• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      高壓電纜瓷套式終端故障導(dǎo)致瓷套管爆裂機(jī)理分析

      2021-05-08 06:31:28李紹斌彭勇唐文博楊政范芳坤
      湖南電力 2021年2期
      關(guān)鍵詞:電弧等離子體套管

      李紹斌, 彭勇, 唐文博, 楊政, 范芳坤

      (長(zhǎng)纜電工科技股份有限公司, 湖南 長(zhǎng)沙410205)

      0 引言

      目前高壓電纜含絕緣填充劑的套管終端外絕緣主要有瓷套管絕緣和復(fù)合套管絕緣兩種類型。 其中, 瓷套式電纜終端外絕緣為陶瓷材料制造, 陶瓷材料作為最為傳統(tǒng)的無機(jī)絕緣材料, 相對(duì)于有機(jī)絕緣材料, 穩(wěn)定性好, 且其擁有出色的絕緣性、 耐侯性和高抗壓性等優(yōu)勢(shì), 在電力系統(tǒng)中得到廣泛運(yùn)用[1]。 但由于電力電纜及附件采用封閉式緊湊型結(jié)構(gòu)[2], 高壓瓷套式終端發(fā)生內(nèi)絕緣擊穿故障時(shí),套管內(nèi)部壓力劇增[3], 可能導(dǎo)致瓷套爆裂。 在故障應(yīng)力的作用下, 釉面瓷片和其他碎片飛散到周圍區(qū)域, 對(duì)相鄰設(shè)備造成傷害[4]。

      此前, 有學(xué)者專門針對(duì)高壓瓷套式終端站的防爆措施開展了研究工作, 指出瓷套終端防爆的必要性, 并提出了相應(yīng)的措施, 但并未對(duì)瓷套終端故障導(dǎo)致瓷套爆裂的機(jī)理進(jìn)行分析。 高壓電纜終端套管爆裂是一系列復(fù)雜物理化學(xué)綜合作用的結(jié)果。 放電電弧釋放的巨大能量, 導(dǎo)致固體材料斷裂, 以及密封空間內(nèi)氣體迅速膨脹[3]。 瓷套管爆裂與高溫和高壓力兩個(gè)因素相關(guān)。

      本文主要以目前市場(chǎng)上廣泛運(yùn)用的日式結(jié)構(gòu)的高壓電纜瓷套故障中產(chǎn)生的溫度和壓力對(duì)瓷套管爆裂的影響進(jìn)行分析, 探究瓷套爆裂的機(jī)理, 為產(chǎn)品設(shè)計(jì)及運(yùn)行維護(hù)提供依據(jù)。

      1 套管爆裂影響因素分析

      高壓瓷套管終端內(nèi)部電纜發(fā)生擊穿故障后會(huì)對(duì)終端產(chǎn)生不同結(jié)果的影響, 輕則造成終端密封失效, 導(dǎo)致填充劑泄漏, 重則造成瓷套管爆裂, 下面詳細(xì)分析造成套管爆裂的原因。

      1.1 日式套管終端結(jié)構(gòu)及故障類型

      高壓電纜日式套管終端的結(jié)構(gòu)特點(diǎn)是在應(yīng)力控制單元上增加一套機(jī)械的彈簧裝置以保證應(yīng)力控制單元與電纜之間截面上的壓力恒定, 如圖1 所示,并且在應(yīng)力控制單元外面多了一個(gè)應(yīng)力錐罩, 將應(yīng)力錐與絕緣劑隔離[5], 此類終端在我國(guó)有大量的實(shí)際運(yùn)用。

      圖1 日式套管終端結(jié)構(gòu)及常見擊穿點(diǎn)

      日式套管終端內(nèi)電纜絕緣被擊穿后對(duì)大地放電有兩大類途徑。

      故障類型1: 第一種途徑是擊穿部位位于應(yīng)力錐下方, 電流沿著半導(dǎo)電屏蔽端口和銅網(wǎng)再經(jīng)過尾管接地對(duì)地放電, 電流路徑如圖2 所示。

      圖2 故障類型1 電流路徑

      故障類型2: 另一種途徑為擊穿點(diǎn)位于應(yīng)力錐上部, 電纜絕緣以及應(yīng)力錐罩甚至應(yīng)力錐絕緣同時(shí)被擊穿, 電流沿著應(yīng)力錐罩內(nèi)嵌件對(duì)地放電, 如圖3 所示。

