• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles calculations of stability of graphene-like BC3monolayer and its high-performance potassium storage

    2021-05-14 09:48:24LijieZhoYiLiGungyoZhouShuliLeiJinliTnLingxuLinJijunWng
    Chinese Chemical Letters 2021年2期

    Lijie Zho,Yi Li,Gungyo Zhou,Shuli Lei*,Jinli Tn,Lingxu Lin,Jijun Wng,*

    a Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China

    b Key Laboratory of Computer Vision and Systems (Ministry of Education), School of Computer Science and Engineering, Tianjin University of Technology,Tianjin 300384, China

    c Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China

    d ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australia Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, Wollongong 2519, Australia

    ABSTRACT With increasing demand for renewable energy, graphene-like BC3monolayer as high performance electrode materials for lithium and sodium batteries are drawing more attention recently.However,its structural stability,potassium storage properties and strain effect on adsorption properties of alkali metal ions have not been reported yet.In this work,phonon spectra,AIMD simulations and elastic constants of graphene-like BC3monolayer are investigated.Our results show that graphene-like BC3monolayer possesses excellent structural stability and the maximum theoretical potassium storage capacity can reach up to 1653 mAh/g with the corresponding open circuit voltages 0.66 V.Due to potassium atom can be effectively adsorbed at the most energetically favorable site with obvious charge transfer,making adsorbed graphene-like BC3monolayer change from semiconductor to metal which is really good for electrode utilization.Moreover,the migrations potassium atom on the graphene-like BC3monolayer is rather fast with the diffusion barriers as low as 0.12 eV,comparing lithium atom with a relatively large diffusion barrier of 0.46 eV.Additionally,the tensile strains applied on the graphene-like BC3monolayer have marginal effect on the adsorption and diffusion performances of lithium, sodium and potassium atoms.

    Keywords:First-principle calculations Storage capacity BC3monolayer Adsorption Diffusion

    With the rapid development of society and economy, the exploration of advanced batteries with high performance remains a universal issue [1–3].Due to the high power density, large reversible capacity and long cycle life,rechargeable Li-ion batteries have drawn much attention and achieved great success in various fields,such as portable electronic devices and electric vehicles[4–7].However, the large-scale commercial manufacturing of Li-ion batteries is limited by the rare lithium resources and high cost in industrial production, thus the increasing energy demand cannot be meet [8].It is desirable to develop other Alkali metal-ion batteries composed of abundant elements.Hence, Na- and K-ion batteries are emerged as two appealing alternatives to Li-ion batteries for application in electrochemical energy storage devices[9–14].Compared with Li-ion batteries,although the intercalation/deintercalation mechanisms are similar, the Na/K-ion batteries have unique physical and chemical properties, including redox potential, ionic radius and weight [15,16].Many anode materials showing excellent Li-ion storage capability might no longer be suitable for Na/K-ion batteries.

    In recent years, the discovery of graphene has stimulated enthusiasm toward the development of two-dimensional (2D)materials [17–20].These exfoliated 2D materials are expected to offer new opportunities to design anode materials because of the planar structural features and large surface areas [21].Until now,numerous 2D materials such as TMOs [22], TMDs [23–25] and MXenes[26–28]have been confirmed to be potential candidates for Na/K-based batteries.Nevertheless, the performance of Na/K-ion batteries still suffer from the drawback of energy density.Most of these 2D anodes show low theoretical capacities, ranging from 300 mAh/g to 1000 mAh/g.In this regard, metal-free 2D anode materials, composed of B, C, N, Si, P or S element, are particularly attractive in batteries [29–36].For instance, Xu et al.[31]experimentallysynthesizedC3Nsheetsand exploredtheirperformances for anode materials in Li-ion batteries.Bhauriyal et al.[32]further found that C3N monolayer could serve as promising anode materials for Na/K-ion batteries.Other theoretical studies also reported that the BP [33], Si3C [34], PC3[35] and B2S [36] anode materials exhibited both high storage capacity and fast ion diffusivity.Therefore, searching for new metal-free 2D anode materials with high capacity and fast kinetics is urgent for Na/K-ion batteries.

    Recently, graphene-like BC3sheet has been successfully fabricated on the NbB2(0001)surface[37],showing good promise for applications as gas sensors,photocatalysts,thermoelectric and hydrogen storage materials [38–43].Although few works have been carried out on the energy storage based on graphite-like BC3electrode, which comprises of several layers [44], more attention should be paid to study whether graphene-like monolayer BC3can be used a new promising electrode material for metal-ion batteries, especially Na/K-ion batteries.Besides, the lattice confinement and mismatch may bring about additional strain on 2D anode materials, which would affect the adsorption and diffusion behaviors of Li/Na/K ions.Therefore, exploring the influence of strain on the electrochemical performances of monolayer BC3is critical.Thus, in the present study, we systematically investigate the electrochemical performance of graphene-like BC3monolayer as the anode material for Li/Na/K-ion batteries based on first-principles calculations.According to the calculated structural stability,migration energy barriers,theoretical capacities,and average voltage,we suggest that BC3monolayer can be utilized as high-performance anodes for Na/K-ion batteries.

