• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband achromatic metasurface filter for apodization imaging in the visible

    2021-06-07 01:44:30LiZhuWangChangtaoKongWeijieWangYanqinGuoYinghuiLiXiongMaXiaoliangPuMingboLuoXiangang
    光電工程 2021年5期

    Li Zhu ,Wang Changtao ,Kong Weijie ,Wang Yanqin ,Guo Yinghui ,Li Xiong ,Ma Xiaoliang,3,Pu Mingbo,Luo Xiangang*

    1State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering,Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;

    2School of Optoelectronics,University of Chinese Academy of Sciences,Beijing 100049,China;

    3National Institute of Defense Technology Innovation,Academy of Military Sciences PLA China,Beijing 100071,China

    Abstract:Apodization has found many important applications in imaging and optical communication.Traditional apodization methods are based on the phase or amplitude modulation,suffering from either narrow working bandwidth,or reduced spatial resolution.Here,a broadband achromatic metasurface filter is proposed to realize apodization imaging without sacrificing the spatial resolution.With this filter,a nearly dispersionless phase modulation in the entire visible waveband can be achieved.The simulated results indicate that the focusing efficiency of the metasurface filter is twice larger than that of the phase filter and the imaging contrast can be improved by three times with the metasurface filter compared to the Gaussian filter.The sidelobes in the point spread function can also be efficiently suppressed to the scale of 10-5 in the whole visible spectrum ranging from 400 nm to 700 nm with our design.Additionally,the resolution of diffraction limit or even sub-diffraction can be achieved with this method.

    Keywords:apodization;broadband;dispersionless;metasurface

    1 Introduction

    Generally,noticeable sidelobes exist in the point spread function (PSF) of a diffraction-limited imaging system[1].In most situations,these ‘noises’ are often small and can be ignored in many imaging systems.However,they have significant influence in the situation when resolving two point-objects with large intensity contrast.This situation is very common in astronomy,for example,when investigating the presence or absence of weak companion star next to a bright star[2].In addition,the strong sidelobes have the potential to cause degraded image and decreased spatial resolution,which is especially unacceptable not only in previously introduced astronomical applications but also in the applications of synthetic aperture radar imaging[3]and phase-contrast imaging microscopy[4].

    To relieve the influence of sidelobes,apodization methods have been developed and successfully used in many optical applications,such as coronagraphs in astronomy[5]and spectral tailoring in silicon integrated Bragg grating devices[6].Theoretically,apodization focuses on the optimization of entrance or exit pupil of an optical system to get a desired light field distribution (i.e.the systematic PSF) with decreased sidelobes[7].In general,apodization is equal to an attenuating mask to suppress the intensity of sidelobes in the diffraction pattern so that certain weak details can be distinguished.Classical amplitude apodization usually modifies the pupil transmittance by introducing specifically designed attenuation masks into the optical system to modulate amplitude at the pupil plane[8],leading to the decreased spatial resolution and throughput of the imaging system.Another method to realize apodization is manipulating the phase at the pupil plane[9]by diffractive optical elements.Compared to amplitude apodization,a better resolution,higher throughout and higher contrast of the imaging system can be achieved with phase modulation.However,the diffractive optical elements are normally made of glass with specific etch depth to realize the desired phase modulation,which exhibits strong dispersion and restricts the working bandwidth considerably.Although we can combine various types of optical materials with different refraction index to reduce the dispersion,this results in bulky structures and complex fabrication inevitably.Alternatively,apodization can be carried out by geometrically remapping the pupil plane of the optical system to obtain the desired apodization pupil function.This approach is called phase-induced amplitude apodization[10],and it can theoretically achieve lossless modulation in a broadband spectrum by virtue of introducing two aspheric mirrors into the imaging system.This access offers high imaging contrast without the sacrifice of resolution and throughout.However,this approach normally uses two additional aspheric mirrors in a reflective optical setup,which is comparatively complicated and leads to more strict requirements on optical and mechanical fabrication and assembly.

    Recently,the metasurfaces based on artificially structured materials have excited much attention because of their extraordinary ability for the flexible modulation of electromagnetic wave.In contrast to 3D metamaterials,the metasurfaces have a planar and ultrathin structure,which is easier to be fabricated and assembled[11].They have been demonstrated to be a promising substitute for traditional optical component and show excellent performance in many applications[12-16],such as apodized focusing[17-18],dispersion and polarization manipulation[19-20],and orbit angular momentum generation[21].Among them,one type of metasurface based on the geometric phase is increasingly promising and compelling in broadband dispersionless phase modulation[22].In principle,the modulated phase is only dependent on the orientation of the unit cell in metasurface[23].Based on this theory,many abnormal phenomena and novel optical devices have been proposed,including broadband spin Hall effect[24],planar meta-lenses[25],and optical holography[26].Therefore,the metasurface with geometric phase modulation also provides a new and promising avenue for broadband achromatic apodization imaging.

