• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-efficiency reflection phase tunable metasurface at near-infrared frequencies*

    2021-05-24 02:23:44CeLi李策WeiZhu朱維ShuoDu杜碩JunjieLi李俊杰andChangzhiGu顧長(zhǎng)志
    Chinese Physics B 2021年5期
    關(guān)鍵詞:李俊

    Ce Li(李策), Wei Zhu(朱維), Shuo Du(杜碩), Junjie Li(李俊杰),4, and Changzhi Gu(顧長(zhǎng)志),5,?

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,CAS Key Laboratory of Vacuum Physics,University of Chinese Academy of Sciences,Beijing 100049,China

    3Key Laboratory of Space Applied Physics and Chemistry,Ministry of Education and Department of Applied Physics,

    School of Science,Northwestern Polytechnical University,Xi’an 710129,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    5Collaborative Innovation Center of Quantum Matter,Beijing 100871,China

    Keywords: active metasurface,phase change materials,phase modulation

    1. Introduction

    Metasurfaces are artificially constructed arrays of nanostructured elements with subwavelength thickness arranged in a periodic or quasi-periodic form.[1,2]Due to their unique characteristics of low dimension,simple fabrication methods,and easy on-chip integration,metasurfaces have been widely used in many fields since they were proposed.[3]Metasurfaces can not only effectively control the amplitude of the electromagnetic wave to realize perfect absorption,but also precisely manipulate the phase of electromagnetic waves,so that they have new application values in beam steering,[4–6]electromagnetic lens,[7–10]holographic imaging,[11–14]etc.

    As a specific branch of plasmonic metasurfaces, gapsurface plasmon (GSP) metasurfaces,[15]which consist of a subwavelength thin dielectric spacer sandwiched between an optically thick metal film and arrays of metal subwavelength nanostructures, can make the reflection phase of the electromagnetic wave changes a full 360°range,[16]greatly improving the phase control ability of the metasurfaces and providing a foundation for the application of functional metadevices based on phase manipulation. With the combination of GSP metasurfaces of geometric phase,[5,17]360°gradient change of reflected phase at the same frequency can be realized through the method of rotating the metasurface element structure. However, this method is only applicable to circularly polarized incident light thus has great limitations in applications.For the case of the linearly polarized incident wave,there are mainly two different methods to control the reflection phase with the help of GSP metasurfaces. First,the shape and size of the top metal structures are designed and optimized with the dielectric spacer and metal film remain unchanged,so as to realize the gradient change of reflection phase of 360°.For example, in 2013, Bozhevolnyi et al. proposed that meta nanobrick and nanocross elements could change the reflected phase within 360°of the incident linear polarization of TM and TE simultaneously through size optimization and combination, thus obtaining the metasurface with abnormal reflection function.[6]However, this method has rigorous requirements on the sizes of metal structures, which brings difficulties to the design and experiment. Furthermore, the designed devices have relatively single functions. The other method is to change the reflection phase by active modulation.[18–22]For example, Park et al. proposed in 2016 that by modulating the carrier concentrations of ITO dielectric layer with bias voltage,GSP metasurfaces with Au nanostripesarray top structures can achieve the modulation effects with reflective phase over 180°.[18]In 2018,Atwater et al. further increased the freedom of active modulation by introducing the dual-gate method and improved the regulation of reflected phase angle to more than 300°, further satisfying the practical needs.[19]The approach based on active modulation to realize reflection phase tuning,which is no longer dependent on complex structural design,has higher flexibility and provides the possibility to realize multi-function device integration.[20]

    The existing reflection phase control based on metasurface active modulation has extended the control range by more than 180°,but it usually comes at the expense of the reflection,and at the same time, the reflection changes obviously with the phase modulation, making the work of the metasurfaces inefficient. To solve these problems, in this paper, an active GSP metasurface based on phase change material Ge2Sb2Te5(GST)has been proposed.By using the characteristics of large discrepancies of permittivities before and after the phase transition and stable intermediate states of GST,[23,24]the wide and continuous reflection phase modulation in the near-infrared has been achieved. At the same time, high and stable reflection is guaranteed by precious control of the structure sizes.In addition, the coupled-mode theory (CMT)[25,26]has been introduced to make full explanations on these modulation effects.