    Our first-principles calculations are carried out by using the frozen-core projector augmented wave approach [45] as implemented in the Vienna Ab initio Simulation Package (VASP) [46].The generalized gradient approximation (GGA) in the form proposed by Perdew, Burke, and Ernzerhof (PBE) [47] is used for the exchange-correlation effect.The van der Waals interaction is described by using the semi-empirical correction scheme of Grimme(DFT-D2)[48].The cutoff energy for the plane wave basis is 500 eV.The Brillouin zone is sampled with ak-points mesh according to Monkhorst-Pack scheme[49].The convergence criteria for the total energy and the maximum force on each atom are less thanand 0.02 eV/?,respectively.To minimize the interlayer interactions under the periodic boundary condition,the vacuum spacing is set to be 20.0 ?.In addition,the climbing image nudged elastic band(CI-NEB)method[50]is used to determine the minimum energy diffusion pathways of Li/Na/K atoms and the corresponding energy barriers.

    Fig.1.(a)Top and side views of the optimized structure of BC3monolayer.(b)The possible adsorption sites for alkali metal atoms that are considered.(c) Electronic band structures of BC3monolayer at the GGA-PBE and HES06 levels.(d) Total and partial DOSs for BC3monolayer.Here, the Fermi energy level is scaled to 0 and shown as a black dashed line.

    Fig.2.(a)Phonon band dispersion of the BC3monolayer.(b)The fluctuation of the total energy during 10 ps AIMD simulation at 500 K.The snapshot of the corresponding structure after the AIMD simulation is given in the inset.(c)Young’s modulus and (d) Possion’s ratio of the BC3monolayer as a function of the angle u.

    Before exploring the potential application of BC3,its structural stability must be examined.On the basis of the finite-displacement method, the phonon band structure of BC3monolayer is firstly calculated to investigate its dynamic stability.As shown in Fig.2a,the highest frequency reaches up to 47 THz, demonstrating the robust B–C interaction in the monolayer structure.The acoustic and optic vibration frequencies near the G point are well separated from each other.More importantly, there are no any imaginary vibration frequencies along the high symmetric points in the irreducible Brillouin zone, confirming the high stability at 0 K.To further check the thermal stability of monolayer BC3, ab initio molecular-dynamics (AIMD) simulation with canonical ensemble(NVT) is performed at the temperature of 500 K for 10 ps using a 33 supercell.As shown in Fig.2b,we find no obvious structural changes or broken bonds at the end of simulation except for some thermal fluctuations within a small range (< 0.1 eV/atom).This suggests that BC3monolayer has good thermal stability.

    Additionally, by using the finite distortion method, we systematically study the mechanical properties of monolayer BC3, including elastic constants, Young's modulus and Poisson's ratio.The calculated elastic constants in conventional cell are C11=C22=269.04 N/m, C12=49.73 N/m and C66=109.66 N/m.These obtained values can meet the relationships: C11C22- C122> 0,C66> 0, namely, the Born-Huang criteria are nicely satisfied,implying that the BC3monolayer is mechanically stable.Based on the above elastic constants, we further calculate the Young's modulusand Poisson's ratioalong the in-plane,which are expressed as follows:

    where A=(C11C22-C122)/C66-2C12and B=C11+C12-(C11C22-C122)/C66.The calculated results are depicted in the polar diagrams, as shown in Figs.2c and d.The diagrams show that both of Young's modulusand Poisson's ratioare remain as constants with changingshowing a strong mechanical isotropy.The Young's modulus and Poisson's ratio of the BC3monolayer are about 259.85 N/m and 0.18, respectively, which are comparable to some common 2D materials such as graphene [55], BN [56] and MoS2[57].These results imply that the BC3monolayer is stable enough for avoiding the curling and might has moderate structural response to external stress.

    To be a good anode material for alkali-metals ion batteries,it is essential that the BC3monolayer has relatively strong adsorption energy towards Li/Na/K atoms.In this regard, we therefore study the adsorption behavior of Li/Na/K atoms on aBC3supercell.According to the geometric symmetry of BC3monolayer, six possible adsorption sites shown in Fig.1b are considered:hC is at the hollow site of hexagon CC ring;h-CB is at the hollow site of hexagon CB ring;and b-CB are above the midpoints of thebond andbond,respectively;t-C and t-B are located at the top sites of carbon and boron atoms, respectively.To further identify the most favorable adsorption site for these alkali metal atoms,we calculate the corresponding adsorption energy(Ead)by using the following equation,

    Fig.3.(a) Adsorption energies of Li/Na/K atoms at the stable t-B, hC and h-CB sites of the BC3monolayer.Differential change density for (b) Li, (c) Na and (d) K adsorbed on BC3monolayer (isosurface=0.0015 |e|/?3).Yellow and cyan colors represent charge accumulation and depletion, respectively.

