• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CO2 High Temperature Corrosion and Its Prevention of Chromia Forming Fe-base Alloys

    2021-05-08 08:52:34JianqiangZHANG
    表面技術(shù) 2021年4期
    關(guān)鍵詞:混合氣體滲碳氯化

    Jian-qiang ZHANG

    腐蝕與防護(hù)

    CO2High Temperature Corrosion and Its Prevention of Chromia Forming Fe-base Alloys

    (School of Materials Science & Engineering, University of New South Wales, Sydney NSW2052, Australia)

    high temperature corrosion; CO2; chromia-forming alloys; carburisation; alloying

    Introduction

    High temperature CO2corrosion problem can be traced back to early 1950’s when CO2was used as a coolant in gas-cooled nuclear reactors[1-4]. Recently, interest in this topic has been regained because of its relevance to oxyfuel combustion[5-6]. In this process, coal is burnt in pure oxygen rather than air, so the flue gas contains mainly CO2and water vapour, which makes CO2collection and sequestration feasible but raises corrosion problem. The CO2corrosion could also be a problem in the use of supercritical CO2as a heat transfer medium and turbine working fluid[7-9]in solar thermal energy production.

    Heat-resisting alloys resist corrosion at high tem-peratures by form a slow growing oxide scale, for exa-mple, Cr2O3, to protect the underlying metal. Conven-tional methods of alloy design for this purpose based on Wagner’s diffusion theory[10-11]are reasonably successfulwhen the service environment is oxygen or air. However, in the atmosphere of CO2, many chromia-forming alloys which are protective in oxygen or air undergo a rapid “breakaway” corrosion. CO2-rich gas not only changes oxidation kinetics and oxide morphologies, but also leads to internal carburisation of the alloy, forming chr-o-mium carbides which make the repassivation even worse[12-13]. Such carbide formation has been demonstra-ted to be feasible at the scale-alloy interface, where a low oxygen potential leads to an elevated carbon activity[12-14]. Our recent atom probe tomography results[15-17]have revealed that carbon indeed penetrates chromia scales via grain boundaries. The water vapour in the CO2pro-duces very fine-grained chromia microstructures and accelerates whisker formation, which affects the reaction kinetics and the stability of otherwise protective chromia scale[18-19]. As a result, significant increases in critical alloy levels for chromia scale formation for chromia- forming alloys[12-14,17-19]have been observed in CO2.

    Based on this understanding, strategies to resist alloy corrosion in CO2-rich gas by creating additional diffusion barriers and modifying oxide grain boundary to promote chromia-scale protection have been proposed and investigated[17,20-23]. This paper reviews the work carried out at UNSW on chromia-forming Fe-base alloys in CO2-rich gases, the effect of Si and Mn alloying, and the modification of grain boundaries by sulphur[19,24-25], one of the surface-active elements.

    1 Experiments

    Model Fe-9Cr, Fe-20Cr, and Fe-20Ni-20Cr (all in wt%) alloys and these alloys with small amount of alloying additions of Ce (0.1wt%), Mn (2wt%) and Si (0.1,0.2,0.5wt%) were prepared by arc melting of high- purity metals under a protective Ar-5%H2gas atmos-phere, using a non-consumable tungsten electrode. All alloys underwent annealing at 1100 ℃ for 50 h under a flowing Ar-5%H2gas to ensure homogenization, and then slowly cooled in furnace. The alloys were cut into slices in a dimension of (10~14) mm×(6~8) mm×(0.8~ 1.3) mm, where a hole of 1.5 mm in diameter was drilled near an edge for hanging. The specimens were ground with SiC paper to 1200 grit surface finish and cleaned ultrasonically in ethanol prior to reaction.

    The reaction gases were Ar-20%CO2(dry CO2) or Ar-20%CO2-20%H2O (wet CO2) atmosphere at 650 and/or818 ℃. In some experiments, a small amount of SO2gas (0.1, 0.5, 1.0vol%) was added to investigate the sulphur effect. Water vapor was generated by passing a mixture of Ar and CO2through a thermostatted water saturator at a fixed temperature. Individual gas flows of CO2, Ar and SO2were controlled by mass flow controllers (brooks 5850E). Reactions were conducted in a vertical furnace equipped with a silica reactor. More details about the experimental procedures can be found in Refs[12,13,17-25].