      圖3 故障類型2 電流路徑

      1.2 電弧能量的計(jì)算

      當(dāng)電纜絕緣擊穿并對(duì)地短路放電時(shí), 其集中參數(shù)等效電路簡(jiǎn)化模型如圖4 所示。

      圖4 終端為單相故障, U0為電路相電壓64 kV,Z0為高架線路及電纜電抗, R 為終端擊穿點(diǎn)到地的等效電阻。 于是單相對(duì)地短路時(shí)電流Isc為:

      式中, Z0為零序電抗, 查閱相關(guān)資料后確定高架線零序電抗為2.2 Ω/km[6]; R 為電流可能經(jīng)過路徑的電阻, 包括擊穿電弧電阻、 接地電阻、 銅網(wǎng)、編織帶等電阻。 擊穿電弧這一部分的電阻可以使用Cassie 模型[7]進(jìn)行計(jì)算:

      式中, u、 i 分別為瞬時(shí)電弧電壓與瞬時(shí)電弧電流;E0為電弧暫態(tài)穩(wěn)定電壓; τ 為時(shí)間常數(shù), 在電流大于1 000 A 的條件下, 取為0.000 1 s[7]。 經(jīng)過計(jì)算,求得gc=2.4 Ω, 接地電阻一般為10 Ω 以內(nèi)[8], 其他銅網(wǎng)、 銅編織帶、 鋁護(hù)套以及錐罩內(nèi)嵌件等, 電阻值相對(duì)于線路電抗都較小, 因此忽略不計(jì)。

      假設(shè)架空線的距離為1 km, 斷路器的反應(yīng)時(shí)間為0.1 s, 則擊穿電弧固化的能量按下式估算:

      式中, E 為電弧固化的能量, t0為短路持續(xù)時(shí)間,計(jì)算可得電弧能量約為9.4×103kj, 按1 g TNT 爆炸釋放能量4 184 J 計(jì)算[9], 電弧總能量約為2 kg TNT 爆炸釋放的能量。

      從以上計(jì)算可以看出, 故障時(shí)產(chǎn)生的電弧擁有巨大的能量, 對(duì)電弧周圍的絕緣物質(zhì)甚至是金屬造成破壞。 在密閉空間內(nèi), 超高的溫度造成絕緣物質(zhì)氣化裂解會(huì)產(chǎn)生較高的壓力, 對(duì)終端的結(jié)構(gòu)造成破壞。

      1.3 電弧等離子體壓強(qiáng)計(jì)算

      在電纜絕緣被擊穿之后, 介質(zhì)失去絕緣性能,形成導(dǎo)電擊穿通道, 如圖5 所示。 因此, 此時(shí)通道中的初始?jí)毫礊閮?nèi)部等離子體的壓力, 要計(jì)算其壓力需了解等離子體的狀態(tài)類型。

      圖5 擊穿點(diǎn)示意圖

      等離子體一共有四類存在狀態(tài), 分別為完全電離等離子體Ⅰ, 部分電離弱耦合等離子體Ⅱ, 強(qiáng)簡(jiǎn)并等離子體Ⅲ, 強(qiáng)耦合等離子體Ⅳ[11], 如圖6 所示。 不同狀態(tài)的等離子體性質(zhì)差別很大, 為了得到等離子的詳細(xì)的數(shù)據(jù), 將對(duì)等離子體的簡(jiǎn)并態(tài)首先進(jìn)行分析, 粒子簡(jiǎn)并度參數(shù)可用α 表示如下:

      式中, n 為粒子數(shù)密度; h 為普朗克常數(shù); m 為粒子質(zhì)量; k 為玻爾茲曼常數(shù); 可以求出, α <<1,模型接近于高溫稀薄等離子體的模型。

      圖6 四種不同類型的等離子體狀態(tài)

      因此等離子體的壓力可以按照以下方程來計(jì)算:

      式中, P 為壓強(qiáng); ε 為比內(nèi)能; n 為粒子數(shù)密度; γ為氣體比熱比, 與氣體的內(nèi)部自由度相關(guān), 如果氣體有q 個(gè)自由度, 則γ = 1 + 2/q; 對(duì)于單原子分子, q = 3, γ = 5/3; 對(duì) 于 雙 原 子 分 子, q = 5,γ=7/5; T 為瞬態(tài)溫度, 可以利用等離子體比熱容估算, 于是溫度T 為:

      式中, W 為總能量; C 為等離子體的比熱容, 范圍為5 000~25 000 J/ (kg·℃)[12]; m 為擊穿通道的質(zhì)量。 根據(jù)事故后的現(xiàn)象分析, 電纜絕緣的擊穿孔徑為30 mm[13], 根據(jù)擊穿XLPE 的體積密度可以估算出等離子體的溫度T 的范圍為3 × 104~1.5×105℃, 因此等離子體產(chǎn)生的壓力范圍約為4.8×104~2.4×105MPa。 等離子體會(huì)沖出擊穿通道并會(huì)繼續(xù)裂解周圍的絕緣物質(zhì), 造成應(yīng)力錐撕裂和燒蝕產(chǎn)生混合氣體。

      1.4 瓷套受內(nèi)壓強(qiáng)度校核

      從計(jì)算可以看到, 等離子體的初始?jí)毫Ψ浅V撸?會(huì)對(duì)終端的結(jié)構(gòu)造成巨大的影響, 因此, 有必要校核高壓瓷套式終端的結(jié)構(gòu)強(qiáng)度, 了解瓷套終端的薄弱點(diǎn)。

      如圖7 所示, 絕緣體擊穿產(chǎn)生氣體造成瓷套內(nèi)部壓力增大時(shí), 頂部法蘭的強(qiáng)度較高, 因此只計(jì)算比較頂蓋與瓷套壁面失效的內(nèi)部壓力。

      圖7 頂蓋環(huán)形受力面

      1) 對(duì)于頂蓋破壞受力計(jì)算, 將瓷套終端的頂部簡(jiǎn)化為由平面環(huán)形端蓋與若干顆不銹鋼螺栓壓緊密封, 螺栓有效面積Ae:

      式中, de為螺栓的有效直徑, mm。

      于是螺栓總的抗拉力F 為:

      式中, σb為螺栓的屈服強(qiáng)度, nL為螺栓數(shù)量, 因此破壞端蓋的壓強(qiáng)約為:

      式中, S端為環(huán)形端蓋受壓的面積。

      如圖7 對(duì)于市場(chǎng)主流運(yùn)用的110 kV 日式套管終端, 頂蓋的破壞壓強(qiáng)約為50 MPa。

      2) 對(duì)于瓷套破壞受力計(jì)算, 將瓷套簡(jiǎn)化為無傘裙的厚壁壓力容器進(jìn)行計(jì)算。 在厚壁圓筒中, 筒體處于三向應(yīng)力狀態(tài), 分別為環(huán)向應(yīng)力σθ為拉應(yīng)力, 徑向應(yīng)力σr為壓應(yīng)力, 沿壁厚非均勻分布以及σz軸向應(yīng)力, 其大小介于環(huán)向應(yīng)力與徑向應(yīng)力之間, 為沿壁厚均勻分布[14]。 由于陶瓷為脆性材料, 考慮用第一強(qiáng)度理論校核, 故校核其環(huán)向應(yīng)力σθ。

      為了簡(jiǎn)化計(jì)算, 忽略套管的傘裙結(jié)構(gòu), 根據(jù)拉美公式, 瓷套厚壁圓筒僅內(nèi)壓作用時(shí)內(nèi)壁的環(huán)向應(yīng)力為:

      式中, pi為瓷套內(nèi)壓, K 為瓷套去除裙邊的外徑與內(nèi)徑之比, 由于瓷套不是規(guī)則圓筒, 而故障經(jīng)常發(fā)生在應(yīng)力錐部位, 故以應(yīng)力錐處作為計(jì)算截面取K=1.32, 而陶瓷的抗拉強(qiáng)度約為160 MPa, 而瓷套的許用應(yīng)力[σt] 一般取拉伸強(qiáng)度的0.33 倍,因此當(dāng)σθ≥[σt] 認(rèn)為瓷套受到破壞。 將以上數(shù)據(jù)代入式(10) 得到pi約為13.1 MPa。 由此可見高壓瓷套管終端的薄弱位置在于瓷套體本身。

      1.5 等離子體壓力對(duì)不同擊穿模型的影響

      當(dāng)擊穿點(diǎn)位于半導(dǎo)電口附近或者以下時(shí), 擊穿通道與錐托空間與尾管空間相連通, 因此當(dāng)此處發(fā)生擊穿時(shí), 通道的等離子體壓力能夠得以迅速釋放, 會(huì)很大程度減小對(duì)尾管和瓷套的沖擊。 錐托和腔體的空間體積為擊穿通道空間的數(shù)百倍, 溫度會(huì)下降到1 000℃以內(nèi), 由于P∝T/V, 因此尾管比較難發(fā)生破壞。 尾管還會(huì)流經(jīng)大電流和受電弧影響,因此受到溫度影響尾管的強(qiáng)度會(huì)減弱, 不能抵擋住混合氣體的沖擊, 或者直接被電弧融化。