    In this paper,the metasurface apodization filter (MAF)is proposed to achieve broadband achromatic apodization imaging in the visible.Benefiting from the geometric phase modulation,MAF can achieve dispersionless phase modulation compared to traditional diffractive optical elements.The simulation results indicate that the performance of our approach outperforms than other apodization methods.It is also verified in our imaging simulation that the proposed MAF can provide a resolving ability that can even surpass the diffraction limit in the entire visible waveband from 400 nm to 700 nm with improved imaging contrast.

    2 Principle and design

    As indicated in Fig.1,under the condition of paraxial approximation,the PSF of an apodization imaging system modulated by MAF can be depicted as[1]:

    where f is the focal length of the achromatic lens used in the apodization imaging system,R represents the semi-diameter of the entrance pupil aperture and φMAFdenotes the phase modulation function of MAF,respectively.In our simulations,the diameter of the optical system is set to be 8 mm with a focal length of 1000 mm.

    The design of MAF could be described as an optimization problem of

    here,ΩROIis the region of interest (ROI) where sidelobes of the PSF are constrained by MAF.In general,this region contains a mainlobe and several sidelobes.The mainlobe determines the resolving power and the sidelobes mainly affect the image quality.The performance of the MAF is described in this paper with the spot size G normalized by Rayleigh diffraction limit of central wavelength (RAIRY,defined as 0.61λc/NA,where λcand NA represent the central wavelength and numerical aperture),the Strehl ratio S,and the ratio between maximum intensity of sidelobes and central intensity M within ROI.Through an optimization algorithm like linear programing[27]or particle swarm optimization[28],the specific phase distribution of MAF can be obtained.Assuming that the proposed broadband apodization imaging system with an entrance pupil diameter of 8 mm and a focal length of 1000 mm works in the visible waveband from 400 nm to 700 nm,two different MAFs with specific normalized phase-jump positions r are designed by the aforementioned optimization procedure and their performances at the central wavelength of 550 nm are presented in Table 1.

    Fig.1 Schematic of the apodization imaging system

    Table 1 Performances of MAFs

    Based on the principle of geometric phase,the orientation of every nanostructure in our metasurface is determined to realize the required broadband dispersionless phase modulation.To illustrate the working principle of MAF,for convenience,every nanostructure of the metasurface is regarded as an ideal dipole without considering the influence of material and geometric size (period,length,width,and height) and its orientation direction is assumed to form an angle θ regarding x axis.In this way,as circularly polarized (CP) light normally impinges on the dipole,the transmitted light field could be written as[18]:

    where the subscripts L and R denote the left CP and right CP,respectively,andexandeyrepresent the unit vectors along x and y directions,αeis the electric polarizability,andex±ieyindicates the vector for left-handed (+) and right-handed (-) CP,respectively.Accordingly,linear polarization (LP) can be decomposed as LCP and RCP.For a normal x-LP incident light (the case for y-LP is similar),the transmitted light field can be expressed as,

    By substituting Eq.(4) into Eq.(5),we can get:

    Apparently,the amplitude of transmitted crossed polarized light continuously varies with the angle θ,while its phase has only two values,0 or π.In order to maximize the efficiency of the metasurface,the angle θ is set to±45°.Hence,our proposed MAF is comprised of two kinds of rectangular metallic nanostructures with different orientations (θ=±45°) etched on a glass substrate.For the convenience of fabrication,Cr was chosen as the material of the nanostructure in our MAF,and we used the optical parameters from Palik’s book to simulate the response of the nanostructure.The size parameters of the nanostructures are optimized by the commercial software CST Microwave Studio to obtain the maximum efficiency.The incident light was from the substrate direction and set to x-LP with the wavelength from 400 nm to 700 nm,and the nanostructures with different sizes were simulated.As shown in Fig.2(a),we choose the nanostructure parameters with 270 nm×270 nm period,270 nm length,120 nm width,and 70 nm depth,which can be easily fabricated by electron beam lithography.The light-field manipulation ability of the nanostructure is also simulated as presented in Fig.2(b).The simulated transmittance (red line) of the nanostructures with varying angle θ agree well with the theory (green line).Besides,as illustrated in Fig.2(c),for a given angle θ,the efficiency has neglectable difference and the modulated phase shift of the transmitted light for two nanostructures is approximately fixed to 180° in a broad spectrum from 400 nm to 700 nm,which demonstrates the broadband dispersionless phase modulation ability of metasurface based on the geometric phase principle.According to the constraints on MAF,the metasurface is optimized to contain several regions with specific normalized radius.The nanostructures are all the same in each annulus so that they are connected to form a kind of subwavelength metallic nano-grating.These two different nanostructures are distributed alternatingly in neighboring annuli as indicated in Fig.2(d).Since the orientations of the nano-gratings in neighboring rings are orthogonal to each other,following the geometric phase,the metasurface can theoretically realize nearly perfect 0 or π dispersionless phase manipulation for the broadband incident light.