    2. Results and discussion

    The schematic of the reflection phase tunable GSP metasurface is shown in Fig. 1(a). The total structure employed in this work has a typical metal-dielectric-metal configuration which consists of an Au grating array stacked above a 20 nm thick SiO2protective layer and a 60 nm GST active dielectric layer and 100-nm-thick bottom Au mirror layer. The Au grating structure has a period of p=360 nm with width w=120 nm and thickness t=50 nm.

    The designed metasurface was implemented by nanofabrication. To begin with,a 100-nm-thick Au film and a 60-nmthick GST film were deposited successively on Si substrate by direct current (DC) and radio frequency (RF) magnetron sputtering (MS) methods. The deposition of GST was performed from a synthesized single target with the growth pressure at 1 mTorr by a throttle valve with the argon (Ar) gas flow rate of 10 sccm and growth power at 100 W.Both the Au film and the GST film were grown at room temperature, and thus the resulting GST exhibited an amorphous state. Then a 20 nm SiO2layer was deposited as the protective layer using a plasma-enhanced chemical vapor deposition (PECVD)system. To avoid the phase change of GST caused by regular high growth temperature,the deposition temperature was controlled at 110°. The pattern of grating structures was obtained by the electron-beam lithography(EBL)technique. After development,3 nm Cr and 50 nm Au film were deposited using electron-beam evaporation(EBE),followed by a lift-off procedure in 60°acetone. The total array size is 120μm×120μm.Figure 1(b) shows the scanning electron microscope (SEM)image of the fabricated metasurface for amorphous GST.

    Fig.1. (a)Schematic of the reflection phase tunable GSP metasurface and the incident light polarization configuration. (b) SEM image of the fabricated metasurface.

    Numerical simulations were carried out by commercial full-wave simulation software CST Microwave Studio based on finite integration method to calculate the optical responses of the reflection phase tunable GSP metasurface. The simulation domain included one unit cell of the structures with period boundaries in x- and y-directions, and an open boundary was imposed in the z-direction. Plane wave was imposed to the unit cell along the z-direction with x-polarization(as shown in Fig.1(a)). The permittivity of Au was described by the Drude model with plasma frequency ωp=1.37×1016rad/s and collision frequency γ=3×4.08×1013s?1.[27,28]The dispersion relationships of GST and SiO2were obtained by ellipsometer.

    It is worth noting that besides stable amorphous and crystalline states, GST films in amorphous states can also be nucleated gradually to produce stable intermediate states by increasing heating temperature. The GST film in intermediate states consists of different proportions of amorphous and crystalline molecules, and the effective permittivities εeff(λ) of the intermediate states can be determined by Lorentz–Lorenz relation[24,29]

    where m denotes the crystallization fraction of the GST film ranging from 0% to 100%, εa?GST(λ) and εc?GST(λ) represent the permittivities of GST in the amorphous and crystalline states,respectively.

    The reflection spectra of the fabricated metasurface were measured by a Fourier transform infrared spectrometer(FTIR)with a KBr beam splitter. To be converted to the crystalline state gradually, a homemade in-situ heating device was combined with the FTIR.During the experiment,the heating temperature keeps increasing.When the temperature rises to 120°,the reflection of the metasurface began to redshift. Therefore,120°is selected as the starting point of GST phase transition.After that,the heating temperature was increased with the step of 10°. When the temperature rose above 200°,the reflection curve would not change with the increase of temperature,and in this way,the maximum temperature was determined as 200°during the measurement. In addition,in order to maintain the consistency of the experimental results, the heating time of each temperature was 2 minutes.

    The comparison of reflection spectra obtained by experimental and simulated results is shown in Fig. 2. It can be observed that,within 120 THz–240 THz,the metasurface has only one response.The simulated results show that with the increase of GST crystallization fraction,the resonant frequency redshifts from 182 THz to 150 THz gradually. Accordingly,a similar redshift phenomenon can also be observed with the increase of heating temperature in the experimental results. In addition, the reflection of the metasurface also changes with the redshift of the resonant frequency. With the increase of GST crystallization fraction,the reflection decreases from 0.3 at 182 THz to near 0 at 150 THz. The corresponding reflection in the experimental results when GST is fully crystallized is less than 0.1. The simulated results agree well with the experimental data.

    Fig. 2. The experimental and simulated reflection spectra of the metasurface. (a) Simulated reflection spectra with the increase of crystallization fraction of GST film. (b)Experimental reflection spectra with the increase of heating temperature.

