• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On extended state based Kalman filter for nonlinear time?varying uncertain systems with measurement bias

    2021-05-19 04:05:20XiaochengZhangWenchaoXueHaiTaoFang
    Control Theory and Technology 2021年1期

    Xiaocheng Zhang · Wenchao Xue · Hai?Tao Fang

    Abstract

    Keywords Extended state observer · Kalman filter · Uncertain dynamics · Measurement bias

    1 Introduction

    State estimation plays an important role in many control engineering problems. As is well known, the classical Luenberger observer [1] is a popular method for the state reconstruction of linear systems with exact model information. As for the linear systems with white noise, Kalman filter (KF)provides an optimal estimation in the mean square sense [2].However, model uncertainties and disturbances, which are ubiquitous in practice, are not considered in the original KF.In the past years, various state estimation methods have been proposed for systems with different kinds of model uncertainties. Generally speaking, these model uncertainties can be divided into process errors and sensor errors.

    For the process errors, it can be seen as the sum of an uncertain dynamics and a white-noise component. To deal with the influence of uncertain dynamics or external disturbances in actual systems, a number of observer design methods have been proposed. Extended state observer (ESO)[3-6] was proposed to estimate both the original state and the extended state lumping the unknown internal dynamics and external disturbances. In addition, Huang et al. [7, 8] and Zhang et al. [9, 10] have provided the analysis of nonlinear ESO and linear ESO, respectively. Moreover, the ESO-based control methods have been successfully used in several industrial sectors [11-15]. Additionally, treating the modeling uncertainties and external disturbances as a lumped term, uncertainty and disturbance estimator (UDE) based control has been shown to be effective in estimating model uncertainty and external disturbance [16, 17]. By adding the integral of the output estimation error to the observer,proportional integral observer (PIO) [18, 19] was proven to asymptotically estimate system state for a class of systems with bounded uncertainty. Disturbance observer (DOB) [20,21] and nonlinear disturbance observer (NDOB) [22-24] are also popular methods of estimating the external disturbance for linear systems and nonlinear systems, respectively. For the sake of attenuating the influence of stochastic noise, Bai et al. [25] and Xue et al. [26] have combined ESO and KF/KBF algorithms to estimate states of some stochastic systems with uncertain dynamics.

    On the other hand, sensor errors are often modeled more accurately as the sum of a white-noise component and a strongly correlated component. The correlated component can, for example, be random constant bias [27]. A common technique to deal with this case is to augment the state vector of the original problem by adding additional component to represent the unknown bias [28, 29]. In an attempt to reduce the computation cost of the augmented state Kalman filter (ASKF), Friedland [30] proposed the two-stage or separate-bias estimation to decouple the augmented filter into two parallel reduced-order filters. This idea has also been expanded for systems with bias modeled by first-order Markov process and systems with nonlinear dynamics [31,32]. Moreover, Zhang et al. [33] have analyzed the observability of the time-invariant system with both uncertain dynamics and measurement bias. In addition, for the unobservable biases, a design method for Kalman filter was given in [27]. Although the estimator with bias observation has drawn much research attention, little of these literatures considered the situation that a time-varying system when both uncertain dynamics and measurement bias present.

    Summarizing the above discussions, this paper will focus on the state estimation problem for a class of nonlinear timevarying stochastic systems with both uncertain dynamics and measurement bias which is more common in practice.Using the idea of extended state based Kalman filter (ESKF)in [25], a filter to estimate the original state, the uncertain dynamics and the measurement bias will be developed. The main contributions of this paper are threefold:

    (i) A novel ESKF algorithm is constructed to estimate the original state, the uncertain dynamics and the measurement bias for a class of nonlinear time-varying uncertain systems. Also, the consistency and the stability of the proposed filter are rigorously analyzed.

    (ii) ESKF is proven to achieve the convergence of the estimation error of measurement bias in the mean square sense, thereby eliminating the influence of the measurement bias on state estimation.

