• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pathological tissue segmentation by using deep neural networks

    2021-05-10 03:47:40BoPangJianyongWangWeiZhangZhangYi
    TMR Modern Herbal Medicine 2021年2期

    Bo Pang, Jianyong Wang, Wei Zhang, Zhang Yi,

    1 Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, PR China.

    Abstract Objective: The process of manually recognize the lesion tissue in pathological images is a key, laborious and subjective step in tumor diagnosis.An automatic segmentation method is proposed to segment lesion tissue in pathological images.Methods: We present a region of interest (ROI) method to generate a new pre-training dataset for training initial weights on DNNs to solve the overfitting problem.To improve the segmentation performance, a multiscale and multi-resolution ensemble strategy is proposed.Our methods are validated on a public segmentation dataset of colonoscopy images.Results: By using the ROI pre-training method, the Dice score of DeepLabV3 and ResUNet increases from 0.607 to 0.739 and from 0.572 to 0.741, respectively.The ensemble method is used in the testing phase, the Dice score of DeepLabV3 and ResUNet increased to 0.760 and 0.786.Conclusion: The ROI pre-training method and ensemble strategy can be applied to DeepLabV3 and ResUNet to improve the segmentation performance of colonoscopy images.

    Keywords:Pathological images segmentation, Deep neural networks, Pre-training method, Ensemble method.

    Background

    Colorectal cancer is one of the leading causes of cancer-related death in the world [1].And Pathology is the gold standard for many medical programs, especially in cancer diagnosis [2].Therefore, the pathological image diagnosis of the colonoscopy examination has great significance [3].However, it is still a time-consuming and laborious task for pathologists to analyze pathological images.Because the maximum size of pathological images can reach 100,000 × 100,000 pixels and doctors need to examine images pixel by pixel.It is a good solution to relieve the pressure of doctors to develop the computer-aided diagnosis algorithm to automatically segment the lesion tissue in pathological images.

    There has been a lot of work on pathological image segmentation.Early methods are mainly based on feature design technique, such as morphological features [4], fractal features [5], texture features [6], and object-like features [7].In recent years, due to the great success of deep neural networks (DNNs) in the field of computer vision [8,9], there are some attempts to use DNNs for pathological image segmentation.Different from the traditional hand-crafted feature extraction method, the convolutional neural network (CNN) can extract features from different datasets with the powerful abstraction ability.From the pathological image segmentation task [10,11,12], it can be seen that the DNNs based method has better performance than the traditional segmentation method.As we far know, the method [13] is proposed to improve the classification performance by using a novel graph based convolutionαl neural network for the WSL-level prediction.In our work, whole slide images are used for pixel-level segmentation.In the field of image segmentation, fully convolution neural networks (FCNs) [14] is an important job.The DeepLabV3, ResUNet, and so on are all based on the FCNs.

    But all kinds of DNNs need a lot of labeled data.To solve the limitation of data quantity, transfer learning based on learning reuse has been widely used.It has been proved that transfer learning can significantly improve the network performance in the training phase of DNNs.The most common application of transfer learning is the pre-trained weights of the ImageNet dataset.Although it has more than 14 million images and 20,000 classes, the ImageNet dataset does not contain any pathological images.It is uncertain that ImageNet pre-training parameters can be applied to pathological image segmentation tasks as effectively as real image segmentation tasks.In view of this, a new pre-training method is proposed.

    Because of the large size of the pathological image, the pathological image can’t be directly used as the input of the model.Images with high resolution will lead to the difficulty of model training.For highresolution image segmentation tasks, the common method is to cut the whole image into different small regions before segmentation, such as the sliding window method.Some work has studied the application of CNN in pathological image patches [15,16,17,18].However, as shown in Figure 1, the sliding window method often splits the whole lesion tissue, resulting in the loss of the lesion tissue information.To solve this problem, the overlap-tile strategy is proposed in [19] to enlarge the tissue region for better performance in the training phase.We also propose an ensemble strategy in the testing phase to retain more boundary information.

    Figure 1.Pathological Image with the mask.T

    Because of these two problems in the application of DNNs in the pathological image segmentation task, we propose two methods to improve the segmentation performance:

    1) We propose a new pre-training method for pathological image segmentation.A new pretraining dataset is generated by using the label of the pathological image.DNNs are pre-trained on the pre-training dataset to solve the overfitting problem.Finally, the new pre-trained weights are used to fine-tuning the model.