    Fig.2 (a) Schematic of the nanostructure in metasurface;(b) Transmittance and phase shift of nanostructures with different θ at the central wavelength of 550 nm;(c) Transmittance and phase shift of nanostructures with θ=±45° from 400 nm to 700 nm;(d) Schematic of the metasurface apodization filter

    3 Results and discussion

    In order to show the advantage of our method,the PSF simulations among metasurface apodization filter,phase apodization filter (PAF),and diffraction-limited imaging(AIRY) are presented in Fig.3.Since MAF is essentially one kind of special PAF,which can work in a broadband spectrum without dispersion,PAF is designed to have the same phase-jump positions as MAF1.The broadband PSF is calculated by the linear superposition of every PSF of single working wavelength with an interval of 5 nm.If the intensity of the incident light for different wavelengths are the same,the broadband PSF can be calculated as follows:

    where ?(r) is the modulated phase of MAF or PAF,while it is set to zero for diffraction-limited imaging.As plotted in Figs.3(a)~3(d),the sidelobes within ROI are both suppressed with MAF and PAF compared to the diffraction-limit imaging,while the performance of PAF is obviously worse than MAF due to the inherent material dispersion.Here,the K9 glass is used as the material of PAF and the phase difference Δ? of two neighboring rings in PAF can be depicted as:

    In equation (8),d and n represent the etched depth of rings in PAF and the refractive index of material,respectively.The corresponding etched depth for central working wavelength of 550 nm is about 530 nm.However,due to the inherent dispersion property of material,the modulated phase for other wavelengths will inevitably deviate the desired phase,leading to the distortion of PSF.The normalized maximum sidelobe intensity of PSFs under different working wavelengths are compared among MAF,PAF and diffraction-limited imaging in Fig.3(e).It is found that the desired M can only be achieved in a very narrow band (about 10 nm in our simulation) with PAF.Consequently,as discussed above,it is extremely difficult to realize apodization modulation in the broadband spectrum with the traditional phase apodization approach.Fortunately,the metasurface based on the geometric phase principle can address this problem and we can realize a constant M in the entire visible spectrum from 400 nm to 700 nm.The efficiency of these two methods are defined as follows:

    Fig.3 Broadband PSFs of (a) metasurface apodization filter,(b) phase apodization filter,and (c) diffraction-limited imaging.Scalar bar:400 μm;(d) Radial normalized logarithmic intensity distributions of (a),(b) and (c);(e) The comparison of M for three imaging methods with different working wavelength in logarithmic form

    where λ1and λ2represent the lower and upper limits of the working waveband.The efficiency of MAF and PAF are 21.43% and 1.05% respectively,which exhibits the outstanding superiority of MAF.Even though the transmittance of our metasurface is not very high (only about 10% in the working waveband),benefiting from the broad working waveband,the total efficiency of MAF is still twice larger than PAF.Additionally,the efficiency of metasurface can be improved substantially to about 80%if a reflective design is adopted[29].

    To characterize the apodization performance of MAF1in the visible waveband ranging from 400 nm to 700 nm,a point object with four companion point objects of the same intensity is used as target to simulate the common astronomical observation.The intensity contrast is set to 30000.The transmittance of Gaussian apodization filter(GAF) is essentially a Gaussian window function with a standard deviation of 0.4385,leading to the same M within ROI as MAF1.Four companion point objects are set to be 2.4RAIRY(-x),1.8RAIRY(+x),10RAIRY(-y),and 5RAIRY(+y) far from the central point object,respectively.Obviously,as shown in Figs.4(a)~4(d),only the weak point object in -y direction can be resolved in the diffraction-limited imaging and the others are all immersed in the sidelobes of the central point object’s image.One more point object can hardly be noticed in +y direction with PAF.By using GAF,all the point objects can be distinguished except the point object in +x direction.Though it is a little hard to resolve the point object in +x directions with MAF1,by comparing Fig.4(e) with 4(f),it is found the mainlobe in +x direction is extended noticeably compared to the mainlobe in ±y directions which suggests the existence of a weak point object in +x directions.