    The weight of each sample was measured before and after corrosion tests using a microbalance (Mettler Toledo XP 205) with an accuracy of 0.01 mg. Surface morphologies and cross-sections of oxidized samples were analysed using optical microscopy and scanning electron microscopy (SEM, Hitachi S3400) equipped with energy dispersive X-ray spectroscopy (EDS, Bruker). Some corroded samples were characterized by transmi-ssion electron microscopy (TEM; Philips CM200) and atom probe tomography (APT) with a picosecond-pulse ultraviolet laser (Cameca LEAP 4000X SiTM).

    2 Results and discussion

    2.1 Corrosion behaviour of Fe-base chromia forming alloys in CO2

    CO2corrosion problem can be demonstrated in Figure 1 by comparing model Fe-9Cr-(0.1Ce, 2Mn) alloys (in weight %) exposed to air and Ar-20CO2(in vol%), respectively, at 818 ℃ for 120 h. In dry air, all alloys formed thin and protective Cr2O3oxide scales, while in CO2, thick, multi-layered iron-rich oxide scales were grown. Cr concentration increased to 20% formed a partly protective oxide scale, together with non-protective iron-rich oxide scale on the surface in CO2after 380 h reaction (Figure 2). Detailed reaction product identifica-tion can be referred to[12]. Investigation of corrosion evolution of this alloy revealed that a protective chro-mia scale was formed initially but then damaged by the nucleation and growth of iron-rich oxide nodules, which spread and merged to form a continuous, rapidly grow-ing layer. As seen in Figure 2, carbide formation can be identified beneath both the chromia layer in the pro-tective range and iron-rich oxide nodules in the non-protective zone. Once an iron-rich nodule forms, the rate of carburisation beneath it becomes more rapid, forming both intergranular and intragranular carbides (Fig.2b). Under the protective chromia scale region, carburisation is much slower with only intergranular carbides iden-tified along the grain boundaries (Fig.2a).

    Fig.1 Metallographic cross-section of Fe-9Cr-(Ce,Mn) alloys reacted in (a) dry air and (b) Ar-20%CO2 at 818 ℃ for 120 h

    Fig.2 Carbide formation in (a) protective region and (b) non-protective region of Fe-20Cr in dry CO2 at 650 ℃ for 380 h

    The similar nonprotective behaviour is found for the austenitic steel Fe-20Cr-20Ni, forming iron-rich oxide nodules with a partly protective thin chromia scale[26]. However, the growth of these nodules is rather slow, because of the presence of an inner layer of spinels FeCr2O4and NiFe2O4, both being in the slow diffusing phases.

    2.2 Carburisation in CO2 gas

    Carburisation of the alloy is, at first sight, surpris-ing as the carbon activity aCin CO2gas is too low to carburise any alloy component (C=1.6×10?15in Ar-20CO2at 650 ℃ calculated using FactSage 7.1). According to the following reactions:

    2CO=CO2+C (2)

    Carbon activity can be expressed as:

    Fig.3 Schematic illustration of and aC in growing oxide scale

    Although above discussion shows that carbide formation is thermodynamically possible in CO2gas atmosphere, it is not clear how carbon transfers from the gas phase, through the scale to the scale-alloy interface. Carbon solubility in Cr2O3, FeO and Fe3O4is low[27]and therefore the diffusion of carbon through the oxide lattice is negligible. The ideal passage of carbon through scales of these oxides should be the defects, e.g. porosity and grain boundaries of the oxides. Iron-rich oxide scales are normally formed in accompanying with the occurrence of non-protective oxidation. This iron oxide scale, in particular thick manganite scale, is very porous[3,28], which could provide mass transfer channel for both carbon and oxygen. It seems possible[12-13,15,17-25]that CO2migrates through the inner layer via a combi-nation of gas phase transport in pores, and grain boundary diffusion.

    Carbide formation underneath the chromia scale indicated that chromia scales was also permeable by carbon. Analysis by atom probe tomography[15-16]of chromia scales grown in CO2had shown that carbon was segregated to oxide grain boundaries and the scale- alloy interface, for the case of Fe-20Cr reacted at 650 ℃. Pre-oxidation of this alloy in oxygen did not prevent subsequent penetration by carbon when exposed to CO2, which further carbon penetration via chromia grain boundaries (Figure 4).