    2) We propose a multi-scale and multi-size ensemble method in the test phase to solve the problem that tissue information loss caused by image cropped operation in the pathological image segmentation task.The resized images and the different size images cropped from the original images are feed into the same model, and the prediction results with different precision are obtained.All results are ensembled to get the final output.

    Methods

    In this part, we describe the pathological image segmentation method.As shown in Figure 2, the proposed method consists of two parts.Firstly, the region of interest (ROI) pre-training method is proposed to generate a new pre-training dataset and get new pre-trained weights.Secondly, the fine-tuning method on the segmentation model by using pre-trained weights is described.Besides, the multi-scale and multi-resolution ensemble method used in the testing phase is proposed.

    Figure 2.Pathological Tissue Segmentation.

    Pre-training method

    When the pathological segmentation model is trained with the ImageNet pre-trained weights, one problem is that the ImageNet dataset doesn't have any medical image.The effectiveness of transfer learning is questionable between data sets with large image differences.To solve this problem, the pre-training method based on ROI is proposed.The new pretraining dataset is generated from the label images.Suppose the label image size isw,?.The first step is to binarize the label images by threshold T .The calculation is:

    where threshold T is defined as a selected constant.After the binary operation, the label images’ pixel value is 0 or 1.

    The second step is to mark different lesion regions in the binary image.The connected domain algorithm is used to generate irregular regions set which are expressed as.The two pixels are marked in the same connected domain when they are adjacent and they have the same pixel value (0 or 1.The minimum circumscribed rectangle set of every connected domain is expressed as.Although each connected domain is separate, the minimum circumscribed rectangle of every connected domain is cross, which causes a lot of repetitive regions.

    The third step is to reduce the number of minimum circumscribed rectangle by using the intersection over union (IOU) strategy.If half of rectangleoverlaps the region, rectangleis deleted and rectangleenlarges to include the rectangle.The third operation generates a new region set which is expressed asAccording to these regions of label images, the same parts of the original image are cropped and added to the new pre-training dataset which is expressed as.The dataset consists of the training set of the original dataset.The dataset is divided into a training set and a validation set according to the ratio of 4:1.All images are resized to 5125123 .The DeepLabV3 and ResUNet are pre-trained on the.The pre-training process of each model is carried out independently and finished when up to 100 epochs, where the batch size is set to 8.Stochastic gradient descent (SGD) optimizer is set as the learning rate starts from 0.001, with a weight decay ofand a momentum of 0.9.

    Fine-tuning method

    In the training phase, the original pathological images need to be cropped, to avoid the difficulty caused by high resolution.To preserve more tissue information, the overlap-tile strategy is used instead of the sliding window method to crop the image.The researchers demonstrated that the region around the target provides useful background information for the segmentation task.The overlap-tile strategy generates a set of fixed size images from the original image and keeps the boundary fine by the mirror flipping the boundary area.

    Suppose the size of the original image isw, ?.Because the size of the original image is not consistent.To facilitate the next step of the calculation, the size of the original image is adjusted towhere the k is defined as the kernel size and the number of images generated by clipping operation is nm.The core slides over the original image by sliding window method.The boundary region is a mirror image of the area with the width p of the kernel.The crop operation generates images composed of the core and the boundary region.Then the whole image’s size after the mirroring operation is:

    The size of the images generated by the overlap-tile strategy is size.The computation of the image size is:

    The cropped operation generates a new dataset which is expressed as.The new dataset is feed into the segmentation model to forecast the positive region.

    The DeepLabV3 and ResUNet are fine-tuned based on the ROI pre-trained weights on the new dataset.The training phase of each model is carried out independently and finished when up to 200 epochs, where the batch size is set to 16.Stochastic gradient descent (SGD) optimizer is set as the learning rate starts from 0.001, with a weight decay ofand a momentum of 0.9.The input of the model is cropped from the original data.The complete algorithm needs to combine the output of the neural network to generate the prediction image with the original image size.The output set of the network is expressed as.And the kernel set which is cropped from output images is expressed as.The calculation formula of the final output is:

    Multi-scal e and multi-resolution model ensemble

    To avoid the loss of lesion tissue information, a multiscale and multi-resolution model ensemble strategy is adopted.