    Fig.4.(a-c) Electronic band structures of BC3monolayer systems after Li/Na/K adsorption.(d-f)Their corresponding total and partial DOSs.Here,the Fermi level is set to 0 and shown as red dashed lines.

    As we known,an anode material has semiconductor characteristic,usually associating with poor electrical conductivity,which is disadvantageous to the efficiency of the battery.However, the electronic properties of semiconductor material might be changed when the alkali metal ions are adsorbed.Consequently, the band structures, total and partial DOSs of Li/Na/K adsorbed BC3monolayer systems are calculated and plotted in Fig.4.It can be seen from Figs.4a-c that all the BC3systems after adsorption of alkali metals become metallic since their respective Fermi level are shifted into the conduction band.This suggests that the BC3systems would have sufficient free-electron concentration during the charge/discharge process, ensuring the desired electrical conductivity.Noted that this feature is not sensitive to our chosen functional, and similar conclusion still can be obtained by the HSE06 functional, given in Fig.S2 (Supporting information).Moreover, as indicated in Figs.4d-f, we find that the s orbitals of Li/Na/K atoms display some clearly discernible peaks in the conduction band,overlapping with the 2p orbitals of C and B.This s-p hybridization interactions in turn push the Fermi level to higher energies,resulting in the semiconductor to metal transition.

    The charge and discharge rate, determined by the mobility of alkali metal atoms, is also critical for the battery's performance compared to electronic conductivity.Therefore, we shift our attention to the Li/Na/K migration process on a 33 supercell of BC3monolayer.The corresponding diffusion energy barriers for different paths are calculated by using the NEB method.Based on our above discussion of the adsorption energy, two possible diffusion paths between the two neighboring most stable adsorption sites are selected, and marked as P1 and P2 in Fig.5a.In the first path (P1), alkali metal atoms move directly from a hC site to another nearest hC site via h-CB site;in the second path (P2), they move first to t-B site and then to the neighboringsite.As shown in Figs.5b-d, all three Li/Na/K atoms prefer to diffuse along P1 since it always has smaller energy barrier than that of P2.This observation is well in accordance with the calculated adsorption energies of Li/Na/K atoms.The lowest diffusion barriers predicted for Li/Na/K atoms are found to be 0.46,0.21 and 0.12 eV, respectively.These values decreases with increasing atomic radii in the order of Li

    Fig.5.(a) Schematic representation of the possible ion diffusion paths on BC3monolayer and the corresponding energy barrier profiles for(b)Li,(c)Na and(d)K.

    Considering the fact that an electrode material might work in strained states, we also examine the effect of strain on the adsorption and diffusion behaviors of Li/Na/K atoms.The results of adsorption energies and diffusion barriers as a function of strain are depicted in Fig.6.Here, the in-plane biaxial tensile strains,ranging from 2% to 8% with the 2% increment, are applied on the BC3monolayer, achieved by enlarging the lattice parameters.It should be noted that these monolayer BC3structures under different tensile strains are still stable,as indicated by the phonon dispersion curves given in Fig.S3 (Supporting information).Besides,as shown in Fig.S4(Supporting information),we observe that the band gaps increase in the region of tensile strain.Fig.6a demonstrates that the values of adsorption energies for Li/Na/K atoms slightly decrease with rising strain,namely,the adsorption become stronger, indicating the continuous enhancement of the interactions between these alkali metal atoms and BC3monolayer.In detail,under a strain of 8% the adsorption energies decrease to-1.36 eV for Li, -1.24 eV for Na, and -1.79 eV for K.The diffusion barrier profiles of Li/Na/K atoms on the strain engineered BC3monolayer are given in Figs.6b-d.In the region of strain,we can see that with an increasing tensile strain all the diffusion barriers also increase, but the increments are quite small.The maximum changes in the diffusion barriers are about 0.10 eV for Li,0.08 eV for Na,and 0.05 eV for K.Therefore,Na/K still can diffuse easily on the strain engineered BC3monolayer.

    Besides the electronic property and diffusion barrier, the storage capacity and average open-circuit voltage of alkali metal ions are also essential to practical applications in the field of battery technology.Thus, we further investigate the Na/K adsorption behaviors on both sides of the BC3monolayer and evaluate their respective maximum storage capacities.Here, we adopt asupercell of BC3monolayer,and load the Na/K atoms layer by layer on both sides.For the first adsorption layer,all of the most favorable hC sites on both sides of BC3monolayer are covered by Na/K atoms.For the second layer,we investigate all the possible sites for the successive Na/K atoms and find that both of them favor the h-CB sites.Finally,the t-B sites are occupied by Na/K atoms as the third layer.To compare the adsorption stability, the average adsorption energy(Eave)is calculated layer by layer using the following equation:

    Fig.6.(a) The adsorption energies of Li, Na, and K on BC3monolayer vs.biaxial tensile strain.The energy barrier profiles along the lowest energy migration paths under different tensile strains for (b) Li, (c) Na and (d) K.