    The reflection phase was still obtained with the help of the FTIR.The metasurface was illuminated with a broadband infrared light source linearly polarized at a 45°-tilt angle with respect to the grating structure. The reflected signal intensity was measured after an analyzer with a deflection angle θ. Combined with the numerical fitting method,the spectra of the reflection phase with frequencies at various temperatures can be obtained(see supporting information).Figures 3(a)and 3(b)show the experimental results of reflection phase spectra at room temperature(RT),150°,200°,and the modulation effect of the reflection phase,namely the difference between the reflection phase at RT(amorphous GST)and at 200°(crystallized GST). The experimental results are compared with the simulated results,as shown in Figs.3(c)and 3(d).

    It can be intuitively observed from Fig. 3(b) that within the range of 150 THz–182 THz, significant reflection phase modulation has occurred, and the reflection phase difference Δ? is greater than 200°.

    Fig.3.The experimental and simulated reflection phase modulation effect of the tunable GSP metasurface. (a)The measured variation spectra of reflection phase with frequency under room temperature(black dashed line),150°(red dashed line),and 200° (blue dashed line). (b)The measured reflection phase difference between amorphous GST and crystallized GST. (c) The simulated variation spectra of reflection phase with frequency when GST is in the amorphous state (black dashed line), 50%-intermediate state (red dashed line), and crystallized state (blue dashed line). (d) The simulated reflection phase difference between amorphous GST and crystallized GST.

    Combined with the change of reflection and reflection phase, the modulation effects of the reflection phase tunable GSP metasurface are further analyzed. Figure 4 shows the spectra of reflection with the temperature at frequencies of 160 THz, 170 THz, 180 THz, and the corresponding reflection phase modulation effects.

    It can be seen from Fig. 4 that, with the phase transition of GST, different reflection modulation effects occur at different frequencies. At 160 THz, the reflection phase difference Δ? is more than 230°, but the modulation depth[30]of reflection is up to 82%. At 170 THz, a distinct change of reflection with temperature can still be observed, and the modulation depth is 55%. But the situation improves significantly at 180 THz, when the reflection phase difference remains above 200°, while the modulation depth of reflection decreases to 16%,and the reflection remains around 0.4,basically unchanged with temperature. This indicates that the loss of the whole metasurface is reduced and the work efficiency is significantly improved.

    Fig. 4. Modulation effects of the reflection amplitude and phase at various frequencies of the tunable GSP metasurface. Panels (a), (b), and (c)represent the variation spectra of reflection with temperature and the corresponding reflection phase modulation effects at 160 THz,170 THz,and 180 THz,respectively.

    In order to further study the reflection phase modulation mechanism, the CMT is introduced, in which the GSP metasurface is described by a one-port single-mode resonator model. According to the CMT,the complex reflection coefficient r of such model is[26,31]

    where Γrand Γadenote the loss caused by absorption within the resonator and the loss resulting from radiation to the far field.ω0represents the resonant circular frequency of the metasurface. For the one-port single-mode resonator model, the relative amplitudes of Γrand Γadetermine the functionality of the GSP metasurface.[16]When Γr>Γa, the intrinsic absorption is weak and the resonator is overcoupling, the reflection phase Δ? can cover a full 360°variation. On the contrary,in the Γr<Γaregion, the resonator transitions to undercoupling state, where the variation of Δ? is less than 180°across the resonance. When Γr=Γa, the absorption of this model at its resonant frequency is A=1 ?|r|2=1, which behaves as a perfect absorber.[32,33]With the increase of GST crystallization fraction,the relative amplitudes of Γrand Γawill change,which will cause the transition of the GSP metasurface working states.

    According to Fig. 3(c) and combined with Eq. (1), the value of radiation loss Γrand intrinsic loss Γaat different GST crystallization fractions can be calculated, as shown in Fig. 5(a). It can be observed that with the increase of GST crystallization fraction, radiation loss Γrgradually decreases,and intrinsic loss Γagradually increases. When GST is completely transformed into the crystallized state,Γr=Γa,and the GSP metasurface passes from the overcoupling state to the critical coupling state. In the process of GST crystallization,most of the GSP metasurface is in the overcoupling state with a large phase variation range, so a dramatic reflection phase modulation effect can be realized. The insert in Fig. 5(a)shows the magnetic field distribution in the cross section of the structure at the resonance of amorphous GST, which is a typical GSP mode resonance.[34]The evolution process of the working states of the GSP metasurface can be seen more intuitively by Smith curves,which show traces of r on the complex plane as frequency varies from 0 to ∞.Figure 5(b)displays the Smith curves of the GSP metasurface with three GST crystallization states, which are amorphous state, 50%crystalline state,and fully crystalline state,respectively. When GST is in the amorphous state,Γr>Γa,Δ? approaches to 360°since the Smith curve covers four quadrants. In the case of a fully crystalline state,the Smith curve passes through the origin,which proves the transition from an overcoupling state to a critical coupling state.