    (iii) It is shown that the estimation result of ESKF asymptotically converges to the minimum variance estimation while the uncertain dynamics approaches any constant vector.

    The remainder of the paper is organized as follows: The problem formulation is given in Sect. 2. Section 3 introduces the design method of ESKF in detail. Follow on, Sect. 4 analyzes the performance of ESKF. After that, an illustrative example is presented in Sect. 5, and finally some concluding remarks are given in Sect. 6.

    Notation Throughout this paper, the notations used are fairly standard. ?nrepresents then-dimensional Euclidean space and ?m×nstands for the space of realm×n-matrices.Imstands for the identity matrix of sizem, and 0m×nstands for the zero matrix ofmrows andncolumns and the sub-index will be occasionally removed for notational convenience if no

    2 Problem formulation

    Consider the following nonlinear time-varying stochastic system with both uncertain dynamics and unknown measurement bias:

    wherexk∈?nis the state to be estimated,yk∈?mis the measurement contaminated by unknown bias and noise,ξk∈?pis the uncertain dynamics,b∈?qis the unknown measurement bias,ωk∈?nandνk∈?mare zero mean white process noise with covariance matricesQkandRk,respectively.x0,b,ωkandνkare assumed independent.Ak∈?n×n,Bk∈?n×p,Ck∈?m×nandDk∈?m×qare all known matrices. System (1) can be seen as the extension of the system only with uncertain dynamics [25] and the system only with measurement bias [30].

    We aim to develop a state estimation algorithm to reconstruct the system state, despite of the uncertainties in dynamic model and measurement model. Compared with the completely irregular process noise and measurement noise, the uncertain dynamicsξk(xk) and unknown biasbare likely to be estimated. Therefore, it is an intuitive and simple idea to treatξk(xk) andbas augmented states being estimated and attenuated. As a result, system (1) can be equivalently transformed to

    For notational convenience, denote

    Formally, system (3) appears to be structurally similar to the standard Kalman filter model. Nevertheless, it is important to point out that due to the presence ofδk, the process error Δk(·) in system (3) is highly correlated with the system state, which is far beyond the white noise hypothesis required by the standard Kalman filter. Thus, how to deal with this uncertain correlation is a fundamental problem to be solved, which will be discussed in detail in the next section.

    To ensure the well-posedness of the state estimation problem, some assumptions on the system structure and the uncertain parts of the system are introduced.

    Remark 1Assumption 1 is a fundamental assumption to ensure the stability of KF typed algorithm. Besides, for the time-invariant case, the relationship between the observability of the augmented system (3) and the original system (1)is given in [33]. The requirement of Assumption 2 dose hold for any system obtained by discretizing a continuous-time system with bounded system matrix. Assumption 3 requires the covariance matrix sequences of process noise and measurement noise being upper bounded which is reasonable due to the power limitation of physical plants and sensors.Assumption 4 relies on the boundedness of the increment of the uncertain dynamics. Besides,Qδkcan be chosen according to the priori information of the physical limitations on the practical systems.

    3 Filter design

    Based on the augmented system (3), we consider the following filtering structure:

    whereandare the state prediction and state update at thekth moment, respectively. Moreover,Kkis the filter gain to be designed, such that the filter (4) can retain some basic features similar to the standard Kalman filter.

    One of the most fundamental properties of an estimator is that the true estimation errors should be consistent with their predicted statistics. Owing to this, the following definition is introduced.

    Definition 1 [34] Consider a random vectorx. Further, letbe an estimate ofxandPan estimate of the corresponding error covariance. Then, the pair () is said to be consistent if Consistency implies that the estimated error covariancePbe an upper bound of the true error covariance. This property becomes even more important for the filter with unknown cross correlation between process error and system state.Based on the concept of consistency, the following theorem provides a design principle for filter gainKk.