      在故障類型2 中, 擊穿點(diǎn)在應(yīng)力錐或以上部位, 當(dāng)擊穿點(diǎn)位于應(yīng)力錐絕緣時(shí), 電場(chǎng)會(huì)將應(yīng)力錐罩同時(shí)擊穿, 電流通過擊穿通道和應(yīng)力錐罩內(nèi)嵌件對(duì)地短路放電, 同時(shí)在擊穿通道產(chǎn)生極高的溫度和巨大的壓力, 而此處不與應(yīng)力錐托所在的空間連通, 因此壓力無處釋放, 只能通過沖擊對(duì)周圍的部件而進(jìn)行釋放, 而硅油作為不可壓縮液體, 不能起到緩沖作用, 因此瓷套很可能在這種沖擊下發(fā)生破壞。

      當(dāng)擊穿點(diǎn)位于應(yīng)力錐上部電纜絕緣與硅油接觸處時(shí), 其情況更惡劣, 由于一般情況下瓷套內(nèi)徑與高度成反比, 因此擊穿點(diǎn)越高沖擊波就越容易作用于瓷套。 因此當(dāng)擊穿點(diǎn)位于硅油界面時(shí), 瓷套更容易發(fā)生爆裂。

      1.6 溫度對(duì)高壓瓷套終端的影響

      電介質(zhì)被擊穿會(huì)伴隨著高溫使擊穿通道中的介質(zhì)擊穿電離, 而通道邊緣會(huì)產(chǎn)生碳化現(xiàn)象, 因此,在擊穿通道的邊緣, 絕緣物質(zhì)的溫度必然為其碳化溫度, 于是可以把橡膠的碳化溫度作為邊界條件,利用Simulation 有限元分析軟件[15-16]對(duì)擊穿過程進(jìn)行熱分析。

      在故障類型2 中擊穿位置離瓷套壁更近。 電流沿著應(yīng)力錐嵌件對(duì)地放電, 電流流過應(yīng)力錐嵌件會(huì)產(chǎn)生大量熱量, 通過傳導(dǎo)傳遞到四周, 但無論中心溫度如何, 絕緣物質(zhì)的邊緣溫度必定為其碳化的臨界溫度, 因此以擊穿邊緣溫度為碳化溫度(500℃),其他部位初始溫度為20 ℃為邊界條件做仿真分析,具體仿真參數(shù)見表1。

      表1 仿真參數(shù)

      模擬擊穿后穩(wěn)定10 s 擊穿通道周圍溫度分布情況, 其結(jié)果如圖8 所示。

      圖8 模擬擊穿仿真結(jié)果

      根據(jù)圖8 顯示, 當(dāng)應(yīng)力錐罩擊穿時(shí), 10 s 后通過錐罩和硅油傳遞到瓷套的溫度僅為20 ℃, 幾乎沒有升溫。 由此可見擊穿短時(shí)間內(nèi)熱量在終端內(nèi)部的瞬時(shí)傳導(dǎo)情況很差。 應(yīng)力錐罩的材料為環(huán)氧樹脂, 其拉伸強(qiáng)度約為80 MPa, 在此壓力下應(yīng)力錐罩已經(jīng)分解破壞, 高溫高壓等離子體會(huì)直接沖擊瓷套, 對(duì)瓷套產(chǎn)生不利影響。

      由于高壓電纜擊穿后持續(xù)發(fā)熱, 瓷套厚壁圓筒還會(huì)受到熱應(yīng)力作用, 其內(nèi)表面環(huán)向的熱應(yīng)力表達(dá)式為:

      下面分析當(dāng)高壓氣體沖擊瓷套壁時(shí), 瓷套壁僅在溫度的作用下受力情況。 仿真條件為1 000 ℃的氣體作用在瓷套內(nèi)壁上1 s 之后, 忽略沖擊壓力影響, 瓷套壁的受力情況, 結(jié)果如圖9 所示。 從結(jié)果可以看出瓷套壁最大應(yīng)力超過了900 MPa, 超過了瓷套材料的拉伸強(qiáng)度, 因此瓷套在熱沖擊壓力的作用下會(huì)發(fā)生爆裂。