    In the multi-scale ensemble method, the 5125123 images generated by overlap-tile strategy are resized to 384384 and 640640.The strategy provides multi-scale information and help improve performance.In the multi-resolution ensemble method, the images’ sizes generated by overlap-tile strategy are different, such as 512512, 768768, and 832832.When the receptive fields in the image domain are consistent, the input block with low resolution enlarges the receptive field, providing more background information for the network, while the patch with high resolution retains better boundary details.The ensemble method is accomplished by averaging these predictions.The combination of the two methods improves the precision of the model.

    Results

    Experimental setup

    Experiments are implemented by using Pytorch framework which is an open-source library to develop and train deep learning models.All models are trained on a server with Linux OS and hardware of 64GB of RAM, 2 Intel Xeon CPUs, and 4 Nvidia P100 GPUs.The dataset comes from the Digestive-System Pathological Detection and Segmentation Challenge (https://digestpath2019.grand-challenge.org), which is part of the MICCAI 2019 Grand Pathology Challenge.The dataset is divided into three parts: training set, verification set, and test set.The ROI pre-training dataset comes from the training set of the original dataset.The cropped images are divided by 255 to ensure that each pixel value is between 0 and 1.After clipping operation, the number of the three datasets are shown in Table 1.

    Table 1.The number of images in datasets.

    Experimental results

    The results of experiments are introduced.The first experiment verifies the effectiveness of the ROI pretraining method.The second experiment verifies the performance of the multi-scale and multi-resolution model ensemble method.

    Pre-training method

    This part introduces the experimental results of the ROI pre-training method.To suppress the interference, this experiment uses only the training dataset generated by the overlap-tile strategy for training and uses the verification set to verify the model effect.The effectiveness of the strategy is verified on DeepLabV3 and ResUNet.Both DeepLabV3 and ResUNet use Resnet50 as the basic feature to extract subnet.The Dice metric is used to evaluate the effect of the method.The Dice metric measures area overlap between segmentation results and annotations.The mean value and standard deviation value of dice are mainly investigated.The calculation formula of Dice metric is:

    where A is the sets of foreground pixels in the annotation and B is the corresponding sets of foreground pixels in the segmentation result, respectively.

    In the first step, the two models are pre-trained on the ROI pre-training dataset.Due to the diversity of image scales in the pre-training dataset, all images are adjusted to 5125123.The experimental results are shown in Table 2.

    Table 2.Experimental results of the pre-training phase.

    Because the new pre-training dataset greatly reduces the proportion of negative samples, the model can avoid overfitting.In terms of dice value, DeepLabV3 and ResUNet can reach 88% and 90% on the validation dataset.The pre-trained weights generated by this step are used in the next experimental process.

    Table 3.Experimental results of training with ROI pre-training weights.

    The DeepLabV3 and the ResUNet are trained on the overlap-tile cropped Dataset.The training results of the DeepLabV3 and the ResUNet with the ROI pre-trained weights are shown in Table 3.Although pre-trained weights on the ImageNet dataset are widely used in almost all segmentation tasks, the experimental results show that compared with the new pre-training method, the adaptability of ImageNet pre-training parameters in the pathological segmentation task is not strong enough.The results show that the ROI pre-training method is effective and feasible.

    Multi-scale and multi-resolution model ensemble

    This experiment verifies the effectiveness of the multiscale and multi-resolution model ensemble strategy in the testing phase.As shown in Table 4, the images of different scales cannot get better performance than the original scale under the same model.But the multiscale model ensemble method can obtain the information of different scale images and get better performance.

    Table 4.Experimental results of using the multiscale model ensemble method.

    The effectiveness of the multi-resolution image model ensemble method in the test phase is verified.As shown in Table 5, the images with a large size can get a higher dice value.The multi-resolution model ensemble method can obtain more information from different size images and get better performance.

    Table 5.Experimental results of using the multiresolution model ensemble method.

    From the previous multi-scale and multi-resolution experiments, we can assume that the prediction of the model needs more information about the lesion tissue.Both multi-scale and multi-resolution provide additional information prediction to some extent.As shown in Table 6, the ensemble strategy is adopted and better results can be obtained on the test set.The experiment has been repeated based on ResUnet.In the repeated experiments, the Dice score is improved 4.7% and 4.4%.The effect of the ensemble strategy has been confirmed.

    Table 6.Experimental results of using ensemble strategy.

