0.1~0.39m)、1.0%(氧氣質(zhì)量分?jǐn)?shù),0.1~0.39m)、5.0% (C7H16濃度,0.1~0.2m高度),>100%(C7H16濃度,0.3~0.39m高度),可見(jiàn)除了燃料因濃度衰減較快導(dǎo)致遠(yuǎn)離火焰區(qū)相對(duì)誤差較大以外,其他量的預(yù)測(cè)誤差均較?。捎镁植繒r(shí)間步法,增加了弱流動(dòng)區(qū)域的時(shí)間步,因而一定程度上增加了數(shù)值耗散性,這有可能是引起上述差異的原因,然而整體上二者的時(shí)均結(jié)果十分相近,表明了局部時(shí)間步法在低馬赫數(shù)準(zhǔn)穩(wěn)態(tài)燃燒問(wèn)題中的適用性,以及犧牲非主要燃燒反應(yīng)區(qū)微量痕跡物的預(yù)測(cè)精度以顯著提高整體計(jì)算效率是可行的.
本研究基于局部時(shí)間步法、改進(jìn)PaSR湍流燃燒模型以及優(yōu)化壓力求解算法開(kāi)發(fā)了面向低馬赫數(shù)的壓力求解器,并選取了開(kāi)放空間和封閉空間兩種典型的低馬赫數(shù)燃燒算例進(jìn)行了驗(yàn)證.一般可認(rèn)為,局部時(shí)間步法的加速比近似與網(wǎng)格差異化程度成正比.按照通常的火源、拐角、近壁等區(qū)域局部加密設(shè)置,最大/最小網(wǎng)格尺度一般至少相差3~5倍,采用局部時(shí)間步法預(yù)計(jì)至少可使計(jì)算效率提高3~5倍.本文中的網(wǎng)格設(shè)置使得局部時(shí)間步法相比于整體時(shí)間步法分別實(shí)現(xiàn)了6倍和8倍的實(shí)際加速比.實(shí)際加速比通常略小于由平均時(shí)間步之比定義的理想值,這是因?yàn)槌藭r(shí)間步計(jì)算本身的額外代價(jià)外,輻射和剛性化學(xué)反應(yīng)求解一般耗時(shí)較多且與流動(dòng)時(shí)間步關(guān)系較?。傮w上計(jì)算周期隨網(wǎng)格尺寸減小近似呈線性增加,其中整體時(shí)間步法計(jì)算周期的上升梯度更大,表明密網(wǎng)格條件下局部時(shí)間步法有更好的加速效果.與實(shí)驗(yàn)數(shù)據(jù)的對(duì)比表明,局部和整體時(shí)間步法均較為準(zhǔn)確地預(yù)測(cè)了溫度的時(shí)間變化特性和除微量痕跡物以外的時(shí)均流場(chǎng)特性,表明了局部時(shí)間步法在低馬赫數(shù)準(zhǔn)穩(wěn)態(tài)燃燒問(wèn)題中的適用性,以及犧牲非主要燃燒反應(yīng)區(qū)微量痕跡物的預(yù)測(cè)精度以顯著提高整體計(jì)算效率是可行的.
一般而言,局部時(shí)間步法針對(duì)穩(wěn)態(tài)流動(dòng)或統(tǒng)計(jì)上呈現(xiàn)穩(wěn)態(tài)的準(zhǔn)穩(wěn)態(tài)流動(dòng)問(wèn)題,其得到的結(jié)果是比較可靠的,但對(duì)于強(qiáng)瞬態(tài)的流場(chǎng)演化問(wèn)題,其方法的適用性則需要進(jìn)一步的研究探討.
[1] Osher S,Sanders R. Numerical approximations to nonlinear conservation laws with locally varying time and space grids[J].,1983,41(164):321-336.
[2] Powell K G,van Leer B. A genuinely multi-dimensional upwind cell-vertex scheme for the Euler equations[C]//. Reno,USA,1989.
[3] Berger M J,Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations[J].,1984,53(3):484-512.
[4] Berger M J,Colella P. Local adaptive mesh refinement for shock hydrodynamics[J].,1989,82(1):64-84.
[5] Dumbser M,K?ser M,Toro E F. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—V. Local time stepping and-adaptivity[J].,2007,171(2):695-717.
[6] Taube A,Dumbser M,Munz C D,et al. A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations[J].:,,2009,22(1):77-103.
[7] Qi H,Wang X,Zhang J,et al. An ADER discontinuous Galerkin method with local time-stepping for transient electromagnetics[J].,2018,229:106-115.
[8] Grote M J,Mehlin M,Mitkova T. Runge-Kutta-based explicit local time-stepping methods for wave propagation[J].,2015,37(2):A747-A775.