    Fig.4 Atom probe tomography of chromia grown at 650 ℃ on Fe-20Cr in oxygen and subsequently exposed to CO2[16]

    This mechanism understanding in atomic scale provides the strategies for preventing CO2corrosion by either adding additional diffusion barriers to strengthen chromia protection, e.g. Si and Mn alloying, or oxide grain boundary modification to reduce carbon diffusion via the grain boundary, e.g. sulphur addition in the gas.

    2.3 Additional diffusion barriers by alloying

    Fig.5 Si effect on (a) weight gain kinetics of Fe-9Cr alloy in Ar-20%CO2 at 818 ℃, and (b) cross-section of Fe-9Cr-0.2Si (showing a thin SiO2 sublayer underneath the chromia scale)[20]

    Fig.6 Schematic diagram showing the profile of oxygen, carbon and chromium activities in the growing oxide scale in the case of (a) only Cr2O3 formation and (b) Cr2O3 together with sublayer SiO2

    However, in CO2-H2O gas mixtures, silicon effect is limited only for ferritic alloys with more than 20% Cr but demonstrates insignificant effect for austenitic alloy e.g. Fe-20Cr-20Ni. The failure of the latter has been attributed to the combination of thermal stress arising from the coefficient of thermal expansion difference between austenitic metal and scale with larger growth stresses generated when water vapour is present[21,23].

    Prevention of carbon entry into chromia scale grain boundaries can also be achieved by alloying with Mn, so as to form an additional, outermost scale layer of Mn-rich oxide. These have been shown to be resistant to carbon entry in both CO2and CO2-H2O gases[17,22,26,30]for Fe-20Cr alloy as shown in Figure 7.

    Fig.7 Cross-section of Fe-20Cr-2Mn alloy reacted in Ar-20CO2 at 650 ℃ for 1000 h (a) TEM bright field image and (b) EDS mapping[22]

    2.4 Surface/grain boundary modification by sulphur

    It is well known that sulphur is a strong surface adsorption element which has a significant effect on retarding carburisation. It is expected that sulphur in the gas will be preferentially adsorbed on the surface/grain boundary which will reduce the occupancy of carbon on the grain boundary. As a result, carbon penetration via oxide grain boundary will be retarded, and so will the carburisation. It was found that adding only 0.1%SO2converted Fe-20Cr from partly breakaway oxidation to fully protective oxidation after 500 h reaction (see Figure 8). Addition of sulphur also reduced the carburi-sation kinetics significantly as compared in Figure 8b and 8c. Sulphur effect was also very significant for austenitic Fe-20Cr-20Ni alloy.

    2.5 Water vapour effect

    Water vapour is unavoidable in the combustion gas. A typical oxyfuel combustion gas composition wouldbe 61.2%CO2, 30.3%H2O, 4.5%N2, 3.3%O2and 0.7%SO2[5]. A small amount of oxygen is beneficial for chromia for-mation and appears to suppress carburisation in many cases[31]. The presence of water vapour leads to the formation of finer grained chromia scale than that in dry gas. It also initiates the formation of whisker chromia on the surface. Water vapour decreases carburisation to a low extent when added to CO2, but is harmful in promoting breakaway by iron-rich nodule formation on ferrous alloys[32]. All of these effects have been rationa-lised in terms of “competitive adsorption”, the ability of one contaminant species to occupy sites in oxide grain boundaries (and their external surfaces), thereby exclu-ding other, more weakly adsorbing species[13,19,24,25,31,33].

    Fig.8 Effect of SO2 on wet CO2 corrosion[25]

    3 Conclusions

    In CO2rich gas, oxygen partial pressure of the gas is high enough to oxidise all alloy components of the chromia-forming Fe-base alloys investigated. For these alloys, breakaway oxidation is found to occur in relatively higher chromium containing alloys, indicating an accelerated corrosion in CO2-rich gas. In other words, heat resisting steels require higher chromium levels to resist CO2than those needed for service in air. The reason is partly related to chromium depletion by internal precipitation of chromium-rich carbides.

    Although carbon activity of the gas is low enough for carburising any alloy components of the alloy, high carbon activities are produced beneath Fe-rich oxide scales by local equilibrium with the low oxygen activity at the alloy-scale interface. The thermodynamic analysis of carbon activity distribution explains well the formation of carbide in low carbon activity CO2gas.