    Discussion

    The automatic segmentation algorithm of colonoscopy tissue is an ideal method for pathology diagnosis.Experiments show that DNNs can be applied to the colonoscopy tissue segmentation with high performance.In many computer vision researches, they used the paradigm of "pre-training and fine-tuning".For example, DNNs can apply the image features learned before training (such as ImageNet) to the target task through the weights [20].This pre-training mode is also suitable for pathological image segmentation [11,15,18].However, the ImageNet dataset does not contain any medical image, and the effect of the ImageNet pre-trained weights in the medical image task is questionable.In the field of medical image, there are also some researches on the selection of pre-trained weights [21][21].Our work that obtains the ROI pretraining dataset from the original data is different from these jobs.In [21], they are still limited to the ImageNet dataset, only introducing new features through the gray change of the images.In [21], although their pretraining data is obtained from the medical data, a series of classifier models are trained on the dataset.Our method uses the medical dataset itself to get the pretrained weights which can better describe the characteristics of medical images.Then the segmentation accuracy can be improved through the normal segmentation model training phase.At the same time, the multi-scale and multi-resolution ensemble strategy provides more context information to the model and further improves the segmentation accuracy.

    Although the ROI pre-training method has been verified in DeepLabV3 and ResUNet, it still needs to be tested on more models and datasets.And we need to test whether the pre-trained weights from one medical dataset still have good performance in another medical pathological segmentation task.Besides, we can try to use post-processing steps to improve the experimental results.

    Conclusion

    We propose a new method for colonoscopy tissue segmentation.Our method uses the training label images to obtain new pre-trained weights to accurately segment the lesion tissue from the pathological images.We also provide more information to model by using a multi-scale and multi-resolution ensemble strategy in the testing phase.By comparing the experimental results, the superiority of our method is proved.Future studies include evaluating our method in more pathological images segmentation task and promoting its application in clinical practice.