    Remark 3In (5b), a new parameterηkhas been introduced.It can be selected as a positive constant for simplicity or derived from the following optimization problem:

    Summarizing the above results, a complete solution to the problem of state estimation for system (1) or (3) is provided in Algorithm 1.

    images/BZ_146_1876_1125_1894_1160.png

    4 Filter performance analysis

    In this section, the performance of ESKF is studied in three aspects: (i) the boundedness of the estimation error; (ii) the convergence of measurement bias estimation; and (iii) the asymptotic optimality of ESKF under certain condition.

    Firstly, the following theorem shows that the estimation error of ESKF is bounded in the mean square sense.

    5 Numerical simulation

    To illustrate the effectiveness of the proposed ESKF, a harmonic oscillator system model from [37] will be considered.Specially, we consider system (1) with parameters:

    5.1 Case 1

    Figure 1 displays the estimation results of ESKF in Case 1. In this figure, the blue solid lines represent one sample of the system state, measurement bias and uncertain dynamics generated by system (1) with parameters(16) and the red dash lines are the corresponding estimation result of ESKF. As can be seen from this figure, the estimation results of ESKF can track the true state well. In addition, the estimation result of measurement bias converges on it true value, which validates Theorem 3. As for Figure 2, the red dash lines stand for the mean square errors (MSE) of the estimation result of ESKF obtained from 500 statistical experiments, and the blue solid lines represent the diagonal elements ofPkprovided by ESKF.It can be seen from this figure that the estimation error covariances of ESKF keep stable in the given period and the consistency remains, which validates Theorem 1 and Theorem 2. Figure 3 compares the estimation errors of Kalman filter, augmented state Kalman filter (ASKF)which treats measurement bias as an augmented state, and ESKF in Case 1. In this figure, the black solid lines, green solid lines and blue solid lines represent the maximum and minimum estimation errors obtained from 500 statistical experiments of KF, ASKF and ESKF, respectively.Moreover, the dark purple dash lines, pink dash lines and red dash lines are one sample from each 500 experiments.One can seen this figure, the estimation results of KF and ASKF both have biases affected by uncertain dynamics and measurement bias, but with the assistance of timely estimating uncertain dynamics and measurement bias,ESKF can eliminate such estimation bias. In addition,the estimation errors of ASKF are even greater than KF,which means that for the system with uncertain dynamics,the measurement bias cannot be estimated independently regardless of the uncertain dynamics.

    5.2 Case 2

    Fig. 1 One sample generated by system (1) with parameters (16)and the corresponding estimation result of ESKF in Case 1

    6 Conclusions

    This paper studied the state estimation problem for a class of nonlinear time-varying stochastic systems with both uncertain dynamics and unknown measurement bias.With the idea of timely estimating the uncertain dynamics and unknown bias, an extended state based filter structure was developed. In addition, by introducing the concept of consistency, a filter gain design method is developed. After that the stability of the proposed filter was analyzed. In addition, it is shown that the designed filter can realize the estimation of measurement bias. Moreover, the estimation result is also an asymptotically optimal estimation while the uncertain dynamics approaches any constant vector. A numerical simulation was also carried out to illustrate the effectiveness of proposed method.

    Fig. 2 The mean square errors of the estimation result of ESKF and the diagonal elements of Pk provided by ESKF in Case 1

    Fig. 3 The estimation errors of KF, ASKF and ESKF in Case 1

    Fig. 4 The difference between UUT and

    AcknowledgementsThis work was partly supported by National Key R&D Program of China (No. 2018YFA0703800), the National Nature Science Foundation of China (Nos. 11931018, 61633003-3) and the Beijing Advanced Innovation Center for Intelligent Robots and Systems(No. 2019IRS09).