    Fig. 5. (a) Spectra of Γr and Γa with GST crystallization fraction (inset:the magnetic field distribution in the cross section of the structure at the resonance of amorphous GST).(b)The Smith curves of the reflection coefficients with three GST crystallization states.

    3. Conclusion and perspectives

    In conclusion, a reflection phase tunable GSP metasurface in the near-infrared range has been proposed in this letter.This structure achieves a significant reflection phase modulation while realizing a stable reflection. Through the precise control of the thickness of GST dielectric layer and metal grating structure sizes,the dynamic continuous modulation effect with reflection phase greater than 200°of the GSP metasurface in the 150 THz–182 THz range was finally realized experimentally. Especially in the frequency of 180 THz, the reflection is larger than 0.38 and the modulation depth is only 16%,which greatly reduces the loss of the metasurface and shows a more practical application prospect of the structure in wavefront shaping. In addition,the CMT is introduced to study the modulation mechanism,which proves that the phase transition of GST mainly changes the working mode of the GSP metasurface,realizing the transition from the overcoupling state to the critical coupling state.In the case of the overcoupling state,the metasurface has the ability to continuously change the reflection phase by 360°, which is the basis for the realization of large angle reflection phase tunability.

    猜你喜歡
    李俊
    我的削筆刀
    龍門陣(2024年5期)2024-06-20 15:15:52
    Design method of reusable reciprocal invisibility and phantom device
    李俊杰作品
    大眾文藝(2021年5期)2021-04-12 09:31:08
    吹畫(huà)
    李俊儒論
    李俊彥
    A Brief Analysis On How To Improve Students’ Participation Enthusiasm In Classroom
    李俊邑
    李俊邑佳作欣賞
    清代旗丁對(duì)漕糧的盜賣與摻雜
    古代文明(2014年3期)2014-08-07 00:18:31