    99热全是精品| 精品少妇内射三级| 久久久久久人人人人人| 亚洲精品美女久久av网站| 亚洲精品久久久久久婷婷小说| 桃花免费在线播放| xxxhd国产人妻xxx| 精品少妇一区二区三区视频日本电影 | 老鸭窝网址在线观看| 日韩大片免费观看网站| 超碰成人久久| 男人添女人高潮全过程视频| 黄频高清免费视频| 精品久久久久久电影网| 久久精品国产综合久久久| 亚洲精品国产av蜜桃| 亚洲男人天堂网一区| 又大又黄又爽视频免费| 人人澡人人妻人| 热99国产精品久久久久久7| 美女视频免费永久观看网站| 国产毛片在线视频| 街头女战士在线观看网站| 国产视频首页在线观看| 亚洲欧美一区二区三区国产| 午夜免费男女啪啪视频观看| 久久精品亚洲av国产电影网| 制服人妻中文乱码| 欧美成人精品欧美一级黄| 亚洲国产精品999| 91午夜精品亚洲一区二区三区| 欧美精品国产亚洲| 一级a爱视频在线免费观看| 国产淫语在线视频| 男女边摸边吃奶| 国产男女内射视频| 最近2019中文字幕mv第一页| 另类亚洲欧美激情| 国产一区二区三区av在线| 久久久久人妻精品一区果冻| 性色av一级| 18+在线观看网站| 日韩一本色道免费dvd| 日本猛色少妇xxxxx猛交久久| 女性被躁到高潮视频| 一级爰片在线观看| 一级,二级,三级黄色视频| 国产亚洲欧美精品永久| 狂野欧美激情性bbbbbb| 久久亚洲国产成人精品v| 亚洲av国产av综合av卡| 最近中文字幕高清免费大全6| 激情视频va一区二区三区| 久久亚洲国产成人精品v| 在线观看免费日韩欧美大片| 人人妻人人添人人爽欧美一区卜| 国产无遮挡羞羞视频在线观看| 欧美老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| 精品久久久精品久久久| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| 免费久久久久久久精品成人欧美视频| 三级国产精品片| 熟女av电影| av在线观看视频网站免费| 搡老乐熟女国产| 日韩一区二区三区影片| 黄色一级大片看看| 最近最新中文字幕免费大全7| av电影中文网址| 精品亚洲成a人片在线观看| 久久久久久久久久人人人人人人| 国产成人免费观看mmmm| 久久国内精品自在自线图片| 国产色婷婷99| 午夜日本视频在线| 日本爱情动作片www.在线观看| 天堂俺去俺来也www色官网| 国产成人午夜福利电影在线观看| 午夜av观看不卡| 亚洲精品久久午夜乱码| www.自偷自拍.com| 最近最新中文字幕大全免费视频 | 中文字幕人妻熟女乱码| 亚洲欧美清纯卡通| 热99久久久久精品小说推荐| 精品国产乱码久久久久久小说| 高清不卡的av网站| 97在线人人人人妻| 男的添女的下面高潮视频| √禁漫天堂资源中文www| 黄色视频在线播放观看不卡| 亚洲久久久国产精品| 中文字幕人妻熟女乱码| av国产久精品久网站免费入址| 新久久久久国产一级毛片| 叶爱在线成人免费视频播放| 2018国产大陆天天弄谢| 久久精品夜色国产| 伦精品一区二区三区| 五月伊人婷婷丁香| av国产久精品久网站免费入址| 波多野结衣av一区二区av| 大话2 男鬼变身卡| 美女xxoo啪啪120秒动态图| 久热久热在线精品观看| 香蕉丝袜av| 啦啦啦在线观看免费高清www| 欧美日韩精品网址| 久久精品国产亚洲av涩爱| 国产欧美日韩综合在线一区二区| 婷婷色综合www| 美女午夜性视频免费| 母亲3免费完整高清在线观看 | 国产野战对白在线观看| 一级片免费观看大全| 久久热在线av| 久久久久久久大尺度免费视频| 亚洲成色77777| av免费在线看不卡| 韩国av在线不卡| 日本黄色日本黄色录像| 可以免费在线观看a视频的电影网站 | 成人二区视频| 精品国产一区二区三区久久久樱花| 99热网站在线观看| 亚洲欧美一区二区三区国产| 久久久久国产网址| 中文精品一卡2卡3卡4更新| 九色亚洲精品在线播放| 亚洲,欧美,日韩| 国产极品粉嫩免费观看在线| 男人爽女人下面视频在线观看| 国产av一区二区精品久久| 欧美日韩成人在线一区二区| 久久国产亚洲av麻豆专区| 国产野战对白在线观看| 交换朋友夫妻互换小说| 国产1区2区3区精品| 老女人水多毛片| 中文天堂在线官网| 午夜免费鲁丝| 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| www.av在线官网国产| 男人操女人黄网站| 亚洲精品日本国产第一区| 蜜桃在线观看..