[9] Lilia Krivodonova. An efficient local time-stepping scheme for solution of nonlinear conservation laws[J].,2010,229(22):8537-8551.
[10] Ashbourne A. Efficient Runge-Kutta Based Local Time-Stepping Methods[D]. Waterloo,Canada:University of Waterloo,2016.
[11] 杜永樂(lè),閻?超. DSMC方法中的自適應(yīng)當(dāng)?shù)貢r(shí)間步長(zhǎng)法[J]. 北京航空航天大學(xué)學(xué)報(bào),2006,32(4):388-390.
Du Yongle,Yan Chao. Adaptive local time step method for DSMC code [J].,2006,32(4):388-390(in Chinese).
[12] 姜婷婷,錢(qián)?坤,陳偉芳. 高超聲速混合流動(dòng)的粒子模擬耦合算法[J]. 固體火箭技術(shù),2017,40(3):283-288.
Jiang Tingting,Qian Kun,Chen Weifang. Study on hybrid particle simulation method for hypersonic mixed flows[J].,2017,40(3):283-288(in Chinese).
[13] 譚志軍,黃云清. 對(duì)一維守恒律的一種局部時(shí)間步長(zhǎng)自適應(yīng)網(wǎng)格方法[J]. 湘潭大學(xué)自然科學(xué)學(xué)報(bào),2003,25(2):110-116.
Tan Zhijun,Huang Yunqing. An adaptive grid method with local time stepping for one-dimensional conservation laws[J].,2003,25(2):110-116(in Chinese).
[14] 吳?迪,蔚喜軍,徐?云. 局部時(shí)間步長(zhǎng)間斷有限元方法求解三維歐拉方程[J]. 計(jì)算物理,2011,28(1):1-9.
Wu Di,Wei Xijun,Xu Yun. A discontinuous Galerkin method with local time stepping for Euler equations[J].,2011,28(1):1-9(in Chinese).
[15] 胡?鵬,韓健健,雷云龍. 基于局部分級(jí)時(shí)間步長(zhǎng)方法的水沙耦合數(shù)學(xué)模擬[J]. 浙江大學(xué)學(xué)報(bào)(工學(xué)版),2019,53(4):743-752.
Hu Peng,Han Jianjian,Lei Yunlong. Coupled modeling of sediment-laden flows based on local-time-step approach[J].(),2019,53(4):743-752(in Chinese).
[16] Espinoza D E R,Scanlon T J,Brown R E. Validation of tools to accelerate high-speed CFD simulations using OpenFOAM[C]// 20. Glasgow,UK,2015.
[17] Kalkote N,Assam A,Eswaran V. Towards developing an adaptive time stepping for compressible unsteady flows[J].,2019,29(2):487-503.
[18] Jeanmasson G,Mary I,Mieussens L. On some explicit local time stepping finite volume schemes for CFD[J].,2019,397:108818.
[19] Cant R S. Modelling and simulation of accidental combustion in complex geometries[C]//. Edinburgh,UK,2007.
[20] 姜?蓬,邱?榕,蔣?勇. 基于數(shù)值模擬的某大廈特大火災(zāi)過(guò)程調(diào)查[J]. 燃燒科學(xué)與技術(shù),2007,13(1):76-80.
Jiang Peng,Qiu Rong,Jiang Yong. Investigation of a mansion fire based on numerical simulation[J].,2007,13(1):76-80(in Chinese).
[21] Wang H Y. Prediction of soot and carbon monoxide production in a ventilated tunnel fire by using a computer simulation[J].,2009,44(3):394-406.
[22] Ji J,Guo F,Gao Z,et al. Numerical investigation on the effect of ambient pressure on smoke movement and temperature distribution in tunnel fires[J].,2017,118:663-669.
[23] Su S,Wang L. Three dimensional reconstruction of the fire in a ship engine room with multilayer structures[J].,2013,70:201-207.
[24] 王秋紅,王?超,張小桃,等. 四角切圓鍋爐爐內(nèi)燃燒數(shù)值模擬[J]. 熱力發(fā)電,2016,45(9):61-66.
Wang Qiuhong,Wang Chao,Zhang Xiaotao,et al. Numerical simulation of combustion process in a tangentially pulverized-coal-fired boiler under variable load operation[J].,2016,45(9):61-66(in Chinese).
[25] 張?成,朱天宇,殷立寶,等. 100MW燃煤鍋爐污泥摻燒試驗(yàn)與數(shù)值模擬[J]. 燃燒科學(xué)與技術(shù),2015,21(2):114-123.