    Carbon penetration through chromia scales as CO2via oxide grain boundaries is revealed by APT. This observation suggests two possible strategies to resist CO2corrosion. The first one is alloying to form an additional diffusional barrier to assist chromia protection. The typical examples are adding Si, forming an amorp-hous silica sublayer under chromia, and/or Mn, forming Mn-rich oxides on the top of chromia surface and also at the interface of oxide/metal. The other way is adding sulphur (SO2) in the gas atmosphere which attributes to competitive adsorption and reduces carbon penetration and therefore carburisation and corrosion. These methods have been demonstrated to be effective in enhancing corrosion resistance of chromia-forming alloys in CO2gases.

    [1] MCCOY HE. Type 304 stainless steel vs flowing CO2at atmospheric pressure and 1100-1800F[J]. Corrosion, 1965, 21: 84-94.

    [2] FUJII CT, MEUSSNER RA. Carburization of Fe-Cr alloys during oxidation in dry carbon dioxide[J]. J Electrochem Soc, 1967, 114: 435-442.

    [3] ANTILL JE, PEAKALL A, WARBURTON JB. Oxidation of mild and low-alloy steels in CO2based atmospheres[J]. Corros sci, 1968, 8: 689-701.

    [4] GIBBS GB, WOOTTON MR, PRICE WR, et al. Scale stresses during protective and breakaway corrosion of iron and rimming steel in CO2[J]. Oxid met, 1973, 7: 185-200.

    [5] VITALIS B. Overview of oxy-combustion technology for utility coal-fired boilers[C]// 5th International Conference on Advance in Materials Technology for Fossil Power Plants. Florida:[s. n.], 2007.

    [6] ROBERTSON A, AGARWAL H, GAGLIANO M, et al. Oxy-combustion boiler material development[C]// 35th International Technical Conference on Clean Coal & Fuel Systems. Florida:[s. n.], 2010.

    [7] FIROUZDOR V, SRIDHARAN K, CAO G, et al. Corro-sion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment[J]. Corros sci, 2013, 69: 281-291.

    [8] OLIVARES RI, MARVIG P, YOUNG DJ, et al. Alloys SS316 and hastelloy-C276 in supercritical CO2at high temperature[J]. Oxid met, 2015, 84: 585-606.

    [9] CAO G, FIROUZDOR V, SRIDHARAN K, et al. Corro-sion of austenitic alloys in high temperature supercritical carbon dioxide[J]. Corros sci, 2012, 60: 246-255.

    [10] WAGNER C. Reaktionstypen bei der oxydation von legier-ungen[J]. Zeit elektrochem, 1959, 63: 772-782.

    [11] WAGNER C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. J Electrochem Soc, 1952, 99: 369-380.

    [12] NGUYEN TD, ZHANG J Q, YOUNG DJ. Effects of cerium and manganese on corrosion of Fe-Cr and Fe-Cr-Nialloys in Ar-20CO2gas at 818℃[J]. Corros sci, 2013, 76: 231-242.

    [13] GHENO T, MONCEAU D, ZHANG J, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases[J]. Corro-sion science, 2011, 53: 2767-2777.

    [14] ABELLAN JP, OLSZEWSKI T, PENKALLA HJ, et al. Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environ-ments[J].Mater high temp, 2009, 26: 63-72.

    [15] YOUNG DJ, NGUYEN TD, FELFER P, et al. Pene-tration of protective chromia scales by carbon[J]. Scripta mater, 2014, 77: 29-32.

    [16] NGUYEN TD, LA-FONTAINE A, YANG L, et al.Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2gas[J]. Corros sci, 2018, 132: 125-135.

    [17] NGUYEN TD, LA-FONTAINE A, CAIRNEY J M, et al.Effects of Si, Mn, and water vapour on the microstruc-ture of protective scales grown on Fe-20Cr in CO2gas[J].Mater high temp, 2018, 35:22-29.

    [18] NGUYEN TD, ZHANG J Q, YOUNG DJ.Growth of Cr2O3blades during alloy scaling in wet CO2gas[J].Corrosion science, 2018, 133: 432-442.

    [19] YU C, ZHANG J Q, YOUNG DJ. Corrosion behaviour of Fe-Cr-(Mn,Si) ferritic alloys in wet and dry CO2-SO2atmospheres at 650 ℃[J]. Oxid met, 2018, 90: 97-118.

    [20] NGUYEN TD, ZHANG J Q, YOUNG DJ. Effects of silicon on high temperature corrosion of Fe-Cr and Fe-Cr-Ni alloys in carbon dioxide[J]. Oxidation of metals, 2014, 81: 549-574.