| 免费人妻精品一区二区三区视频| 人妻人人澡人人爽人人| 亚洲精品国产av蜜桃| 国产免费现黄频在线看| 国产精品 欧美亚洲| 亚洲精品中文字幕在线视频| 国产成人精品福利久久| 国产精品三级大全| 乱人伦中国视频| 高清黄色对白视频在线免费看| 成人18禁高潮啪啪吃奶动态图| 国产一级毛片在线| 免费观看在线日韩| 黄色怎么调成土黄色| 亚洲av在线观看美女高潮| 制服丝袜香蕉在线| 中文字幕av电影在线播放| av在线老鸭窝| 99香蕉大伊视频| av不卡在线播放| 蜜桃在线观看..| 成人国产麻豆网| 国产精品嫩草影院av在线观看| 熟女av电影| 精品一区二区三区四区五区乱码 | 国产精品免费大片| 免费黄网站久久成人精品| 香蕉丝袜av| 久久ye,这里只有精品| 纯流量卡能插随身wifi吗| 久久人妻熟女aⅴ| 成人漫画全彩无遮挡| 男人舔女人的私密视频| 最近最新中文字幕大全免费视频 | 一级毛片电影观看| 在线观看人妻少妇| 久久精品亚洲av国产电影网| 好男人视频免费观看在线| 午夜免费观看性视频| 中文字幕人妻熟女乱码| 久久久久国产精品人妻一区二区| 99国产综合亚洲精品| 欧美国产精品一级二级三级| 亚洲少妇的诱惑av| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 国产精品不卡视频一区二区| 一区二区av电影网| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| 青春草亚洲视频在线观看| 十八禁高潮呻吟视频| 久久精品国产亚洲av高清一级| av一本久久久久| 三上悠亚av全集在线观看| 黄频高清免费视频| 免费播放大片免费观看视频在线观看| videossex国产| 波多野结衣一区麻豆| 精品久久久久久电影网| 久久久精品94久久精品| 亚洲精品国产一区二区精华液| 黄片播放在线免费| 国产精品嫩草影院av在线观看| 国产乱来视频区| 新久久久久国产一级毛片| 尾随美女入室| 日本免费在线观看一区| 午夜av观看不卡| 多毛熟女@视频| 最近中文字幕高清免费大全6| 欧美日韩精品网址| 九九爱精品视频在线观看| 80岁老熟妇乱子伦牲交| 国产av码专区亚洲av| 国产极品天堂在线| 女人精品久久久久毛片| 美女福利国产在线| 久久婷婷青草| 欧美日韩视频精品一区| 日韩欧美精品免费久久| 国产在线视频一区二区| 国产亚洲午夜精品一区二区久久| 欧美成人午夜免费资源| 久久99精品国语久久久| 亚洲四区av| 国产日韩欧美在线精品| 国产av精品麻豆| 看十八女毛片水多多多| 女人久久www免费人成看片| 亚洲国产av影院在线观看| 久久久久网色| 久久久久国产网址| 午夜久久久在线观看| 欧美日韩亚洲高清精品| 成人手机av| 丰满少妇做爰视频| 亚洲久久久国产精品| 免费不卡的大黄色大毛片视频在线观看| 99热全是精品| 国产福利在线免费观看视频| 久久精品国产综合久久久| 国产av一区二区精品久久| 视频区图区小说| 丝袜脚勾引网站| 性高湖久久久久久久久免费观看| 国产成人av激情在线播放| 久久久国产欧美日韩av| 亚洲经典国产精华液单| 老鸭窝网址在线观看| 搡女人真爽免费视频火全软件| 亚洲天堂av无毛| 激情五月婷婷亚洲| 欧美中文综合在线视频| 成人18禁高潮啪啪吃奶动态图| 亚洲综合色网址| 国产成人免费无遮挡视频| 亚洲三区欧美一区| 久久婷婷青草| 成人免费观看视频高清| av网站免费在线观看视频| 一区在线观看完整版| 大香蕉久久成人网| av片东京热男人的天堂| 国产精品一区二区在线不卡| 亚洲国产欧美网| 免费黄色在线免费观看| 一级a爱视频在线免费观看| 欧美成人午夜免费资源| 99国产综合亚洲精品| 久久久久人妻精品一区果冻| 丁香六月天网| 香蕉国产在线看| 中文字幕精品免费在线观看视频| 国产白丝娇喘喷水9色精品| 久久久精品94久久精品| 一个人免费看片子| 亚洲熟女精品中文字幕| 男人爽女人下面视频在线观看| 女人久久www免费人成看片| 国产激情久久老熟女| 国产精品免费视频内射| 亚洲av日韩在线播放| 观看美女的网站| 亚洲三级黄色毛片| 啦啦啦在线观看免费高清www| 在线亚洲精品国产二区图片欧美| 在线观看免费日韩欧美大片| 99九九在线精品视频| 亚洲久久久国产精品| 男女国产视频网站| 久久久国产欧美日韩av| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三区在线| 国产黄频视频在线观看| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 