    少妇 在线观看| 亚洲 国产 在线| 纯流量卡能插随身wifi吗| 天天影视国产精品| 女人久久www免费人成看片| 久久人妻熟女aⅴ| 麻豆av在线久日| e午夜精品久久久久久久| 成人18禁在线播放| 国产精品国产高清国产av | 少妇粗大呻吟视频| 亚洲 国产 在线| 亚洲国产精品sss在线观看 | 性色av乱码一区二区三区2| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| 亚洲九九香蕉| 夜夜夜夜夜久久久久| 国产1区2区3区精品| 亚洲精品在线美女| 天堂动漫精品| 麻豆国产av国片精品| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| 在线观看免费视频网站a站| 女人久久www免费人成看片| 久久久国产成人免费| 国产成人av激情在线播放| 亚洲欧美精品综合一区二区三区| 人妻 亚洲 视频| 亚洲av熟女| 精品欧美一区二区三区在线| 欧美性长视频在线观看| 天天影视国产精品| 母亲3免费完整高清在线观看| 久久久久视频综合| 757午夜福利合集在线观看| 亚洲美女黄片视频| 性色av乱码一区二区三区2| 久久久久久亚洲精品国产蜜桃av| 国产成+人综合+亚洲专区| 亚洲少妇的诱惑av| 中文字幕人妻丝袜制服| 大码成人一级视频| 激情在线观看视频在线高清 | 国产日韩一区二区三区精品不卡| 成人特级黄色片久久久久久久| 80岁老熟妇乱子伦牲交| 一边摸一边抽搐一进一小说 | 亚洲久久久国产精品| 日韩熟女老妇一区二区性免费视频| 99riav亚洲国产免费| 美女扒开内裤让男人捅视频| 国产精品一区二区精品视频观看| 日韩欧美一区二区三区在线观看 | 女人爽到高潮嗷嗷叫在线视频| 欧美+亚洲+日韩+国产| 99re6热这里在线精品视频| 视频在线观看一区二区三区| 欧美大码av| 女同久久另类99精品国产91| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| www.精华液| www日本在线高清视频| 涩涩av久久男人的天堂| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 99国产精品一区二区蜜桃av | 欧美黑人欧美精品刺激| 人人妻人人澡人人看| 日日摸夜夜添夜夜添小说| 老熟妇仑乱视频hdxx| 在线天堂中文资源库| 69精品国产乱码久久久| 9191精品国产免费久久| 亚洲国产毛片av蜜桃av| 国产精品 国内视频| 高清在线国产一区| 一区二区三区激情视频| 日韩熟女老妇一区二区性免费视频| 无人区码免费观看不卡| 一本大道久久a久久精品| 精品久久久久久,| 欧美激情高清一区二区三区| 亚洲综合色网址| 亚洲国产精品合色在线| 一进一出好大好爽视频| 欧美色视频一区免费| 国产99久久九九免费精品| 欧美 日韩 精品 国产| 成年人免费黄色播放视频| 一级作爱视频免费观看| 欧美乱码精品一区二区三区| 日韩精品免费视频一区二区三区| 欧美日韩成人在线一区二区| 亚洲色图综合在线观看| 亚洲美女黄片视频| 久久精品91无色码中文字幕| 久久久久久久久免费视频了| 老熟妇仑乱视频hdxx| 国产成人精品在线电影| 亚洲综合色网址| 黄色成人免费大全| 精品人妻熟女毛片av久久网站| 麻豆国产av国片精品| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 99精品在免费线老司机午夜| 免费看a级黄色片| 黄频高清免费视频| 国产片内射在线| 激情视频va一区二区三区| 国产欧美日韩精品亚洲av| 欧美日韩福利视频一区二区| 又黄又粗又硬又大视频| 他把我摸到了高潮在线观看| 国产熟女午夜一区二区三区| 亚洲av成人一区二区三| avwww免费| 