    [21] NGUYEN TD, ZHANG J Q, YOUNG DJ. Effects of sili-con and water vapour on corrosion of Fe-20Cr and Fe-20Cr-20Ni alloys in CO2at 650℃[J].Oxidation of metals, 2017, 87: 541-573.

    [22] NGUYEN TD, ZHANG J Q, YOUNG DJ. Effect of Mn on oxide formation by Fe-Cr and Fe-Cr-Ni alloys in dry and wet CO2gases at 650 ℃[J]. Corrosion science, 2016, 112: 110-127.

    [23] NGUYEN TD, ZHANG J Q, YOUNG DJ. Water vapour effects on corrosion of Fe-Cr and Fe-Cr-Ni alloys contain-ing silicon in CO2gas at 818℃[J].Oxidmet, 2015, 83: 575-594.

    [24] YU C, ZHANG J Q, YOUNG DJ. High temperature corro-sion of Fe-Cr-(Mn/Si) alloys in CO2-H2O-SO2gases[J]. Corrosion science, 2016, 112: 214-225.

    [25] YU C, NGUYEN TD, ZHANG J Q, et al. Sulphur effect on corrosion behaviour of Fe-20Cr-(Mn,Si) and Fe-20Ni-20Cr-(Mn,Si) in CO2-H2O at 650℃[J].J Electrochem Soc, 2016, 163: 106-115.

    [26] NGUYEN TD, ZHANG J Q, YOUNG DJ. Effects of cerium and manganese on corrosion of Fe-Cr and Fe-Cr-Ni alloys in Ar-20CO2and Ar-20CO2-20H2O gases at 650℃[J]. Corrosion science, 2015, 100: 448-465.

    [27] WOLF I, GRABKE HJ. A study on the solubility and distribution of carbon in oxides[J]. Solid state commun, 1985, 54: 5-10.

    [28] ROUILLARD F, MOLNE G, MARTINELLI L, et al.Corrosion of 9Cr steel in CO2at intermediate tempera-ture I: Mechanism of void-induced duplex oxide forma-tion[J]. Oxid met, 2012, 77: 27-55.

    [29] HUNTZ AM, BAGUE V, BEAUPLé G, et al. Effect of silicon on the oxidation resistance of 9% Cr steels[J]. Applied surface science, 2003, 207:255-275.

    [30] NGUYEN T, ZHANG J Q, YOUNG DJ. Microstructures of chromia scales grown in CO2mater[J]. High temp, 2015, 32: 16-21.

    [31] MEIER GH, JUNG K, MU N, et al. Effect of alloy com-position and exposure conditions on the selective oxida-tion behavior of ferritic Fe-Cr and Fe-Cr-X alloys[J]. Oxid met, 2010, 74: 319-340.

    [32] GHENO T, MONCEAU D, YOUNG DJ. Kinetics of breakaway oxidation of Fe-Cr and Fe-Cr-Ni alloys in dry and wet carbon dioxide[J]. Corros sci, 2013, 77: 246-256.

    [33] YU C, NGUYEN T D, ZHANG J Q, et al. Corrosion of Fe-9Cr-(Mn,Si) alloys in CO2-H2O-SO2gases[J].Corro-sion science, 2015, 98: 516-529.

    Jian-qiang ZHANG. CO2high temperature corrosion and its prevention of chromia forming Fe-base alloys[J]. Surface technology, 2021, 50(4): 260-266.

    TG172

    A

    1001-3660(2021)04-0260-07

    2019-10-30;

    2021-03-18

    張建強(qiáng)(1964—),男,博士,教授,主要研究方向?yàn)榻饘俨牧显诨旌蠚怏w環(huán)境中的高溫腐蝕,包括氧化、滲碳、硫化和氯化。郵箱:j.q.zhang@unsw.edu.au

    2019-10-30;

    2021-03-18

    Jian-qiang ZHANG (1964—), Male, Ph. D., Professor, Research focus: high temperature corrosion of metal materials in mixed gas atmospheres, including oxidation, carburization, sulphidation and chlorination. E-mail: j.q.zhang@unsw.edu.au