国产一区二区三区综合在线观看| 亚洲情色 制服丝袜| 免费少妇av软件| 欧美日韩一级在线毛片| 999精品在线视频| 亚洲精品自拍成人| av电影中文网址| 成年人免费黄色播放视频| 国产精品 欧美亚洲| 男女午夜视频在线观看| 看非洲黑人一级黄片| 婷婷色av中文字幕| 中文欧美无线码| 午夜激情av网站| 熟女电影av网| 春色校园在线视频观看| 久久国产精品大桥未久av| 午夜免费鲁丝| 午夜福利,免费看| 久久ye,这里只有精品| 精品国产一区二区三区四区第35| 丝袜人妻中文字幕| 99热网站在线观看| 欧美激情高清一区二区三区 | 国产欧美日韩一区二区三区在线| 亚洲,欧美,日韩| 国产精品成人在线| av天堂久久9| 欧美日韩亚洲高清精品| 制服丝袜香蕉在线| 搡老乐熟女国产| av线在线观看网站| 国产精品av久久久久免费| 亚洲色图 男人天堂 中文字幕| 日日爽夜夜爽网站| 国产一级毛片在线| 久久国产精品大桥未久av| 极品人妻少妇av视频| 国产精品久久久久久av不卡| 欧美亚洲日本最大视频资源| 久久鲁丝午夜福利片| 国产一区二区三区av在线| 色视频在线一区二区三区| 精品国产超薄肉色丝袜足j| 99re6热这里在线精品视频| 免费观看a级毛片全部| 亚洲 欧美一区二区三区| 久久久久久人人人人人| 国产一区二区三区综合在线观看| 久久综合国产亚洲精品| 日韩在线高清观看一区二区三区| 国产片内射在线| 青春草视频在线免费观看| 日韩三级伦理在线观看| 巨乳人妻的诱惑在线观看| 色婷婷av一区二区三区视频| 亚洲伊人色综图| 最黄视频免费看| 国产精品久久久久久精品古装| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 亚洲一区二区三区欧美精品| 最近的中文字幕免费完整| 精品人妻偷拍中文字幕| a级毛片黄视频| 人体艺术视频欧美日本| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| 欧美人与性动交α欧美软件| 国产熟女欧美一区二区| 日韩免费高清中文字幕av| 你懂的网址亚洲精品在线观看| 久久韩国三级中文字幕| 久久久久久久久久久免费av| 一二三四中文在线观看免费高清| 伦理电影大哥的女人| 男男h啪啪无遮挡| 免费大片黄手机在线观看| 黄片播放在线免费| 日韩,欧美,国产一区二区三区| 91在线精品国自产拍蜜月| 黄片小视频在线播放| 欧美少妇被猛烈插入视频| 青春草视频在线免费观看| 午夜激情久久久久久久| 成人午夜精彩视频在线观看| 一级毛片电影观看| 久久久欧美国产精品| 男女国产视频网站| 91精品三级在线观看| 亚洲av电影在线观看一区二区三区| 另类亚洲欧美激情| 人人澡人人妻人| 欧美日本中文国产一区发布| 中文字幕av电影在线播放| 老汉色av国产亚洲站长工具| 美女福利国产在线| 免费观看在线日韩| 亚洲精品日本国产第一区| 男女下面插进去视频免费观看| www日本在线高清视频| 寂寞人妻少妇视频99o| av电影中文网址| 国产精品av久久久久免费| 亚洲欧美清纯卡通| 日韩人妻精品一区2区三区| 美女国产高潮福利片在线看| 交换朋友夫妻互换小说| 少妇熟女欧美另类| 欧美日韩精品成人综合77777| 婷婷色av中文字幕| 久久精品国产自在天天线| 国产无遮挡羞羞视频在线观看| 青草久久国产| 韩国精品一区二区三区| 美女国产视频在线观看| av在线app专区| 久久久久视频综合| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧洲国产日韩| 国产日韩欧美亚洲二区| 午夜久久久在线观看| 少妇的逼水好多| 男女国产视频网站| 免费在线观看完整版高清| 午夜免费鲁丝| 亚洲国产日韩一区二区| 午夜福利视频精品| 久久国产精品大桥未久av| 国产精品熟女久久久久浪| av网站免费在线观看视频| 精品少妇一区二区三区视频日本电影 | 亚洲第一区二区三区不卡| 日本欧美国产在线视频| 男女下面插进去视频免费观看| 亚洲国产色片| 亚洲av中文av极速乱| 免费看av在线观看网站| 日本午夜av视频| 999久久久国产精品视频| 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久| 欧美日韩亚洲国产一区二区在线观看 | 久久午夜综合久久蜜桃| 91精品三级在线观看| 国产免费视频播放在线视频| 黄频高清免费视频| 久久久久国产精品人妻一区二区| 巨乳人妻的诱惑在线观看| 国产精品偷伦视频观看了| 国产精品久久久久久精品古装| 