    To further verify the performance of our method,an extended target (‘E’ letter,the distance between two neighboring lines is 1.0RAIRY,and the line width is 20 μm)is imaged with MAF2and GAF in the visible spectrum from 400 nm to 700 nm.The standard deviation of GAF’s transmittance is 0.7143.As can be clearly seen in Figs.5(a)~5(c),these two filters have the same M value,while the mainlobe of MAF2is largely suppressed.We can easily distinguish the“E”letter with MAF2in Fig.5(d)compared to that in Fig.5(e).The normalized intensity distributions along the labeled dashed line are compared in Fig.5(f).It is found that the contrast is substantially improved from 0.17 to 0.54.Though at the cost of a limited ROI and decreased efficiency,the metasurface apodization method provides an effective access for improving imaging contrast.

    Fig.4 Broadband images with (a) metasurface apodization filer,(b) phase apodization filter,(c) diffraction-limited imaging,and(d) Gaussian apodization filter,Scale bar:400 μm;(e) Normalized logarithmic intensities of (a),(b),(c),and (d) in x-direction;(f) Normalized intensities of (a),(b),(c),and (d) in y-direction

    Fig.5 Broadband PSFs of (a) MAF and (b) GAF.Scale bar:100 μm;(c) Radial logarithmic intensity distributions of (a)and (b);Broadband images of (d) MAF and (e) GAF.Scale bar:30 μm;(f) Normalized intensity distribution along the labeled dashed line in (d),(e) polarization rotation angle (a) and ellipticity (b) of the weak chiral metasurface

    Compared to other apodization imaging methods,our method is easy to employ through a simple and compact MAF.Even though the metasurface in our apodization method suffers from a relatively low efficiency,its total efficiency is still much higher than that of the phase apodization method because of the broad working bandwidth.Furthermore,the MAF could achieve higher efficiency with better fabrication facilities,since its transmittance increases with the decrease of the width of rectangular nanostructure.Additionally,there are some other effective solutions to solve this problem,like adopting a reflective structure,a high-sensitivity detector,longer exposure time or specific image enhancement algorithm.

    4 Conclusions

    In summary,the MAF is proposed to realize broadband achromatic apodization imaging in the entire visible waveband.Benefiting from the geometric phase principle,the proposed MAF solves the problem of narrow working bandwidth in the phase apodization method.The intensities of sidelobes can be effectively reduced to the scale of 10-5with our method.In addition,the resolution of diffraction limit or even sub-diffraction is verified.The simulation results match well with our design and verify the good performance of MAF.Our method is believed to be a promising alternative in broadband apodization imaging,and may promote the development in the applications of astronomical observation and optical communication.

    Acknowledgements

    This work was supported by National Natural Science Foundation of China (61905073,61875253,61675207)and Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019371).Zhu Li and Changtao Wang contributed equally to this work.