    成人美女网站在线观看视频| www.色视频.com| 欧美精品国产亚洲| 亚洲最大成人手机在线| 亚洲欧美日韩高清在线视频| 亚洲色图av天堂| 人人妻,人人澡人人爽秒播| 日韩欧美三级三区| 毛片女人毛片| 免费在线观看日本一区| 1000部很黄的大片| 亚洲,欧美精品.| 中国美女看黄片| 99久久精品国产亚洲精品| 精品久久久久久久久久免费视频| 99久久九九国产精品国产免费| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 最后的刺客免费高清国语| 久久性视频一级片| 久久久色成人| 国产69精品久久久久777片| 欧洲精品卡2卡3卡4卡5卡区| 色视频www国产| 天天躁日日操中文字幕| 欧美乱妇无乱码| 三级毛片av免费| 蜜桃久久精品国产亚洲av| 丁香六月欧美| 波野结衣二区三区在线| 国产高清视频在线播放一区| av国产免费在线观看| 久久久成人免费电影| 精品久久久久久久久亚洲 | 国产高清三级在线| 国产午夜福利久久久久久| 精品国产三级普通话版| 亚洲欧美日韩卡通动漫| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 亚洲美女黄片视频| 日韩av在线大香蕉| av黄色大香蕉| 永久网站在线| 久久精品综合一区二区三区| 色视频www国产| 国产亚洲精品av在线| 99国产极品粉嫩在线观看| 亚洲无线在线观看| 成人av在线播放网站| 久久人妻av系列| 久久国产精品影院| 精品午夜福利在线看| 午夜免费激情av| 级片在线观看| 悠悠久久av| 哪里可以看免费的av片| 亚洲欧美激情综合另类| 757午夜福利合集在线观看| 97人妻精品一区二区三区麻豆| 欧美性猛交╳xxx乱大交人| 亚洲人成伊人成综合网2020| 欧美成人免费av一区二区三区| 久久久国产成人精品二区| 两个人的视频大全免费| 一级av片app| 亚洲天堂国产精品一区在线| 精品久久久久久久久久免费视频| 色综合婷婷激情| 亚洲经典国产精华液单 | 亚洲av成人av| 少妇裸体淫交视频免费看高清| 日韩高清综合在线| 无人区码免费观看不卡| 丰满人妻熟妇乱又伦精品不卡| 欧美最黄视频在线播放免费| 天天一区二区日本电影三级| 悠悠久久av| 亚洲片人在线观看| 国产三级黄色录像| 精品免费久久久久久久清纯| 国产av一区在线观看免费| .国产精品久久| 国产免费av片在线观看野外av| 久久午夜福利片| 午夜久久久久精精品| 日本成人三级电影网站| 精品久久国产蜜桃| 99热这里只有是精品在线观看 | 亚洲精品影视一区二区三区av| 99热这里只有精品一区| 国产一区二区三区视频了| 欧美精品国产亚洲| 首页视频小说图片口味搜索| 网址你懂的国产日韩在线| 91av网一区二区| 日韩av在线大香蕉| 脱女人内裤的视频| 午夜影院日韩av| 欧美成人性av电影在线观看| 国产 一区 欧美 日韩| 999久久久精品免费观看国产| 国产精品一区二区三区四区久久| 亚洲欧美激情综合另类| .国产精品久久| 99热只有精品国产| 非洲黑人性xxxx精品又粗又长| 91狼人影院| 亚洲国产精品sss在线观看| 亚洲av熟女| 亚洲男人的天堂狠狠| 欧美日韩综合久久久久久 | 噜噜噜噜噜久久久久久91| 99久久精品国产亚洲精品| 搞女人的毛片| 午夜a级毛片| 18美女黄网站色大片免费观看| 最近最新中文字幕大全电影3| 国内精品美女久久久久久| 国产黄a三级三级三级人| 美女 人体艺术 gogo| 欧美+日韩+精品| www日本黄色视频网| 中亚洲国语对白在线视频| 精品久久久久久久久久免费视频| 日韩欧美精品v在线| 51午夜福利影视在线观看| 日韩欧美在线二视频| 亚洲成人免费电影在线观看| 成人特级av手机在线观看| 国产视频内射| 亚洲专区国产一区二区| 欧美性猛交黑人性爽| 夜夜夜夜夜久久久久| 精品久久久久久久人妻蜜臀av| 国产av在哪里看| 日本免费a在线| 婷婷丁香在线五月| 精品一区二区三区视频在线观看免费| 欧美一区二区国产精品久久精品| 亚洲欧美精品综合久久99| 国产精品98久久久久久宅男小说| 国产高清视频在线观看网站| 国产单亲对白刺激| 白带黄色成豆腐渣| 欧美日韩中文字幕国产精品一区二区三区| 欧美极品一区二区三区四区| 亚洲专区国产一区二区| 欧美精品国产亚洲| 国产成人欧美在线观看| 亚洲av二区三区四区| 黄片小视频在线播放| 国产成人av教育| 国产成+人综合+亚洲专区| av欧美777| 久久性视频一级片| netflix在线观看网站| 婷婷色综合大香蕉| 99精品久久久久人妻精品| 91九色精品人成在线观看| 亚洲片人在线观看| 国产淫片久久久久久久久 | 亚洲熟妇中文字幕五十中出| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线美女| а√天堂www在线а√下载| 