    where EAMnBC3and EAMn/1BC3are the total energies of the BC3monolayer adsorbed with n and n-1 layers, respectively.EAMrepresents the energy per atom of Na/K atoms in their bulks, and the number “8” corresponds to a total of eight adatoms for each layer.It should be noted that the Na/K atoms could be stably adsorbed on both sides of the BC3monolayer until the calculated Eavebecomes positive, where the highest storage capacity is achieved.After structure optimization, as shown in Fig.S5(Supporting information), we find that the clustering of Na/K atoms will not occur after structure optimization except for the three-layer adsorbed configuration.Moreover, the average adsorption energies of Na atoms in the first and second layers are calculated to be -0.64 and -0.06 eV per atom, respectively,while the corresponding values for K atoms are-1.03 and-0.14 eV per atom, respectively.These relative negative adsorption energies indicate that our chosen BC3supercell can accommodate up to 16 Na/K atoms, corresponding to the chemical compositions of Na2BC3and K2BC3.To check the stability of fully charged anode material(Na2BC3and K2BC3),we further perform AIMD simulations with the same supercellat the temperature of 500 K for 6 ps.As shown in Fig.S6 (Supporting information), the variations of the total energy are quite small during the simulation.The snapshots after 6 ps of simulation show little deviation of Na/K atoms from their equilibrium positions and slight distortion of the BC3monolayer.These results indicate good thermal stability of the BC3monolayer at highest capacity.

    Thus, the theoretical storage capacity (C) can be evaluated by the following formula:

    where x,F and MBC3represent the number of electrons involved in the electrochemical process, the Faraday constant (26.8 mAh/g),and the molecular mass of BC3, respectively.The maximum theoretical storage capacity is estimated to be 1653 mAh/g when BC3monolayer acts as anodes of Na/K-ion batteries.The high storage capacity in the BC3monolayer mainly originates from its multilayered adsorption ability.These values predicted in the present study are among the highest ones in the experimental and theoretical reported anode materials,such as C3N(1072 mAh/g for Na and K)[32],Si3C(1115 mAh/g for Na,836 mAh/g for K)[62]and B2S(2245 mAh/g for Na,1167 mAh/g for K)[63],implying that BC3monolayer possesses ultra-high Na/K storage capacity.

    To further determine the electrode property, the open-circuit voltage (OCV) during the Na/K loading process is studied.In the event of neglecting the effects of volume and entropy,the average voltage of AMxBC3in the concentration range of x1

    where EAMx2BC3and EAMx1BC3are the total energies of the AMxBC3compound at two adjacent low-energy concentrations x2and x1.e represents the electronic charge, and EAMrepresents the energy per atom of Na/K atoms in their bulks.Noted that we choose five values for the concentration x, which is 0.25, 0.50,1.00,1.50 and 2.00.For each adsorption concentration,we compare the energies of different structures,and adopt the one with the lowest energy to calculate the voltage.The concentration-dependent OCV profiles for Na/K ions are shown in Fig.7.It can be clearly see that the OCVs of Na/K ions exhibit a decreasing trend as the concentration x increase.The calculated OCVs for NaxBC3and KxBC3are in the range ofandwhich are always positive during the entire adsorption process.This implies that the half-cell reactions can proceed spontaneously until their respective final conditions(Na2BC3and K2BC3),resulting in a fully reversible capacity of 1653 mAh/g.Moreover, the corresponding average voltages are 0.38 and 0.66 V.Fortunately,both of them are within the desired potential ranges,ensuring to produce high cell voltages.These results suggest that BC3monolayer can be a promising anode material for Na/K-ion batteries.

    Fig.7.Calculated open-circuit voltage of the BC3anode for Na/K adsorption at different concentrations.

    In conclusion, based on first-principles calculations, we systematically investigate the potential of graphene-like BC3monolayer as electrode materials for Li/Na/K-ion batteries.Our results show that BC3monolayer is a small band gap semiconductor with high structural stabilities.The Li/Na/K atoms prefer to at the hC site of the BC3monolayer with adequate negative adsorption energies and charge transfer.It is also found that the BC3monolayer becomes metallic after adsorbing Li/Na/K, thus enhancing the electronic conductivity.Moreover, the diffusion energy barriers are estimated to be 0.46 eV for Li, 0.21 eV for Na, and 0.12 eV for K, indicating that BC3monolayer would has high charge/discharge rates for Na/Kion batteries.Besides, our further calculations show that the adsorption and diffusion performances of Li/Na/K atoms are almost unaffected by the tensile strains.More importantly, the maximum theoretical storage capacities for Na/K-ion batteries are as high as 1653 mAh/g, and the corresponding average open circuit voltages are 0.38 and 0.66 V, respectively.Combining those advanced features, it is expected that the BC3monolayer could be utilized as an excellent anode material for Na/K-ion batteries in the near future.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was partially supported by the National Natural Science Foundation of China (No.21503149), by the Program for Innovative Research Team in University of Tianjin(No.TD13-5074),by the Project of Hubei University of Arts and Science (No.2020kypyfy015) and Hubei Superior and Distinctive Discipline Group of "Mechatronics and Automobiles" (No.XKQ2020021).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.07.016.