    国产色婷婷99| 丰满少妇做爰视频| 听说在线观看完整版免费高清| 国产成年人精品一区二区| 美女国产视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久久久精品久久久久真实原创| 免费看a级黄色片| 亚洲欧美精品专区久久| 久久99蜜桃精品久久| 免费看a级黄色片| 国产一区二区三区av在线| 婷婷色综合大香蕉| 亚洲美女视频黄频| 国产av不卡久久| 97在线视频观看| 亚洲最大成人手机在线| 国产乱人偷精品视频| 欧美激情久久久久久爽电影| 国产亚洲5aaaaa淫片| 亚洲欧洲日产国产| 午夜精品在线福利| 久久久a久久爽久久v久久| .国产精品久久| 久久久久精品久久久久真实原创| 国产高清有码在线观看视频| 国产视频内射| 国产午夜精品一二区理论片| 国产免费一级a男人的天堂| 国产精品一及| 国产精品久久视频播放| 亚洲av电影不卡..在线观看| 日韩国内少妇激情av| 深夜a级毛片| 舔av片在线| 非洲黑人性xxxx精品又粗又长| 国产探花在线观看一区二区| 美女脱内裤让男人舔精品视频| 婷婷六月久久综合丁香| 免费观看无遮挡的男女| 如何舔出高潮| 国产探花极品一区二区| av播播在线观看一区| or卡值多少钱| 少妇人妻精品综合一区二区| 久久久久久久久中文| 国产爱豆传媒在线观看| 精品久久久久久久久av| 国产精品久久久久久精品电影小说 | 97在线视频观看| 午夜爱爱视频在线播放| 国产免费又黄又爽又色| 国产免费福利视频在线观看| 久久久久久久久久黄片| 亚洲综合精品二区| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 亚洲av.av天堂| 精品久久久久久久末码| 直男gayav资源| 亚洲av二区三区四区| 免费播放大片免费观看视频在线观看| 91久久精品国产一区二区成人| 特大巨黑吊av在线直播| 不卡视频在线观看欧美| av免费观看日本| 搡老妇女老女人老熟妇| 国产单亲对白刺激| 免费看光身美女| av国产免费在线观看| 久久精品久久精品一区二区三区| 如何舔出高潮| 免费无遮挡裸体视频| 国内揄拍国产精品人妻在线| 亚洲综合色惰| 一二三四中文在线观看免费高清| 精品99又大又爽又粗少妇毛片| 国产精品.久久久| 久久精品久久久久久噜噜老黄| 亚洲aⅴ乱码一区二区在线播放| 狠狠精品人妻久久久久久综合| 色5月婷婷丁香| av.在线天堂| 在线观看人妻少妇| 在线 av 中文字幕| 亚洲国产精品成人久久小说| 亚洲精品456在线播放app| 成人二区视频| 亚洲国产精品国产精品| 看黄色毛片网站| 小蜜桃在线观看免费完整版高清| 日韩国内少妇激情av| 日日摸夜夜添夜夜添av毛片| 人体艺术视频欧美日本| 91久久精品电影网| 国产一区二区在线观看日韩| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 久久久欧美国产精品| 亚洲欧美精品专区久久| 国精品久久久久久国模美| av线在线观看网站| 精品国产露脸久久av麻豆 | 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| 亚洲av日韩在线播放| 国产av不卡久久| 国产中年淑女户外野战色| 国产亚洲精品av在线| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频 | 最近中文字幕2019免费版| 免费不卡的大黄色大毛片视频在线观看 | 麻豆成人av视频| 精品人妻视频免费看| 欧美激情在线99| 国产乱人偷精品视频| 国产成人精品久久久久久| 少妇的逼好多水| 久久久色成人| 久久久精品免费免费高清| 日韩人妻高清精品专区| 一级二级三级毛片免费看| 晚上一个人看的免费电影| 免费无遮挡裸体视频| 亚洲综合色惰| 亚洲精品日本国产第一区| 夜夜爽夜夜爽视频| 午夜日本视频在线| 成人漫画全彩无遮挡| 久久久久久久国产电影| 欧美区成人在线视频| 国产精品一区二区三区四区久久| 午夜激情福利司机影院| 国产精品99久久久久久久久| 国产黄频视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 中文在线观看免费www的网站| 人妻夜夜爽99麻豆av| 中国国产av一级| 女的被弄到高潮叫床怎么办| 国产男女超爽视频在线观看| 天堂√8在线中文| 日韩一区二区三区影片| 九草在线视频观看| 爱豆传媒免费全集在线观看| 亚洲成人久久爱视频| 国产成人一区二区在线| 久久久久精品久久久久真实原创| 2021少妇久久久久久久久久久| 