99riav亚洲国产免费| 精品少妇久久久久久888优播| 午夜精品国产一区二区电影| 久久99一区二区三区| 夫妻午夜视频| 老熟妇仑乱视频hdxx| 精品国产一区二区三区久久久樱花| 久久久国产成人精品二区 | 在线观看免费视频网站a站| 狠狠狠狠99中文字幕| 国产精品永久免费网站| 国产高清视频在线播放一区| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 女同久久另类99精品国产91| 国产精品九九99| 在线av久久热| 一边摸一边做爽爽视频免费| 人妻一区二区av| 18禁美女被吸乳视频| 欧美国产精品一级二级三级| 久久人人97超碰香蕉20202| 精品国产一区二区三区久久久樱花| 人妻久久中文字幕网| 亚洲精品成人av观看孕妇| 99re6热这里在线精品视频| 极品人妻少妇av视频| 免费在线观看视频国产中文字幕亚洲| 午夜免费观看网址| 免费不卡黄色视频| 黑人巨大精品欧美一区二区mp4| 高清视频免费观看一区二区| 国产97色在线日韩免费| 国产亚洲一区二区精品| 色94色欧美一区二区| 中出人妻视频一区二区| 超碰97精品在线观看| 国产免费现黄频在线看| 国产精品 欧美亚洲| 精品国产亚洲在线| 少妇裸体淫交视频免费看高清 | 9191精品国产免费久久| 午夜福利一区二区在线看| 久久午夜亚洲精品久久| 国产精品久久久久成人av| 国产精品久久久人人做人人爽| 后天国语完整版免费观看| 韩国av一区二区三区四区| 久久亚洲精品不卡| 欧美色视频一区免费| 国产成+人综合+亚洲专区| 久久天堂一区二区三区四区| 久99久视频精品免费| 欧美人与性动交α欧美软件| 亚洲久久久国产精品| 最新在线观看一区二区三区| 亚洲三区欧美一区| 90打野战视频偷拍视频| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 51午夜福利影视在线观看| 国产日韩一区二区三区精品不卡| 亚洲国产毛片av蜜桃av| 久99久视频精品免费| 美女国产高潮福利片在线看| 19禁男女啪啪无遮挡网站| 久久久久视频综合| 午夜精品国产一区二区电影| 亚洲av熟女| 精品国内亚洲2022精品成人 | bbb黄色大片| 亚洲国产精品合色在线| 国产一区二区三区综合在线观看| 国产单亲对白刺激| 久久久久久人人人人人| 最近最新免费中文字幕在线| 午夜91福利影院| 久久精品国产亚洲av香蕉五月 | 黑人巨大精品欧美一区二区蜜桃| 嫁个100分男人电影在线观看| 看黄色毛片网站| av欧美777| 一级作爱视频免费观看| 午夜激情av网站| 亚洲精品国产精品久久久不卡| 久久久久视频综合| 国产无遮挡羞羞视频在线观看| 黄色视频,在线免费观看| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 女警被强在线播放| 一区二区三区激情视频| 国产成人精品无人区| 高潮久久久久久久久久久不卡| 涩涩av久久男人的天堂| 在线观看免费午夜福利视频| 777久久人妻少妇嫩草av网站| 黄色视频不卡| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av在线 | 纯流量卡能插随身wifi吗| 亚洲国产精品一区二区三区在线| 成人精品一区二区免费| 午夜福利,免费看| 中文字幕色久视频| 国产深夜福利视频在线观看| 黄片大片在线免费观看| 亚洲国产精品合色在线| 叶爱在线成人免费视频播放| xxxhd国产人妻xxx| 欧美激情 高清一区二区三区| 女人被狂操c到高潮| 亚洲精品在线美女| 日韩人妻精品一区2区三区| 美女福利国产在线| 黄色女人牲交| 国产亚洲欧美98| 色婷婷久久久亚洲欧美| 国产精品影院久久| 日韩视频一区二区在线观看| 