亚洲美女视频黄频| 精品亚洲成国产av| 亚洲综合色网址| 久久毛片免费看一区二区三区| xxxhd国产人妻xxx| 人人妻人人澡人人爽人人夜夜| 亚洲国产最新在线播放| 亚洲欧美一区二区三区黑人 | 五月伊人婷婷丁香| 亚洲国产精品国产精品| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 激情五月婷婷亚洲| 九草在线视频观看| 日韩免费高清中文字幕av| 精品福利永久在线观看| 国产精品一二三区在线看| 欧美bdsm另类| 十八禁高潮呻吟视频| 精品久久蜜臀av无| 国产精品不卡视频一区二区| 国产av国产精品国产| 色94色欧美一区二区| 亚洲精品国产av成人精品| 1024视频免费在线观看| 中文字幕制服av| 亚洲av男天堂| 免费少妇av软件| 国产一区二区 视频在线| 伦理电影大哥的女人| 一级毛片我不卡| 午夜福利网站1000一区二区三区| 婷婷成人精品国产| 99久久中文字幕三级久久日本| 精品一区二区三卡| 黄片播放在线免费| 波野结衣二区三区在线| 欧美日韩精品网址| 日产精品乱码卡一卡2卡三| 国产精品久久久久久久久免| 最近最新中文字幕免费大全7| 久久久欧美国产精品| 精品少妇久久久久久888优播| 亚洲成色77777| 成年人午夜在线观看视频| 国产黄频视频在线观看| 韩国精品一区二区三区| 亚洲av福利一区| 高清视频免费观看一区二区| 亚洲国产欧美网| 岛国毛片在线播放| 9色porny在线观看| 考比视频在线观看| 中国三级夫妇交换| 精品亚洲乱码少妇综合久久| 女人精品久久久久毛片| 日日啪夜夜爽| 超色免费av| 女性被躁到高潮视频| 国产男女超爽视频在线观看| 观看美女的网站| 尾随美女入室| 欧美中文综合在线视频| 久久国产精品男人的天堂亚洲| 精品久久久久久电影网| 男人舔女人的私密视频| 男人操女人黄网站| 韩国高清视频一区二区三区| 男女啪啪激烈高潮av片| 美女国产高潮福利片在线看| 一级毛片黄色毛片免费观看视频| 毛片一级片免费看久久久久| 伦理电影大哥的女人| 看免费av毛片| 少妇被粗大的猛进出69影院| 国产精品免费大片| 精品国产一区二区三区四区第35| 爱豆传媒免费全集在线观看| 涩涩av久久男人的天堂| 一级毛片 在线播放| 日本91视频免费播放| 又大又黄又爽视频免费| 亚洲欧美清纯卡通| 中文字幕人妻丝袜制服| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 一级毛片我不卡| av有码第一页| 久久97久久精品| 国产一区二区三区综合在线观看| 精品卡一卡二卡四卡免费| 老司机影院毛片| 国产乱来视频区| 国产麻豆69| 免费看不卡的av| 99久久综合免费| 国产成人精品久久二区二区91 | 亚洲国产欧美日韩在线播放| 爱豆传媒免费全集在线观看| a级片在线免费高清观看视频| 大片免费播放器 马上看| 18在线观看网站| 亚洲图色成人| 成人影院久久| 日本-黄色视频高清免费观看| 国产精品熟女久久久久浪| 在线观看免费日韩欧美大片| 国产精品久久久av美女十八| 国产精品女同一区二区软件| 免费观看在线日韩| 妹子高潮喷水视频| 亚洲成国产人片在线观看| 久久毛片免费看一区二区三区| 一二三四中文在线观看免费高清| 视频在线观看一区二区三区| 熟妇人妻不卡中文字幕| 亚洲内射少妇av| 女人久久www免费人成看片| 精品少妇一区二区三区视频日本电影 | 久久免费观看电影| 久久精品国产a三级三级三级| 日韩av免费高清视频| 岛国毛片在线播放| 亚洲五月色婷婷综合| 国产一区二区在线观看av| 国产又色又爽无遮挡免| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美清纯卡通| 欧美亚洲 丝袜 人妻 在线| 久久精品国产鲁丝片午夜精品| 美女xxoo啪啪120秒动态图| 国产av码专区亚洲av| 另类精品久久| 一边亲一边摸免费视频| 岛国毛片在线播放| 久久精品夜色国产| 少妇的丰满在线观看| 亚洲第一青青草原| 亚洲av免费高清在线观看| 亚洲欧美成人综合另类久久久| 久久毛片免费看一区二区三区| 精品少妇内射三级| 成人手机av| 国产成人精品一,二区| xxxhd国产人妻xxx| 亚洲精品自拍成人| 久久久国产欧美日韩av| 人人澡人人妻人| 午夜福利网站1000一区二区三区| 亚洲av在线观看美女高潮| 成人影院久久| 午夜福利在线观看免费完整高清在| 熟妇人妻不卡中文字幕| 伦理电影免费视频| 免费观看在线日韩| 丝瓜视频免费看黄片|