国产伦精品一区二区三区四那| 国产精品无大码| 18禁在线无遮挡免费观看视频| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 久久99热这里只频精品6学生| 别揉我奶头 嗯啊视频| 我的老师免费观看完整版| 舔av片在线| 亚洲精品乱码久久久v下载方式| 亚洲第一区二区三区不卡| 久久久精品94久久精品| 嘟嘟电影网在线观看| 插逼视频在线观看| 国产精品日韩av在线免费观看| 干丝袜人妻中文字幕| 日韩国内少妇激情av| 国产 亚洲一区二区三区 | 国产亚洲精品久久久com| 久久久久久久久中文| 免费播放大片免费观看视频在线观看| 国产片特级美女逼逼视频| 久久久欧美国产精品| 又大又黄又爽视频免费| 日本欧美国产在线视频| 中文资源天堂在线| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 18+在线观看网站| 日韩伦理黄色片| 久久国内精品自在自线图片| 中文资源天堂在线| 久久久久久久久大av| 国产成人aa在线观看| 色综合色国产| 亚州av有码| 免费黄色在线免费观看| 久久鲁丝午夜福利片| 免费av毛片视频| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱| 我的女老师完整版在线观看| 少妇熟女欧美另类| 国产精品一区二区在线观看99 | av黄色大香蕉| 神马国产精品三级电影在线观看| 欧美激情在线99| 精品一区二区三卡| 亚洲精品自拍成人| 国产免费视频播放在线视频 | 搡老乐熟女国产| 精品久久久久久成人av| 日韩欧美 国产精品| 91在线精品国自产拍蜜月| 在线观看人妻少妇| 亚洲欧美精品专区久久| 最后的刺客免费高清国语| 赤兔流量卡办理| 日本wwww免费看| 久久久久久久亚洲中文字幕| 国产三级在线视频| 亚洲va在线va天堂va国产| 国产又色又爽无遮挡免| 久久久成人免费电影| 日韩 亚洲 欧美在线| 三级经典国产精品| 国国产精品蜜臀av免费| 18禁动态无遮挡网站| 亚洲国产高清在线一区二区三| 久久精品夜夜夜夜夜久久蜜豆| 久久韩国三级中文字幕| 国产中年淑女户外野战色| 高清在线视频一区二区三区| 国产黄片美女视频| 精品国产三级普通话版| 亚洲自偷自拍三级| 成人午夜高清在线视频| 国产精品久久久久久精品电影小说 | 22中文网久久字幕| 国产精品福利在线免费观看| 精品午夜福利在线看| 六月丁香七月| 国产大屁股一区二区在线视频| 色5月婷婷丁香| 亚洲国产精品sss在线观看| 亚洲国产最新在线播放| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 国产亚洲一区二区精品| 三级国产精品欧美在线观看| 日日干狠狠操夜夜爽| 大又大粗又爽又黄少妇毛片口| 久久国产乱子免费精品| 国产精品久久久久久精品电影小说 | 极品教师在线视频| 91久久精品电影网| 国产精品久久视频播放| 高清视频免费观看一区二区 | 熟妇人妻久久中文字幕3abv| 国产男人的电影天堂91| 成人二区视频| 在线观看av片永久免费下载| 国产精品久久视频播放| 伦精品一区二区三区| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 午夜福利视频1000在线观看| 日韩,欧美,国产一区二区三区| 天堂√8在线中文| 别揉我奶头 嗯啊视频| 国产三级在线视频| 亚洲欧美中文字幕日韩二区| .国产精品久久| 久久综合国产亚洲精品| 国产色婷婷99| 久久久成人免费电影| 成人二区视频| 亚洲精品亚洲一区二区| 免费观看的影片在线观看| 少妇熟女aⅴ在线视频| 男女国产视频网站| 免费黄频网站在线观看国产| 亚洲精品成人久久久久久| 最近2019中文字幕mv第一页| 肉色欧美久久久久久久蜜桃 | 欧美成人午夜免费资源| 免费看a级黄色片| 久久久久精品性色| 最近中文字幕2019免费版| 日日干狠狠操夜夜爽| 久久久久久久久中文| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲av天美| 久久99蜜桃精品久久| 久99久视频精品免费| 大陆偷拍与自拍| 久久97久久精品| 国产亚洲精品av在线| 国产黄a三级三级三级人| 精品久久久久久久久久久久久| 免费观看a级毛片全部| 最近2019中文字幕mv第一页| 身体一侧抽搐| 97热精品久久久久久| 国内精品一区二区在线观看| 18禁在线播放成人免费| 亚洲丝袜综合中文字幕| 亚州av有码| 直男gayav资源| av国产免费在线观看| 国产乱来视频区| 