    特级一级黄色大片| 日本a在线网址| 国产精品av视频在线免费观看| eeuss影院久久| 嫩草影视91久久| 亚洲欧美日韩无卡精品| 国产精品久久久久久亚洲av鲁大| 色噜噜av男人的天堂激情| 香蕉av资源在线| 男女做爰动态图高潮gif福利片| 草草在线视频免费看| 久久欧美精品欧美久久欧美| 国内精品美女久久久久久| 夜夜看夜夜爽夜夜摸| 亚洲精品日韩在线中文字幕 | 少妇的逼水好多| 国产精品人妻久久久久久| 高清毛片免费看| 男人和女人高潮做爰伦理| 国产亚洲精品久久久com| 精品欧美国产一区二区三| 99热6这里只有精品| 亚洲精品456在线播放app| 麻豆av噜噜一区二区三区| 国产视频内射| 成熟少妇高潮喷水视频| 人妻久久中文字幕网| 国产又黄又爽又无遮挡在线| 欧美高清性xxxxhd video| 91在线精品国自产拍蜜月| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美日韩东京热| 黄色日韩在线| 欧美一区二区精品小视频在线| av天堂在线播放| 神马国产精品三级电影在线观看| 欧美区成人在线视频| 一级黄色大片毛片| 成人av一区二区三区在线看| 亚洲精品在线观看二区| 日本 av在线| 久久中文看片网| 日本免费a在线| 俺也久久电影网| 一边摸一边抽搐一进一小说| 一边摸一边抽搐一进一小说| 美女内射精品一级片tv| 亚洲精品久久国产高清桃花| 能在线免费观看的黄片| 久久精品国产99精品国产亚洲性色| 国产精品一区二区免费欧美| 亚洲第一区二区三区不卡| 亚洲精品日韩av片在线观看| 亚洲av美国av| 国产成年人精品一区二区| 香蕉av资源在线| 精品午夜福利在线看| 丰满的人妻完整版| 国产精品人妻久久久影院| or卡值多少钱| 精品久久久久久久末码| 亚洲国产色片| 又爽又黄a免费视频| 午夜精品一区二区三区免费看| 国产精品电影一区二区三区| 国产午夜精品论理片| 女同久久另类99精品国产91| 国产午夜福利久久久久久| 嫩草影视91久久| 久久婷婷人人爽人人干人人爱| 丝袜美腿在线中文| 国产综合懂色| 精品人妻偷拍中文字幕| 色哟哟·www| 51国产日韩欧美| 亚洲中文日韩欧美视频| 村上凉子中文字幕在线| 两个人视频免费观看高清| 色av中文字幕| 女同久久另类99精品国产91| 久久精品综合一区二区三区| 色av中文字幕| 日韩精品中文字幕看吧| 日韩精品青青久久久久久| 午夜福利在线在线| 日韩中字成人| 少妇的逼好多水| 偷拍熟女少妇极品色| 欧美xxxx黑人xx丫x性爽| 国产在视频线在精品| 欧美三级亚洲精品| 男人舔女人下体高潮全视频| 在线免费观看的www视频| 亚洲av成人av| 一夜夜www| 男插女下体视频免费在线播放| 一本久久中文字幕| 国产黄色视频一区二区在线观看 | 亚洲美女视频黄频| 99久国产av精品国产电影| 联通29元200g的流量卡| 波多野结衣高清无吗| 在线观看美女被高潮喷水网站| 狂野欧美白嫩少妇大欣赏| 老司机福利观看| 国产乱人偷精品视频| 黄色欧美视频在线观看| 日日摸夜夜添夜夜添小说| 少妇高潮的动态图| 国产老妇女一区| 午夜福利高清视频| 久久这里只有精品中国| 国产一区二区在线av高清观看| av在线天堂中文字幕| 国产亚洲av嫩草精品影院| 亚洲丝袜综合中文字幕| 五月伊人婷婷丁香| 亚洲精品影视一区二区三区av| 国产人妻一区二区三区在| 免费看av在线观看网站| 内地一区二区视频在线| 波多野结衣高清无吗| 免费电影在线观看免费观看| 国产美女午夜福利| 日韩精品中文字幕看吧| 日韩三级伦理在线观看| 日本黄色片子视频| 黄色一级大片看看| 国产av不卡久久| 麻豆乱淫一区二区| h日本视频在线播放| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 97超碰精品成人国产| 91av网一区二区| 露出奶头的视频| 中国美女看黄片| 免费观看的影片在线观看| 成人性生交大片免费视频hd| 一卡2卡三卡四卡精品乱码亚洲| 成人一区二区视频在线观看| 国产一区二区在线观看日韩| 国产精华一区二区三区| 午夜视频国产福利| 日本黄大片高清| 少妇丰满av| 九色成人免费人妻av| 久久6这里有精品| 99在线视频只有这里精品首页| 成熟少妇高潮喷水视频| 国产伦在线观看视频一区| 精品人妻视频免费看| 久久韩国三级中文字幕| 人人妻人人看人人澡| 国产真实伦视频高清在线观看| 久久午夜福利片| 国产色婷婷99| 国产一区二区三区av在线 | 乱人视频在线观看| 丝袜美腿在线中文| 美女 人体艺术 gogo| 国产精品人妻久久久久久| 亚洲精品一区av在线观看| 亚洲国产欧洲综合997久久,| 69人妻影院| 久久草成人影院| 小说图片视频综合网站| 久久精品综合一区二区三区| 亚洲精品456在线播放app| 十八禁国产超污无遮挡网站| 日韩成人伦理影院| 亚洲国产精品合色在线| 波多野结衣高清无吗| 男女之事视频高清在线观看| 亚洲丝袜综合中文字幕| 日韩精品有码人妻一区| 国产日本99.