    10.16490/j.cnki.issn.1001-3660.2021.04.026

    猜你喜歡
    混合氣體滲碳氯化
    SF6/N2混合氣體負(fù)流注放電特性的模擬研究
    吉林電力(2022年2期)2022-11-10 09:24:46
    一種新型爐管滲碳層檢測(cè)方法的應(yīng)用
    低鎳锍氯化浸出試驗(yàn)研究
    滲碳工藝的中國(guó)專(zhuān)利分析
    NO、O2及NO2混合氣體考點(diǎn)歸納
    甲烷還原氧化球團(tuán)過(guò)程中的滲碳行為
    混合氣體在聚合物注射成型保壓階段中擴(kuò)散的分子動(dòng)力學(xué)模擬
    加熱溫度對(duì)22Si2MnCrNi2MoA鋼滲碳層的影響
    基于分子弛豫模型的混合氣體多物理場(chǎng)二維重建算法
    混二氯硝基苯氯化制備1,2,4-/1,2,3-三氯苯
    91精品国产国语对白视频| 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区| 一区二区三区精品91| 久久久国产一区二区| av国产久精品久网站免费入址| 亚洲av综合色区一区| 精品一品国产午夜福利视频| 寂寞人妻少妇视频99o| 亚洲伊人久久精品综合| 嫩草影院入口| 女的被弄到高潮叫床怎么办| 在线天堂中文资源库| 欧美日韩成人在线一区二区| 国产综合精华液| 日韩 亚洲 欧美在线| 在线观看人妻少妇| 永久网站在线| 色吧在线观看| 久久国内精品自在自线图片| 丝袜喷水一区| 中文字幕另类日韩欧美亚洲嫩草| 国产97色在线日韩免费| 免费在线观看视频国产中文字幕亚洲 | 999精品在线视频| 国产又色又爽无遮挡免| av在线观看视频网站免费| 欧美另类一区| 国产精品国产三级国产专区5o| 国产精品香港三级国产av潘金莲 | 看免费成人av毛片| 日韩伦理黄色片| 色视频在线一区二区三区| 麻豆乱淫一区二区| 亚洲精品久久成人aⅴ小说| 国产免费福利视频在线观看| 午夜久久久在线观看| 五月天丁香电影| tube8黄色片| 最近中文字幕2019免费版| 久久这里只有精品19| 啦啦啦在线免费观看视频4| 国产成人欧美| 国产精品一区二区在线观看99| 26uuu在线亚洲综合色| 久久久久久久精品精品| 999久久久国产精品视频| 国产精品二区激情视频| 日本av免费视频播放| 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区国产| 久久av网站| 超色免费av| 搡老乐熟女国产| 亚洲国产色片| 成年女人在线观看亚洲视频| 最新的欧美精品一区二区| 国产片内射在线| 少妇 在线观看| 久久毛片免费看一区二区三区| 中文天堂在线官网| 一边亲一边摸免费视频| 欧美日韩av久久| 久久精品aⅴ一区二区三区四区 | 在现免费观看毛片| 天天影视国产精品| 国产黄色免费在线视频| av一本久久久久| 一级a爱视频在线免费观看| 久久久精品免费免费高清| 亚洲av欧美aⅴ国产| 一级片'在线观看视频| 在线 av 中文字幕| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| 久久久久久久久免费视频了| 九九爱精品视频在线观看| 亚洲经典国产精华液单| 成人国产av品久久久| 麻豆乱淫一区二区| 大香蕉久久网| 少妇的丰满在线观看| 亚洲av免费高清在线观看| 欧美在线黄色| av在线观看视频网站免费| 国产精品女同一区二区软件| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 可以免费在线观看a视频的电影网站 | 另类精品久久| 亚洲成色77777| 少妇人妻久久综合中文| 曰老女人黄片| 亚洲在久久综合| 哪个播放器可以免费观看大片| 国精品久久久久久国模美| www.