中文字幕人妻熟人妻熟丝袜美| 悠悠久久av| 观看美女的网站| 尤物成人国产欧美一区二区三区| 日韩精品青青久久久久久| 岛国在线免费视频观看| 亚洲三级黄色毛片| 91av网一区二区| 亚洲五月婷婷丁香| 韩国av一区二区三区四区| 一区福利在线观看| 国产精品美女特级片免费视频播放器| 伊人久久精品亚洲午夜| 亚洲国产欧洲综合997久久,| 美女高潮的动态| 国产视频一区二区在线看| 久久久久久大精品| 直男gayav资源| 一进一出抽搐gif免费好疼| 国产黄色小视频在线观看| 观看免费一级毛片| 精品久久久久久,| 中亚洲国语对白在线视频| 国产精品野战在线观看| 久久99热这里只有精品18| 别揉我奶头~嗯~啊~动态视频| 内射极品少妇av片p| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av| 97超视频在线观看视频| 欧美成人一区二区免费高清观看| 狂野欧美白嫩少妇大欣赏| 乱人视频在线观看| 久99久视频精品免费| 波多野结衣巨乳人妻| 午夜福利在线在线| 深爱激情五月婷婷| 三级毛片av免费| 天堂影院成人在线观看| h日本视频在线播放| 国内揄拍国产精品人妻在线| 欧美日韩乱码在线| 久久精品国产99精品国产亚洲性色| 日韩国内少妇激情av| 婷婷色综合大香蕉| 岛国在线免费视频观看| 如何舔出高潮| 国产精品乱码一区二三区的特点| 美女大奶头视频| 51午夜福利影视在线观看| 亚洲精品456在线播放app | 国产在视频线在精品| 成人国产一区最新在线观看| 亚洲成av人片免费观看| 欧美乱色亚洲激情| 亚洲精品粉嫩美女一区| 亚洲人成网站在线播| 午夜福利高清视频| 欧美zozozo另类| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看| 国产69精品久久久久777片| 亚洲精品在线美女| 最近最新免费中文字幕在线| 久久精品国产亚洲av涩爱 | 91在线观看av| 长腿黑丝高跟| 国产 一区 欧美 日韩| 日韩欧美精品v在线| 久9热在线精品视频| 国产精品国产高清国产av| 国产精品日韩av在线免费观看| 99热这里只有精品一区| 久久国产乱子免费精品| x7x7x7水蜜桃| 麻豆久久精品国产亚洲av| 亚洲七黄色美女视频| 国产精品野战在线观看| 精品午夜福利在线看| 午夜福利成人在线免费观看| 午夜免费成人在线视频| 久9热在线精品视频| 国产黄片美女视频| 日本免费a在线| 啦啦啦韩国在线观看视频| 少妇被粗大猛烈的视频| 美女高潮的动态| 我的老师免费观看完整版| 日本a在线网址| 免费在线观看日本一区| 亚洲av美国av| 非洲黑人性xxxx精品又粗又长| 全区人妻精品视频| 最近最新免费中文字幕在线| 少妇熟女aⅴ在线视频| 女生性感内裤真人,穿戴方法视频| 久久伊人香网站| av在线观看视频网站免费| 久久午夜亚洲精品久久| 中文亚洲av片在线观看爽| 亚洲av第一区精品v没综合| 天堂av国产一区二区熟女人妻| 午夜福利欧美成人| 美女高潮的动态| 91久久精品电影网| 国产精品嫩草影院av在线观看 | 国内精品美女久久久久久| 亚洲国产精品成人综合色| 免费av观看视频| 男女床上黄色一级片免费看| 观看免费一级毛片| 国产91精品成人一区二区三区| 亚洲精品456在线播放app | 噜噜噜噜噜久久久久久91| 亚洲在线自拍视频| 国产精品国产高清国产av| 精品久久国产蜜桃| 中文字幕久久专区| 亚洲av免费在线观看| 特大巨黑吊av在线直播| 国产午夜精品久久久久久一区二区三区 | 可以在线观看毛片的网站| 国产精品久久久久久精品电影| 国产69精品久久久久777片| 老熟妇仑乱视频hdxx| 毛片一级片免费看久久久久 | 亚洲国产色片| 亚洲aⅴ乱码一区二区在线播放| 国产高清三级在线| 日韩欧美 国产精品| 成人特级av手机在线观看| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 亚洲美女视频黄频| 久9热在线精品视频| 欧美精品啪啪一区二区三区| 国产精品免费一区二区三区在线| x7x7x7水蜜桃| 99久久九九国产精品国产免费| 亚洲国产欧洲综合997久久,| 国产精品伦人一区二区| 天天一区二区日本电影三级| 国产成年人精品一区二区| 日本撒尿小便嘘嘘汇集6| 网址你懂的国产日韩在线| 久久精品影院6| 欧美中文日本在线观看视频| 午夜两性在线视频| 欧美日韩中文字幕国产精品一区二区三区| 91麻豆av在线| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 