免费观看| 黄色一级大片看看| 国产精品日韩av在线免费观看| 欧美成人精品欧美一级黄| 成人特级黄色片久久久久久久| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 男女啪啪激烈高潮av片| 亚洲欧美清纯卡通| 国产午夜精品论理片| 香蕉av资源在线| 午夜激情福利司机影院| 国语自产精品视频在线第100页| 亚洲av成人av| 别揉我奶头 嗯啊视频| 22中文网久久字幕| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 丝袜喷水一区| 91在线观看av| 欧美日韩一区二区视频在线观看视频在线 | 国产单亲对白刺激| 精品一区二区三区av网在线观看| 美女免费视频网站| 亚洲av免费高清在线观看| 亚洲国产精品国产精品| 国产成人一区二区在线| 变态另类成人亚洲欧美熟女| avwww免费| 美女内射精品一级片tv| 久久亚洲国产成人精品v| 日韩欧美一区二区三区在线观看| 最近2019中文字幕mv第一页| 麻豆一二三区av精品| 国产成人精品久久久久久| 五月伊人婷婷丁香| 狂野欧美激情性xxxx在线观看| 人妻久久中文字幕网| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 日日干狠狠操夜夜爽| 久久草成人影院| 寂寞人妻少妇视频99o| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看 | 免费观看人在逋| 亚洲人与动物交配视频| 久久久久久久亚洲中文字幕| 日本黄大片高清| 日本a在线网址| 欧美最黄视频在线播放免费| 久久精品久久久久久噜噜老黄 | 日韩,欧美,国产一区二区三区 | 精品人妻偷拍中文字幕| 国产伦精品一区二区三区视频9| 91久久精品国产一区二区三区| 中国美女看黄片| 久久久久久久久久久丰满| 神马国产精品三级电影在线观看| 男女之事视频高清在线观看| 午夜爱爱视频在线播放| 久久久久精品国产欧美久久久| 99久久九九国产精品国产免费| 黄片wwwwww| 别揉我奶头~嗯~啊~动态视频| 国内精品一区二区在线观看| 九九热线精品视视频播放| 欧美国产日韩亚洲一区| 国产乱人视频| 麻豆国产av国片精品| 亚洲色图av天堂| 亚洲最大成人av| 久久九九热精品免费| 最近的中文字幕免费完整| 日日摸夜夜添夜夜添小说| 无遮挡黄片免费观看| 国产精品嫩草影院av在线观看| 国产免费男女视频| 久久国产乱子免费精品| 日本免费a在线| 麻豆精品久久久久久蜜桃| 内射极品少妇av片p| 午夜影院日韩av| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器| 又黄又爽又刺激的免费视频.| 免费观看在线日韩| 国产男人的电影天堂91| 尤物成人国产欧美一区二区三区| 美女免费视频网站| 国产亚洲欧美98| 人妻夜夜爽99麻豆av| 亚洲婷婷狠狠爱综合网| 成人高潮视频无遮挡免费网站| 亚洲内射少妇av| 直男gayav资源| 97碰自拍视频| 噜噜噜噜噜久久久久久91| 一本久久中文字幕| 国产色婷婷99| 九九在线视频观看精品| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人伦理影院| 九九热线精品视视频播放| 十八禁国产超污无遮挡网站| 久久精品久久久久久噜噜老黄 | 麻豆国产av国片精品| .国产精品久久| 搡老妇女老女人老熟妇| 看黄色毛片网站| 国产一区亚洲一区在线观看| 最近最新中文字幕大全电影3| 国产乱人视频| 一个人免费在线观看电影| 国产单亲对白刺激| 久久精品国产亚洲av涩爱 | 久久久久久大精品| 国产伦精品一区二区三区四那| 97超视频在线观看视频| 99热这里只有精品一区| 亚洲成人中文字幕在线播放| 精品久久久久久久末码| 真实男女啪啪啪动态图| .