欧美精品一区二区免费开放| 黄色丝袜av网址大全| 9热在线视频观看99| 精品一区二区三卡| cao死你这个sao货| 国产精品 欧美亚洲| 亚洲精品成人av观看孕妇| 欧美激情 高清一区二区三区| 最新的欧美精品一区二区| 正在播放国产对白刺激| 久热爱精品视频在线9| 亚洲视频免费观看视频| 亚洲熟女精品中文字幕| 亚洲 欧美一区二区三区| 国产深夜福利视频在线观看| 亚洲性夜色夜夜综合| 成人国语在线视频| 97人妻天天添夜夜摸| 久久天堂一区二区三区四区| 亚洲五月婷婷丁香| 国产精品秋霞免费鲁丝片| 免费久久久久久久精品成人欧美视频| 麻豆乱淫一区二区| 99国产综合亚洲精品| 操出白浆在线播放| 在线国产一区二区在线| 精品国产超薄肉色丝袜足j| avwww免费| 人成视频在线观看免费观看| 日韩欧美在线二视频 | 亚洲国产精品一区二区三区在线| 欧美国产精品一级二级三级| 妹子高潮喷水视频| 日韩熟女老妇一区二区性免费视频| 国产亚洲欧美98| 亚洲午夜精品一区,二区,三区| 久热这里只有精品99| 十八禁人妻一区二区| 啦啦啦视频在线资源免费观看| 午夜免费成人在线视频| 男女下面插进去视频免费观看| 在线播放国产精品三级| 黄色 视频免费看| videosex国产| 中文字幕色久视频| 一区二区三区激情视频| 国产成人影院久久av| 热99国产精品久久久久久7| 国产精品.久久久| 欧美大码av| 精品视频人人做人人爽| 久久久国产一区二区| 十八禁高潮呻吟视频| 午夜精品久久久久久毛片777| 精品少妇一区二区三区视频日本电影| 夜夜爽天天搞| 老司机在亚洲福利影院| 午夜亚洲福利在线播放| 久久精品国产综合久久久| 国产欧美日韩精品亚洲av| av天堂久久9| 啦啦啦免费观看视频1| 亚洲成a人片在线一区二区| 18禁观看日本| 亚洲人成电影免费在线| 亚洲专区中文字幕在线| av福利片在线| 每晚都被弄得嗷嗷叫到高潮| 久久午夜亚洲精品久久| 黄网站色视频无遮挡免费观看| 母亲3免费完整高清在线观看| 欧美性长视频在线观看| 免费观看人在逋| 在线观看免费高清a一片| 亚洲成人国产一区在线观看| 正在播放国产对白刺激| 亚洲精品一二三| 法律面前人人平等表现在哪些方面| 欧美av亚洲av综合av国产av| 老司机午夜福利在线观看视频| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频| 亚洲全国av大片| 十八禁人妻一区二区| 在线观看66精品国产| 男女免费视频国产| 欧美激情久久久久久爽电影 | 国产欧美日韩精品亚洲av| 久久影院123| 日韩欧美一区视频在线观看| 中出人妻视频一区二区| 亚洲国产看品久久| 熟女少妇亚洲综合色aaa.| 欧美av亚洲av综合av国产av| 777米奇影视久久| 欧美精品高潮呻吟av久久| 亚洲欧美激情综合另类| 久久久国产欧美日韩av| 极品人妻少妇av视频| 欧美+亚洲+日韩+国产| 下体分泌物呈黄色| 精品国产一区二区三区久久久樱花| 成年人黄色毛片网站| 黄色成人免费大全| 十八禁人妻一区二区| 黑人巨大精品欧美一区二区mp4| 国产精品 国内视频| 亚洲色图av天堂| 在线看a的网站| 亚洲专区字幕在线| 午夜亚洲福利在线播放| 又黄又爽又免费观看的视频| 天天操日日干夜夜撸| 美女国产高潮福利片在线看| 中亚洲国语对白在线视频| 美女国产高潮福利片在线看| 国产精品久久视频播放| 国产视频一区二区在线看| av超薄肉色丝袜交足视频| 777久久人妻少妇嫩草av网站| 欧美在线一区亚洲| 久久国产精品影院| 国产成人影院久久av| 久久香蕉精品热| 久久精品成人免费网站| 国产亚洲一区二区精品| 久久久国产成人免费| 飞空精品影院首页| 国产精品美女特级片免费视频播放器 | 欧美精品人与动牲交sv欧美| 