欧美另类亚洲清纯唯美| av在线蜜桃| 深爱激情五月婷婷| 别揉我奶头 嗯啊视频| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 亚洲男人的天堂狠狠| 不卡一级毛片| 嫩草影院精品99| 国产v大片淫在线免费观看| 亚洲第一区二区三区不卡| 欧美一区二区国产精品久久精品| 亚洲第一欧美日韩一区二区三区| av天堂中文字幕网| 亚洲av免费在线观看| 亚洲欧美激情综合另类| 国产乱人伦免费视频| 亚洲18禁久久av| 欧美3d第一页| 亚洲中文字幕日韩| 国产三级黄色录像| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址| 舔av片在线| 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 欧美日韩乱码在线| 久久人妻av系列| 久久人人精品亚洲av| 精品久久久久久久末码| 美女被艹到高潮喷水动态| 最好的美女福利视频网| 欧美xxxx黑人xx丫x性爽| 欧美高清成人免费视频www| 九九久久精品国产亚洲av麻豆| 亚洲av第一区精品v没综合| 久久久久久久亚洲中文字幕 | 夜夜爽天天搞| 日本一本二区三区精品| 男人舔奶头视频| 最近最新免费中文字幕在线| 免费人成在线观看视频色| 午夜影院日韩av| 日本一二三区视频观看| 99久久精品一区二区三区| 国产高清激情床上av| 欧美成狂野欧美在线观看| 国产精品99久久久久久久久| 黄片小视频在线播放| 久久久国产成人精品二区| 日本黄色视频三级网站网址| 最近视频中文字幕2019在线8| 久久精品国产亚洲av天美| 国产极品精品免费视频能看的| 亚洲最大成人av| 国产精品久久电影中文字幕| 99久久久亚洲精品蜜臀av| 国产精品久久久久久人妻精品电影| 九色国产91popny在线| 国产野战对白在线观看| 亚洲精品影视一区二区三区av| av专区在线播放| 国内揄拍国产精品人妻在线| 亚洲人成电影免费在线| 99久久九九国产精品国产免费| 国产成人福利小说| 免费黄网站久久成人精品 | 给我免费播放毛片高清在线观看| 欧美日本视频| www.色视频.com| 久久久国产成人精品二区| 在线观看66精品国产| 亚洲最大成人av| 又爽又黄a免费视频| 久久精品人妻少妇| 老鸭窝网址在线观看| 中文字幕av在线有码专区| 国产高清激情床上av| 1024手机看黄色片| 少妇熟女aⅴ在线视频| 欧美性猛交黑人性爽| 乱码一卡2卡4卡精品| 深夜a级毛片| 麻豆成人午夜福利视频| 熟女电影av网| av在线天堂中文字幕| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播| 日韩欧美精品免费久久 | 五月玫瑰六月丁香| 亚洲精品456在线播放app | 波多野结衣高清无吗| 一本久久中文字幕| 国产精品乱码一区二三区的特点| 亚洲av免费在线观看| 色综合欧美亚洲国产小说| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| 国内精品久久久久精免费| av欧美777| 国产视频内射| 91久久精品电影网| av视频在线观看入口| 久久久精品大字幕| 久久精品久久久久久噜噜老黄 | 国产三级黄色录像| 一本精品99久久精品77| 久久精品人妻少妇| 99riav亚洲国产免费| 久久精品国产亚洲av涩爱 | 黄色视频,在线免费观看| 国产色爽女视频免费观看| 久久国产乱子免费精品| 精品熟女少妇八av免费久了| 精品不卡国产一区二区三区| 我要搜黄色片| 美女被艹到高潮喷水动态| 免费高清视频大片| 日本在线视频免费播放| eeuss影院久久| 国产精品美女特级片免费视频播放器| 国产白丝娇喘喷水9色精品| 午夜福利免费观看在线| 九色国产91popny在线| 亚洲精品成人久久久久久| 午夜激情欧美在线| 国产精品久久久久久久电影| 日本a在线网址| 国产精品人妻久久久久久| 男女床上黄色一级片免费看| 日本三级黄在线观看| 亚洲美女黄片视频| 国产成人aa在线观看| 又紧又爽又黄一区二区| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 国产精品99久久久久久久久| 久久亚洲精品不卡| 国产精品亚洲av一区麻豆| 嫩草影视91久久| 亚洲欧美日韩高清专用| 一级黄色大片毛片| 免费人成视频x8x8入口观看| 国产亚洲精品综合一区在线观看| 国产精品一区二区三区四区久久| 精品久久久久久久久久久久久| 少妇丰满av| 