国产精品久久| 99在线人妻在线中文字幕| 熟女人妻精品中文字幕| 欧美潮喷喷水| 中文亚洲av片在线观看爽| 男女边吃奶边做爰视频| 国产综合懂色| 国产精品,欧美在线| 精品午夜福利视频在线观看一区| av在线观看视频网站免费| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 国产黄片美女视频| 美女内射精品一级片tv| 波野结衣二区三区在线| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 深夜精品福利| 国内精品久久久久精免费| 国产精品一及| 国产大屁股一区二区在线视频| 精品国产三级普通话版| 欧美高清性xxxxhd video| 18禁黄网站禁片免费观看直播| 可以在线观看的亚洲视频| 大香蕉久久网| 美女黄网站色视频| 久久久久九九精品影院| 99热精品在线国产| 久久这里只有精品中国| 1024手机看黄色片| 赤兔流量卡办理| 国产精品久久久久久亚洲av鲁大| 乱系列少妇在线播放| 亚洲中文字幕一区二区三区有码在线看| 欧美xxxx黑人xx丫x性爽| 亚洲av五月六月丁香网| 日日摸夜夜添夜夜爱| 亚洲性久久影院| 在线免费观看的www视频| 久久人人爽人人片av| 国产精品乱码一区二三区的特点| 最好的美女福利视频网| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 激情 狠狠 欧美| 中文字幕av在线有码专区| 少妇丰满av| 最后的刺客免费高清国语| 老师上课跳d突然被开到最大视频| 在线a可以看的网站| 亚洲精品粉嫩美女一区| 亚洲人成网站在线播| 国产真实伦视频高清在线观看| 桃色一区二区三区在线观看| 亚洲精品在线观看二区| 美女高潮的动态| 国产精品福利在线免费观看| 成年女人毛片免费观看观看9| 亚洲欧美日韩无卡精品| 成熟少妇高潮喷水视频| 少妇被粗大猛烈的视频| 亚洲精品乱码久久久v下载方式| avwww免费| 成年av动漫网址| 在线观看av片永久免费下载| 亚洲av第一区精品v没综合| 亚洲第一电影网av| 午夜福利视频1000在线观看| 国产色爽女视频免费观看| 欧美又色又爽又黄视频| 校园人妻丝袜中文字幕| 欧美最黄视频在线播放免费| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| 日日啪夜夜撸| 久久九九热精品免费| 看十八女毛片水多多多| 国产一区二区三区在线臀色熟女| 国产激情偷乱视频一区二区| 狂野欧美激情性xxxx在线观看| 在线播放无遮挡| 久久综合国产亚洲精品| 天堂网av新在线| 日韩精品有码人妻一区| av女优亚洲男人天堂| 欧美高清成人免费视频www| 国产一区二区三区av在线 | 在线免费观看不下载黄p国产| 国产精品久久久久久亚洲av鲁大| 啦啦啦啦在线视频资源| 男女下面进入的视频免费午夜| 国产精品久久电影中文字幕| 国产私拍福利视频在线观看| 99热这里只有是精品50| 亚洲内射少妇av| 波多野结衣巨乳人妻| 亚洲最大成人av| 国产精品亚洲美女久久久| 男女之事视频高清在线观看| 亚洲经典国产精华液单| 免费观看的影片在线观看| 精品一区二区三区人妻视频| 在线免费观看不下载黄p国产| 亚洲一区高清亚洲精品| 成人国产麻豆网| 亚洲国产精品久久男人天堂| 亚洲av免费在线观看| 青春草视频在线免费观看| 国产精品日韩av在线免费观看| 18+在线观看网站| 国产国拍精品亚洲av在线观看| 亚洲图色成人| 久久精品人妻少妇| 性插视频无遮挡在线免费观看| 免费人成在线观看视频色| 一区福利在线观看| 国产单亲对白刺激| 久久久久久九九精品二区国产| 91久久精品国产一区二区成人| 国产精品不卡视频一区二区| 免费观看人在逋| 日韩精品中文字幕看吧| 欧美成人一区二区免费高清观看| 我的老师免费观看完整版| 熟女人妻精品中文字幕| 精品人妻视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女黄片视频| 久久久色成人| 国产精品国产高清国产av| 久久久久久国产a免费观看| 中出人妻视频一区二区| 大型黄色视频在线免费观看| 六月丁香七月| av.在线天堂| 乱系列少妇在线播放| 国产三级在线视频| 欧美另类亚洲清纯唯美| 色吧在线观看| 亚洲人成网站在线观看播放| 日日干狠狠操夜夜爽| 亚洲成人av在线免费| 日韩亚洲欧美综合| 欧美日本亚洲视频在线播放| 国产久久久一区二区三区| 日韩三级伦理在线观看| 欧美高清成人免费视频www| 一夜夜www| 成人亚洲欧美一区二区av| 国产欧美日韩一区二区精品| 午夜福利在线在线| 免费黄网站久久成人精品| 国产精品国产三级国产av玫瑰| 国产av麻豆久久久久久久| 嫩草影院精品99| 国产精品国产高清国产av| 亚洲欧美清纯卡通| 亚洲精品在线观看二区| 高清毛片免费看| 国产高清视频在线观看网站| 