久久国产精品影院| 最新的欧美精品一区二区| 在线观看66精品国产| 久久久久国内视频| 不卡一级毛片| 如日韩欧美国产精品一区二区三区| 黄网站色视频无遮挡免费观看| 国产精品偷伦视频观看了| 亚洲三区欧美一区| 99精品久久久久人妻精品| 纯流量卡能插随身wifi吗| 日本一区二区免费在线视频| 极品少妇高潮喷水抽搐| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱片免费观看的视频| 精品久久久久久电影网| 无遮挡黄片免费观看| 久久久久国产一级毛片高清牌| 亚洲国产精品sss在线观看 | 国产成人免费无遮挡视频| 久久久久久久午夜电影 | 国产日韩欧美亚洲二区| 国产单亲对白刺激| 久久精品aⅴ一区二区三区四区| 成人18禁在线播放| 99国产精品免费福利视频| av国产精品久久久久影院| 成人免费观看视频高清| 美国免费a级毛片| 国产伦人伦偷精品视频| 国产乱人伦免费视频| 久久久久国内视频| 国产高清视频在线播放一区| 两人在一起打扑克的视频| 91成人精品电影| 777米奇影视久久| 国产高清激情床上av| 欧美精品av麻豆av| 久久久水蜜桃国产精品网| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 欧美国产精品va在线观看不卡| 亚洲国产精品一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 91国产中文字幕| 少妇粗大呻吟视频| 久久久久久亚洲精品国产蜜桃av| 一区福利在线观看| 久久人人爽av亚洲精品天堂| 亚洲精品粉嫩美女一区| 午夜91福利影院| 久久精品国产亚洲av高清一级| 欧美精品亚洲一区二区| 国产精品一区二区精品视频观看| 中亚洲国语对白在线视频| 黄色成人免费大全| 免费观看a级毛片全部| www.自偷自拍.com| 中出人妻视频一区二区| 国产91精品成人一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 成人免费观看视频高清| 热99国产精品久久久久久7| a级毛片在线看网站| 动漫黄色视频在线观看| 国产麻豆69| 在线观看一区二区三区激情| 色尼玛亚洲综合影院| 男女床上黄色一级片免费看| netflix在线观看网站| 一夜夜www| av免费在线观看网站| 国产精品偷伦视频观看了| 国产欧美日韩一区二区三区在线| 亚洲成国产人片在线观看| 美女午夜性视频免费| 正在播放国产对白刺激| 国产精品.久久久| 无限看片的www在线观看| 国产精品久久久久久人妻精品电影| 亚洲精品成人av观看孕妇| 欧美人与性动交α欧美精品济南到| 嫩草影视91久久| 首页视频小说图片口味搜索| 久久天堂一区二区三区四区| 91精品国产国语对白视频| 国产精品av久久久久免费| 亚洲色图av天堂| 欧美乱妇无乱码| 亚洲 国产 在线| 久久久久国产一级毛片高清牌| 热99久久久久精品小说推荐| 99精品在免费线老司机午夜| 国产伦人伦偷精品视频| 国产视频一区二区在线看| 日韩有码中文字幕| 国产一区有黄有色的免费视频| www.熟女人妻精品国产| 成年人免费黄色播放视频| 国产成+人综合+亚洲专区| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久精品古装| 免费在线观看亚洲国产| 国产av一区二区精品久久| 精品国内亚洲2022精品成人 | 成人精品一区二区免费| 天天操日日干夜夜撸| 热re99久久精品国产66热6| 午夜老司机福利片| 久热这里只有精品99| 国产99久久九九免费精品| 免费观看人在逋| 在线观看免费视频日本深夜| 操出白浆在线播放| 一a级毛片在线观看| 国产成人av激情在线播放| 精品国产一区二区三区久久久樱花| 