久久99热6这里只有精品| 国产精品一区二区性色av| 日本 欧美在线| 在线观看舔阴道视频| 哪里可以看免费的av片| 精品人妻一区二区三区麻豆 | 免费观看的影片在线观看| 欧美精品啪啪一区二区三区| 国产精品自产拍在线观看55亚洲| 日韩欧美国产在线观看| 国产精品av视频在线免费观看| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 少妇人妻精品综合一区二区 | 欧美绝顶高潮抽搐喷水| 久久久精品欧美日韩精品| 91在线观看av| 综合色av麻豆| 国产伦精品一区二区三区四那| 精品久久久久久久久av| 国产在线精品亚洲第一网站| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 午夜免费成人在线视频| 国产美女午夜福利| 每晚都被弄得嗷嗷叫到高潮| 亚洲五月婷婷丁香| 在线a可以看的网站| 一边摸一边抽搐一进一小说| 在线a可以看的网站| 久久午夜福利片| 激情在线观看视频在线高清| 嫩草影院新地址| 久久精品国产亚洲av涩爱 | 亚洲成人久久爱视频| 国产亚洲精品久久久久久毛片| 国产精品久久视频播放| 一个人看的www免费观看视频| 一个人观看的视频www高清免费观看| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 少妇高潮的动态图| 搡老妇女老女人老熟妇| 亚洲无线观看免费| 嫩草影院精品99| 搡老熟女国产l中国老女人| 亚洲最大成人av| 搡老熟女国产l中国老女人| 露出奶头的视频| 少妇的逼水好多| 长腿黑丝高跟| 午夜精品一区二区三区免费看| 97超视频在线观看视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 乱人视频在线观看| 中文资源天堂在线| 嫩草影院精品99| 中文资源天堂在线| 国产精品女同一区二区软件 | 搡老熟女国产l中国老女人| 亚洲性夜色夜夜综合| 在线播放无遮挡| 欧美性感艳星| 欧美绝顶高潮抽搐喷水| 亚洲av第一区精品v没综合| 亚洲va日本ⅴa欧美va伊人久久| 在线观看美女被高潮喷水网站 | 亚洲国产精品999在线| 老司机午夜福利在线观看视频| 精品人妻视频免费看| 99久国产av精品| 国内揄拍国产精品人妻在线| 国产精品久久电影中文字幕| 男女下面进入的视频免费午夜| 欧美国产日韩亚洲一区| 久久中文看片网| 国产在线精品亚洲第一网站| 99在线人妻在线中文字幕| 久久久久久久久中文| 亚洲av一区综合| 国产精品乱码一区二三区的特点| 91久久精品国产一区二区成人| av福利片在线观看| 久久久久国内视频| 动漫黄色视频在线观看| 欧美色视频一区免费| 亚洲精品亚洲一区二区| 久久99热6这里只有精品| 3wmmmm亚洲av在线观看| 高清在线国产一区| 国产成年人精品一区二区| 99热精品在线国产| 丰满乱子伦码专区| 搡老熟女国产l中国老女人| 狠狠狠狠99中文字幕| 日本熟妇午夜| 欧美成人a在线观看| 成人特级黄色片久久久久久久| 精品欧美国产一区二区三| 97碰自拍视频| 国产成人欧美在线观看| 搡女人真爽免费视频火全软件 | 欧美在线黄色| 精品人妻一区二区三区麻豆 | 久久伊人香网站| 久久国产乱子免费精品| 特大巨黑吊av在线直播| 国内揄拍国产精品人妻在线| 黄色丝袜av网址大全| 亚洲18禁久久av| 天堂av国产一区二区熟女人妻| 一个人免费在线观看的高清视频| 国产成+人综合+亚洲专区| 超碰av人人做人人爽久久| 国产精品乱码一区二三区的特点| 亚洲黑人精品在线| 国产精品1区2区在线观看.| 亚洲av成人精品一区久久| 哪里可以看免费的av片| 欧美日本视频| 91久久精品国产一区二区成人| 国产视频一区二区在线看| 成人性生交大片免费视频hd| 国产三级在线视频| 欧美成人免费av一区二区三区| 精品一区二区免费观看| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 高清毛片免费观看视频网站| 久久久久久九九精品二区国产| 日韩有码中文字幕| 人人妻人人澡欧美一区二区| 国产成人啪精品午夜网站| 精品午夜福利在线看| 日韩欧美在线乱码| 日韩av在线大香蕉| 999久久久精品免费观看国产| 一级黄片播放器| av欧美777| 免费在线观看日本一区| 制服丝袜大香蕉在线| 欧美日韩综合久久久久久 | 一区二区三区四区激情视频 | 长腿黑丝高跟| 中文资源天堂在线| 欧美成人一区二区免费高清观看| 欧美一区二区精品小视频在线| 久久精品国产99精品国产亚洲性色|