天堂中文最新版在线下载 | 精品欧美国产一区二区三| 三级男女做爰猛烈吃奶摸视频| 国产黄色小视频在线观看| 亚洲人成网站在线观看播放| 亚洲18禁久久av| 国产乱人偷精品视频| 欧美bdsm另类| 亚洲精品第二区| 少妇熟女欧美另类| 网址你懂的国产日韩在线| av一本久久久久| 国产色婷婷99| 色综合亚洲欧美另类图片| 99久国产av精品| 2022亚洲国产成人精品| 亚洲国产色片| 欧美三级亚洲精品| 欧美日韩国产mv在线观看视频 | 国产伦精品一区二区三区四那| 99热网站在线观看| 免费看日本二区| 只有这里有精品99| 国产麻豆成人av免费视频| 午夜福利在线观看免费完整高清在| 天天躁日日操中文字幕| 国产成人freesex在线| 亚洲av电影在线观看一区二区三区 | 欧美日本视频| 丰满乱子伦码专区| 青春草视频在线免费观看| 色吧在线观看| 高清在线视频一区二区三区| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 国产亚洲5aaaaa淫片| 97精品久久久久久久久久精品| 欧美精品一区二区大全| 男人爽女人下面视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影院精品99| 国产激情偷乱视频一区二区| 午夜激情久久久久久久| 精品久久久噜噜| 亚洲精品乱久久久久久| 亚洲天堂国产精品一区在线| 久久99热这里只有精品18| 九九爱精品视频在线观看| 久久国产乱子免费精品| 国产单亲对白刺激| 美女大奶头视频| 啦啦啦啦在线视频资源| 91aial.com中文字幕在线观看| 国产视频内射| 中文欧美无线码| 三级毛片av免费| 久久热精品热| 狂野欧美白嫩少妇大欣赏| 国产乱人视频| 51国产日韩欧美| 久久热精品热| 亚洲成人久久爱视频| 永久免费av网站大全| 国产精品嫩草影院av在线观看| 全区人妻精品视频| 最近手机中文字幕大全| 国产熟女欧美一区二区| 免费观看的影片在线观看| av.在线天堂| 国内精品宾馆在线| 日本黄大片高清| 久久久久网色| 1000部很黄的大片| 水蜜桃什么品种好| 国产乱人视频| 性色avwww在线观看| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 啦啦啦啦在线视频资源| 成人亚洲精品一区在线观看 | 国产精品久久久久久久久免| 国产老妇女一区| 一级a做视频免费观看| 三级国产精品片| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| a级毛色黄片| av天堂中文字幕网| 久久人人爽人人爽人人片va| 久久久久久久大尺度免费视频| 欧美日韩一区二区视频在线观看视频在线 | 一个人看视频在线观看www免费| 亚洲熟妇中文字幕五十中出| 丝瓜视频免费看黄片| 国产亚洲5aaaaa淫片| 简卡轻食公司| 精品不卡国产一区二区三区| 高清欧美精品videossex| 国产成人精品久久久久久| 亚洲精品成人av观看孕妇| 日韩人妻高清精品专区| 人妻系列 视频| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 在线观看一区二区三区| 欧美成人午夜免费资源| 国产精品国产三级国产av玫瑰| 丝袜喷水一区| 又粗又硬又长又爽又黄的视频| 日韩欧美一区视频在线观看 | 亚洲色图av天堂| 国产成人a∨麻豆精品| 最近中文字幕2019免费版| 国内精品宾馆在线| 男女啪啪激烈高潮av片| 欧美3d第一页| eeuss影院久久| 内地一区二区视频在线| 国产精品国产三级国产av玫瑰| 精品一区二区三卡| 国产精品爽爽va在线观看网站| 亚洲性久久影院| 搡老妇女老女人老熟妇| .国产精品久久| 日本一二三区视频观看| 久久热精品热| 超碰97精品在线观看| 少妇丰满av| 直男gayav资源| 国产精品人妻久久久影院| 成人一区二区视频在线观看| 日韩强制内射视频| 少妇熟女aⅴ在线视频| 一区二区三区免费毛片| 永久网站在线| 51国产日韩欧美| 国产一区二区三区av在线| 99热这里只有精品一区| 国产 亚洲一区二区三区 | 久久久久久久亚洲中文字幕| 久久精品综合一区二区三区| 国产午夜精品论理片| 亚洲aⅴ乱码一区二区在线播放| 大陆偷拍与自拍| 成年人午夜在线观看视频 | 成人av在线播放网站| 亚洲av国产av综合av卡| 亚洲国产成人一精品久久久| 在线免费观看的www视频| 日韩一区二区视频免费看| 美女xxoo啪啪120秒动态图| 大香蕉久久网| 亚洲精品国产av成人精品| 国产爱豆传媒在线观看| 亚洲精品中文字幕在线视频 | 精品久久久久久久末码| 精品熟女少妇av免费看| 非洲黑人性xxxx精品又粗又长| 免费观看a级毛片全部| 极品少妇高潮喷水抽搐| 一级毛片电影观看| 天天一区二区日本电影三级| 婷婷色综合www| 男女啪啪激烈高潮av片| 欧美极品一区二区三区四区| 五月玫瑰六月丁香| 国产伦理片在线播放av一区| 午夜福利在线观看吧| 大话2 男鬼变身卡| 女人被狂操c到高潮| 精品久久久久久电影网| 久久这里有精品视频免费| 青青草视频在线视频观看| 一个人看的www免费观看视频| 插阴视频在线观看视频| 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 国产精品无大码| 久久久久久久国产电影| 国产精品人妻久久久影院| 国产欧美日韩精品一区二区| av在线天堂中文字幕| 亚洲欧美日韩东京热| 亚洲国产精品成人综合色| 欧美区成人在线视频| 日韩亚洲欧美综合| 男的添女的下面高潮视频| 人妻系列 视频| 亚洲成人中文字幕在线播放| 丝瓜视频免费看黄片| 日韩欧美三级三区| 欧美潮喷喷水| 国产综合精华液| 精品酒店卫生间| 亚洲综合精品二区| 日韩欧美 国产精品| 久久人人爽人人片av| 哪个播放器可以免费观看大片| 别揉我奶头 嗯啊视频| 亚洲av免费在线观看| 精品久久久久久久人妻蜜臀av| 国产精品女同一区二区软件| 一个人看的www免费观看视频| 国产亚洲av嫩草精品影院| 边亲边吃奶的免费视频| 国产69精品久久久久777片| 久久精品久久久久久噜噜老黄| 在线观看人妻少妇| 丰满乱子伦码专区| 国内精品一区二区在线观看| 亚洲综合精品二区| 人人妻人人澡欧美一区二区| 乱码一卡2卡4卡精品| 舔av片在线| 大陆偷拍与自拍| 一级黄片播放器| 久久久成人免费电影| 波多野结衣巨乳人妻| 91精品伊人久久大香线蕉| 成人毛片a级毛片在线播放| 18禁动态无遮挡网站| 国产亚洲91精品色在线| 成人高潮视频无遮挡免费网站| 99久久精品国产国产毛片| 街头女战士在线观看网站| 午夜久久久久精精品| 成人特级av手机在线观看| h日本视频在线播放| 亚洲四区av| 亚洲熟女精品中文字幕| 免费少妇av软件| 少妇裸体淫交视频免费看高清| av.在线天堂| 国产亚洲一区二区精品| 免费av毛片视频| 午夜视频国产福利| 午夜福利在线观看吧| 亚洲精品视频女| av黄色大香蕉| 免费大片18禁| 国产免费福利视频在线观看| 特大巨黑吊av在线直播| 亚洲欧洲日产国产| 国产老妇女一区| 国产中年淑女户外野战色| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 亚洲高清免费不卡视频| 久久久午夜欧美精品| 欧美日韩亚洲高清精品| 亚洲av.av天堂| 色5月婷婷丁香| 亚洲四区av| 美女主播在线视频| 亚洲丝袜综合中文字幕| 国产精品久久久久久av不卡| 汤姆久久久久久久影院中文字幕 | 啦啦啦啦在线视频资源| 国产精品一区二区三区四区久久| 人妻制服诱惑在线中文字幕| 精品人妻熟女av久视频| 菩萨蛮人人尽说江南好唐韦庄| 在线播放无遮挡| 99久久精品国产国产毛片| 97人妻精品一区二区三区麻豆| 精品国内亚洲2022精品成人| 国产成人a∨麻豆精品| freevideosex欧美| 十八禁国产超污无遮挡网站| 欧美日韩视频高清一区二区三区二| 三级国产精品欧美在线观看| 99热这里只有精品一区| 搡老乐熟女国产| 日本-黄色视频高清免费观看| 又爽又黄无遮挡网站| 国产一区亚洲一区在线观看| 国产成人精品福利久久| 在线免费观看不下载黄p国产| 亚洲精品影视一区二区三区av| 男女边摸边吃奶| 高清在线视频一区二区三区| 在线观看美女被高潮喷水网站| 欧美xxⅹ黑人| 久久久久久久大尺度免费视频| 久久精品综合一区二区三区| 熟女电影av网| 特大巨黑吊av在线直播| a级毛片免费高清观看在线播放| 夫妻性生交免费视频一级片| 成年免费大片在线观看| 亚洲av福利一区| 成人亚洲精品一区在线观看 | 麻豆国产97在线/欧美| 夫妻性生交免费视频一级片| 欧美丝袜亚洲另类| 日韩三级伦理在线观看| 精品酒店卫生间| 人妻系列 视频| 又粗又硬又长又爽又黄的视频| 亚洲经典国产精华液单| 国产精品国产三级国产专区5o| 五月玫瑰六月丁香| 久久久久久久久久久免费av| 天堂俺去俺来也www色官网 | 狠狠精品人妻久久久久久综合| 狂野欧美激情性xxxx在线观看| 天堂中文最新版在线下载 | 亚洲三级黄色毛片| 国产免费视频播放在线视频 | 午夜久久久久精精品| 91在线精品国自产拍蜜月| 亚洲av中文av极速乱| 欧美一级a爱片免费观看看|