777久久人妻少妇嫩草av网站| 欧美色视频一区免费| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕最新亚洲高清| 日韩熟女老妇一区二区性免费视频| 欧美精品啪啪一区二区三区| 亚洲色图 男人天堂 中文字幕| 91成人精品电影| 国产人伦9x9x在线观看| 精品久久久久久久毛片微露脸| 亚洲国产精品合色在线| 久久久国产成人免费| 亚洲国产精品sss在线观看 | 国产免费男女视频| 欧美亚洲 丝袜 人妻 在线| 伊人久久大香线蕉亚洲五| 免费久久久久久久精品成人欧美视频| 成年人免费黄色播放视频| 久久精品亚洲熟妇少妇任你| 大香蕉久久成人网| 男女午夜视频在线观看| 久久影院123| 99精国产麻豆久久婷婷| 亚洲欧美激情在线| 最新在线观看一区二区三区| 黄片小视频在线播放| 亚洲欧美一区二区三区久久| 18禁裸乳无遮挡免费网站照片 | 欧美人与性动交α欧美精品济南到| 在线视频色国产色| xxx96com| 丝袜美腿诱惑在线| 国产视频一区二区在线看| 精品久久久久久电影网| 国产欧美日韩一区二区三| 少妇猛男粗大的猛烈进出视频| 亚洲av欧美aⅴ国产| 精品电影一区二区在线| 久久久国产一区二区| 黄色视频不卡| 97人妻天天添夜夜摸| 在线观看免费午夜福利视频| 在线观看免费视频网站a站| 久久 成人 亚洲| 母亲3免费完整高清在线观看| 亚洲专区中文字幕在线| 国产精品永久免费网站| 免费高清在线观看日韩| 国产视频一区二区在线看| 国产成人免费观看mmmm| 国产91精品成人一区二区三区| 在线观看舔阴道视频| 国产成人影院久久av| 午夜影院日韩av| www.精华液| 亚洲av日韩精品久久久久久密| 手机成人av网站| 久99久视频精品免费| 久热这里只有精品99| 在线国产一区二区在线| 欧美亚洲 丝袜 人妻 在线| 亚洲美女黄片视频| 精品国产乱子伦一区二区三区| 满18在线观看网站| ponron亚洲| 黑人猛操日本美女一级片| 免费高清在线观看日韩| 日本黄色视频三级网站网址 | 国产免费av片在线观看野外av| 亚洲午夜理论影院| 十八禁人妻一区二区| 波多野结衣av一区二区av| 亚洲在线自拍视频| 久久久久久久精品吃奶| 亚洲av成人不卡在线观看播放网| 欧美大码av| 18禁美女被吸乳视频| 老熟妇仑乱视频hdxx| 成人18禁在线播放| 精品国产乱码久久久久久男人| 身体一侧抽搐| 熟女少妇亚洲综合色aaa.| 久久精品人人爽人人爽视色| 久久香蕉精品热| 老司机午夜福利在线观看视频| 在线天堂中文资源库| 国产精品免费视频内射| 免费不卡黄色视频| 亚洲熟妇中文字幕五十中出 | 两个人免费观看高清视频| 丝袜美足系列| 久久性视频一级片| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品电影一区二区三区 | 伊人久久大香线蕉亚洲五| 国产aⅴ精品一区二区三区波| 天堂中文最新版在线下载| 18禁观看日本| 久久午夜综合久久蜜桃| 亚洲av日韩在线播放| 亚洲全国av大片| 最近最新中文字幕大全电影3 | 亚洲一区二区三区不卡视频| tocl精华| 亚洲片人在线观看| 亚洲午夜理论影院| 欧美日韩视频精品一区| 国产av一区二区精品久久| 久久精品亚洲精品国产色婷小说| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久人人做人人爽| 中文字幕精品免费在线观看视频| 在线观看免费午夜福利视频| 一进一出好大好爽视频| 不卡av一区二区三区| 在线观看免费午夜福利视频| 国产91精品成人一区二区三区| 欧美日韩瑟瑟在线播放| 黄色片一级片一级黄色片| 亚洲av美国av| 成年版毛片免费区| 欧美黄色淫秽网站| 国产亚洲欧美在线一区二区|