      圖9 溫度沖擊仿真效果

      2 結(jié)果分析

      1) 終端絕緣物質(zhì)被擊穿后電離的等離子體壓力非常大, 將應(yīng)力錐撕裂開, 再通過錐罩和絕緣劑對(duì)瓷套產(chǎn)生沖擊或者在絕緣劑內(nèi)直接產(chǎn)生沖擊波破壞瓷套。

      2) 根據(jù)瞬態(tài)傳熱仿真分析, 不考慮壓力沖擊, 由于終端內(nèi)部物質(zhì)大多傳熱性能差, 單純溫度傳遞速度較慢, 擊穿部位的溫度難以影響到瓷套壁。

      3) 高壓套管式終端的結(jié)構(gòu)薄弱點(diǎn)在瓷套管,當(dāng)瓷套內(nèi)外溫差達(dá)到一定程度時(shí), 瓷套會(huì)在熱應(yīng)力的作用下產(chǎn)生破壞, 因此瓷套管的高低溫循環(huán)性能是其重要的指標(biāo)之一。 如果擊穿時(shí)高溫等離子體沖擊到瓷套內(nèi)壁, 則瓷套在溫度和壓力的作用下會(huì)發(fā)生破壞爆裂。

      4) 終端內(nèi)電纜不同位置擊穿導(dǎo)致不同結(jié)果,在應(yīng)力錐以上的部位擊穿易導(dǎo)致爆裂現(xiàn)象, 而應(yīng)力錐半導(dǎo)電以下部位擊穿則不易導(dǎo)致套管爆裂。

      3 結(jié)語

      本文根據(jù)以往的瓷套終端爆裂事故, 通過計(jì)算分析擊穿電弧帶來的一系列影響, 得出了高壓電纜日式終端爆裂的原因: 電纜終端應(yīng)力錐絕緣上部擊穿時(shí)絕緣物質(zhì)電離會(huì)產(chǎn)生高溫高壓等離子體, 進(jìn)而會(huì)氣化裂解周圍材料產(chǎn)生高溫高壓的混合氣體, 高溫高壓氣體的壓力會(huì)通過絕緣油傳遞到瓷套壁上,使瓷套壁發(fā)生爆裂破壞。

      高壓瓷套式有著優(yōu)良的耐候性、 絕緣性和力學(xué)性能, 但由于發(fā)生故障時(shí)可能會(huì)導(dǎo)致瓷套管爆裂,威脅到人員財(cái)產(chǎn)安全而限制了其應(yīng)用場(chǎng)景。 通過對(duì)瓷套管爆裂的機(jī)理分析, 為將來的電力建設(shè)中應(yīng)用高壓瓷套管終端采取一定的防爆措施提供參考作用, 減少故障帶來的次生損失, 提升高壓瓷套管終端的應(yīng)用場(chǎng)景。

      猜你喜歡
      電弧等離子體套管
      故障電弧探測(cè)器與故障電弧保護(hù)裝置在工程中的應(yīng)用分析
      損傷套管引起的過套管電阻率測(cè)井異常分布特征分析
      云南化工(2021年10期)2021-12-21 07:33:34
      大宇棄置井?244.5mm套管切割打撈作業(yè)實(shí)踐與認(rèn)識(shí)
      海洋石油(2021年3期)2021-11-05 07:43:02
      民用建筑給排水預(yù)埋套管施工
      連續(xù)磁活動(dòng)對(duì)等離子體層演化的影響
      基于低溫等離子體修飾的PET/PVC浮選分離
      2219鋁合金激光電弧復(fù)合焊接及其溫度場(chǎng)的模擬
      等離子體種子處理技術(shù)介紹
      航空電氣系統(tǒng)中故障電弧的分析
      電子制作(2017年22期)2017-02-02 07:10:15
      跟管鉆進(jìn)用套管技術(shù)研究
      潼南县| 施秉县| 嘉禾县| 隆尧县| 南汇区| 穆棱市| 丹阳市| 方城县| 花莲市| 福贡县| 额敏县| 阿克| 康保县| 西畴县| 苗栗市| 虞城县| 蓬溪县| 徐州市| 石城县| 且末县| 增城市| 台南市| 苏尼特右旗| 民乐县| 黄陵县| 武威市| 沙洋县| 晴隆县| 天水市| 栾城县| 桃园县| 灵武市| 砀山县| 喜德县| 江山市| 宁远县| 于田县| 庆云县| 淄博市| 桦甸市| 玉龙|