Zhang Cheng,Zhu Tianyu,Yin Libao,et al. Field test and numerical simulation for co-combustion of sludge in a 100 MW coal fired boiler[J].,2015,21(2):114-123(in Chinese).
[26] 馬?侖,方慶艷,張?成,等. 600MW W型火焰鍋爐拱上二次風(fēng)低NO燃燒特性的數(shù)值模擬及優(yōu)化[J]. 燃燒科學(xué)與技術(shù),2016,22(1):64-70.
Ma Lun,F(xiàn)ang Qingyan,Zhang Cheng,et al. Numerical simulation and optimization for the influence of the arch secondary airon low-NOcombustion characteristics of a 600MW down-fired boiler[J].,2016,22(1):64-70(in Chinese).
[27] Yoshizawa A. Statistical theory for compressible turbulent shear flows,with the application to subgrid modeling[J].,1986,29(7):2152-2164.
[28] Golovitchev V I,Nordin N,Jarnicki R,et al. 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model[C]//. Paris,F(xiàn)rance,2000,2000-01-1891.
[29] Kjaldman L,Brink A,Hupa M. Micro mixing time in the eddy dissipation concept[J].,2000,154(1):207-227.
[30] Chomiak J,Karlsson A. Physical and chemical effects in diesel spray ignition[C]//21. Interlaken,Swizerland,1995.
[31] Fureby C. LES for supersonic combustion[C]//. Tours,F(xiàn)rance,2012,2012-5979.
[32] Chomiak J,Karlsson A. Flame liftoff in diesel sprays[J].(),1996,26(2):2557-2564.
[33] Hallaji M,Mazaheri K. Numerical simulation of turbulent non-premixed combustion in diluted hot coflow using PaSr combustion model[C]//. Sardinia,Italy,2011.
[34] Yao W,Lu Y,Wu K,et al. Modeling analysis of an actively cooled scramjet combustor under different kerosene/air ratios[J].,2018,34(4):975-991.
[35] John D A J. Inviscid high-temperature nonequilibrium flows.[M]. 2nd Edition. Virginia,USA:AIAA,2006.
[36] Weller H G,Tabor G,Jasak H,et al. A tensorial approach to computational continuum mechanics using object oriented techniques[J].,1997,12(6):620-631.
[37] Murthy J Y,Mathur S R. Finite volume method for radiative heat transfer using unstructured meshes[J].,1998,12(3):313-321.
Study on Applicability of Local Time-Stepping Method in Low-Mach Combustion Simulation
Yao Wei1, 2,Sun Chao3,Liu Hang1,Wu Mei4,Yang Shaobo3,Cao Shunli3
(1. Key Laboratory of High-Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China;2. School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China;3. China Shipbuilding Industry Systems Engineering Research Institute,Beijing 100094,China;4. College of Civil Engineering,Hefei University of Technology,Hefei 230009,China)
Due to the non-uniformity of flow speed in the whole field and the difference in local grid size in complicated combustion simulations,the local Courant-Friedrichs-Lewy(CFL)number varies significantly among different local flow field regions. The computational efficiency is also severely restricted by the conventional global time-stepping method,which is on the basis of the definition of maximum CFL number. In this paper,the applicability of the local time-stepping method restricted by the local CFL number to low-Mach turbulent combustion simulation is investigated for the first time. Through the large-eddy simulation of an open methane pool fire(with 10.65 million cells)and an enclosed building fire(with 3.2 million cells),it is shown that the local time-stepping method can achieve speedup ratios of 6 and 8 compared with the global time-stepping method,respectively. The speedup ratio rises with the reduction of grid size. Moreover,the accuracy of the local time-stepping method applied in the low-Mach combustion simulation is validated from two aspects. First,in comparison with the experimental data,the time-varying characteristics of temperature are accurately predicted by both the local and global methods,which is probably due to the quasi-steadiness of low-Mach combustion. Second,in comparison with the time-averaged flow field,the differences in time-averaged temperature,time-averaged velocity,and the volume fraction of oxygen are relatively smaller except for some minor trace species(with a mass fraction of less than 0.1%). In addition,the existing PaSR turbulent combustion model and the pressure-momentum coupling algorithm are also improved and optimized,thereby enhancing their physical accuracy and robustness.
turbulent combustion;local time-stepping method;large eddy simulation;CFL number;OpenFOAM
TK11
A
1006-8740(2021)03-0321-13
10.11715/rskxjs.R2003003
2020-06-20.
國(guó)家自然科學(xué)基金資助項(xiàng)目(91641110);國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2019YFB1704200).
姚?衛(wèi)(1983—??),男,博士,副研究員.
姚?衛(wèi),weiyao@imech.ac.cn.
(責(zé)任編輯:武立有)