中文资源天堂在线| 国产成人a∨麻豆精品| 国产午夜福利久久久久久| 午夜激情福利司机影院| 午夜a级毛片| 久久精品夜色国产| 两个人的视频大全免费| 麻豆乱淫一区二区| 在线观看一区二区三区| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 欧美不卡视频在线免费观看| 亚洲欧美日韩高清专用| 国产一区二区三区av在线 | 黄色配什么色好看| 日本一二三区视频观看| 午夜福利在线观看免费完整高清在 | 美女免费视频网站| 一进一出抽搐动态| 国产精品久久久久久久电影| 六月丁香七月| 女同久久另类99精品国产91| 三级毛片av免费| 欧美bdsm另类| 亚洲三级黄色毛片| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| 免费电影在线观看免费观看| 99久国产av精品| 国产精品久久久久久亚洲av鲁大| 男人和女人高潮做爰伦理| 欧美三级亚洲精品| 国模一区二区三区四区视频| 人人妻人人澡人人爽人人夜夜 | 精品免费久久久久久久清纯| 亚洲一区二区三区色噜噜| 中文字幕久久专区| 国产av不卡久久| 国产精品野战在线观看| 国产欧美日韩精品亚洲av| 久久久精品大字幕| 久久人人爽人人爽人人片va| 午夜福利成人在线免费观看| 黄片wwwwww| 蜜桃久久精品国产亚洲av| 日韩制服骚丝袜av| 亚洲中文日韩欧美视频| 99久久无色码亚洲精品果冻| 精品人妻偷拍中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 成年女人永久免费观看视频| 少妇高潮的动态图| 乱系列少妇在线播放| 少妇被粗大猛烈的视频| 联通29元200g的流量卡| 亚洲av熟女| 悠悠久久av| 亚洲欧美精品综合久久99| 国产精品一区二区三区四区久久| 国产探花极品一区二区| 毛片女人毛片| 国产午夜精品久久久久久一区二区三区 | 国产色婷婷99| 两个人视频免费观看高清| 三级国产精品欧美在线观看| 晚上一个人看的免费电影| 黑人高潮一二区| 久久久久久久久久成人| 亚洲av免费高清在线观看| 国产真实伦视频高清在线观看| 亚洲人成网站高清观看| 在线观看美女被高潮喷水网站| 免费观看在线日韩| 91精品国产九色| 亚洲av成人av| 国产精品一区二区三区四区免费观看 | 熟女人妻精品中文字幕| 久久亚洲精品不卡| 亚洲中文日韩欧美视频| 久久久久国内视频| 自拍偷自拍亚洲精品老妇| 久久人妻av系列| 免费大片18禁| 国产精品一区二区性色av| 老司机福利观看| 国产精品三级大全| 人人妻人人澡人人爽人人夜夜 | 全区人妻精品视频| 99热这里只有是精品在线观看| 国产蜜桃级精品一区二区三区| 中文字幕av在线有码专区| 国模一区二区三区四区视频| 2021天堂中文幕一二区在线观| 又黄又爽又刺激的免费视频.| 日本免费a在线| 我的老师免费观看完整版| 欧美极品一区二区三区四区| 国产精品日韩av在线免费观看| .国产精品久久| a级毛色黄片| 国产成年人精品一区二区| 日韩,欧美,国产一区二区三区 | 亚洲va在线va天堂va国产| 免费看a级黄色片| 久久久久久久亚洲中文字幕| 两个人视频免费观看高清| 22中文网久久字幕| 又爽又黄a免费视频| 一级毛片久久久久久久久女| 人妻夜夜爽99麻豆av| 蜜桃久久精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久电影| 一级av片app| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 欧美3d第一页| 床上黄色一级片| 看免费成人av毛片| 热99re8久久精品国产| 免费av毛片视频| 国产午夜精品论理片| 1024手机看黄色片| 热99在线观看视频| av在线亚洲专区| 国产欧美日韩一区二区精品| 草草在线视频免费看| 亚洲无线观看免费| 99在线视频只有这里精品首页| 搡女人真爽免费视频火全软件 | 变态另类丝袜制服| av天堂中文字幕网| 男人狂女人下面高潮的视频| 色哟哟·www| 国产熟女欧美一区二区| 精品日产1卡2卡| 狂野欧美激情性xxxx在线观看| 欧美三级亚洲精品| 国产91av在线免费观看| 黄色视频,在线免费观看| 国产精品一区二区性色av| 欧美国产日韩亚洲一区| 我要搜黄色片| 在线观看av片永久免费下载| 最近最新中文字幕大全电影3| 女人十人毛片免费观看3o分钟| 亚洲激情五月婷婷啪啪| 亚洲在线自拍视频| 免费人成视频x8x8入口观看| 2021天堂中文幕一二区在线观| 啦啦啦韩国在线观看视频|