自偷自拍.com| 永久网站在线| 国产精品欧美亚洲77777| 亚洲精品第二区| 亚洲视频免费观看视频| 又大又黄又爽视频免费| a级毛片黄视频| 久久这里有精品视频免费| 视频在线观看一区二区三区| 高清不卡的av网站| 亚洲三级黄色毛片| 日本av免费视频播放| 啦啦啦在线免费观看视频4| 久久精品国产亚洲av天美| 叶爱在线成人免费视频播放| 国产精品 欧美亚洲| 一区二区三区激情视频| 国产男女超爽视频在线观看| 黑人猛操日本美女一级片| 人妻系列 视频| 99re6热这里在线精品视频| 久久精品国产自在天天线| 大片免费播放器 马上看| 久久久国产欧美日韩av| 麻豆av在线久日| 国产综合精华液| 男人舔女人的私密视频| 国产女主播在线喷水免费视频网站| 欧美国产精品一级二级三级| 女人被躁到高潮嗷嗷叫费观| 国产成人精品久久二区二区91 | 在线观看免费高清a一片| 亚洲精品一区蜜桃| 满18在线观看网站| 两个人看的免费小视频| av在线老鸭窝| 国产精品偷伦视频观看了| av国产精品久久久久影院| 亚洲图色成人| 91午夜精品亚洲一区二区三区| 我的亚洲天堂| 国产深夜福利视频在线观看| 日韩av不卡免费在线播放| 两个人看的免费小视频| 老女人水多毛片| 男女下面插进去视频免费观看| 免费久久久久久久精品成人欧美视频| 少妇 在线观看| 欧美日本中文国产一区发布| 日韩三级伦理在线观看| 欧美成人午夜精品| 国产白丝娇喘喷水9色精品| 一本色道久久久久久精品综合| 丝袜脚勾引网站| 免费看不卡的av| 国产熟女午夜一区二区三区| 免费日韩欧美在线观看| 91精品三级在线观看| 国产麻豆69| 欧美 亚洲 国产 日韩一| 秋霞伦理黄片| 亚洲色图 男人天堂 中文字幕| 毛片一级片免费看久久久久| 午夜福利乱码中文字幕| 国产精品秋霞免费鲁丝片| 超碰成人久久| 亚洲在久久综合| 桃花免费在线播放| 韩国高清视频一区二区三区| 欧美激情高清一区二区三区 | 亚洲五月色婷婷综合| 99国产精品免费福利视频| 国产一区二区在线观看av| 男人爽女人下面视频在线观看| 国产成人精品久久二区二区91 | 啦啦啦中文免费视频观看日本| 亚洲精品一区蜜桃| 午夜日本视频在线| 午夜福利影视在线免费观看| 亚洲成av片中文字幕在线观看 | 国产精品蜜桃在线观看| 永久网站在线| 91精品国产国语对白视频| 日韩视频在线欧美| 免费在线观看黄色视频的| 99久国产av精品国产电影| 国产成人午夜福利电影在线观看| 少妇人妻久久综合中文| 成人二区视频| 男的添女的下面高潮视频| xxxhd国产人妻xxx| 午夜福利视频在线观看免费| 日本色播在线视频| 丝袜脚勾引网站| 国产在线免费精品| 国产人伦9x9x在线观看 | 亚洲av欧美aⅴ国产| av网站免费在线观看视频| 午夜免费观看性视频| 亚洲中文av在线| 国产精品无大码| 性少妇av在线| 亚洲成人手机| 超碰97精品在线观看| 久久毛片免费看一区二区三区| 久久久久久久久久久久大奶| 色吧在线观看| 精品国产国语对白av| 中文字幕制服av| 岛国毛片在线播放| 欧美日韩精品成人综合77777| 一区二区三区四区激情视频| 999精品在线视频| 捣出白浆h1v1| 国产欧美日韩综合在线一区二区| 我的亚洲天堂| 丝袜在线中文字幕| 人人妻人人爽人人添夜夜欢视频| 国产精品无大码| 日韩成人av中文字幕在线观看| 久久精品久久久久久久性| 精品少妇黑人巨大在线播放| 久久久久精品久久久久真实原创| 好男人视频免费观看在线| 久久毛片免费看一区二区三区| 国产麻豆69| 韩国av在线不卡| 精品国产一区二区三区久久久樱花| 中国国产av一级| 少妇精品久久久久久久| 国产欧美日韩综合在线一区二区| 韩国av在线不卡| 国产av码专区亚洲av| 青春草亚洲视频在线观看| av在线app专区| 只有这里有精品99| 人妻少妇偷人精品九色| 中文字幕另类日韩欧美亚洲嫩草| 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| 日韩三级伦理在线观看| 精品一品国产午夜福利视频| 国产一区二区在线观看av| 一级黄片播放器| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 高清视频免费观看一区二区| 欧美少妇被猛烈插入视频| 日韩制服丝袜自拍偷拍| 成人黄色视频免费在线看| 热99国产精品久久久久久7| 在线天堂中文资源库| 国产精品 欧美亚洲| 久久精品国产鲁丝片午夜精品| 国产黄色免费在线视频| 欧美日韩精品网址| 制服丝袜香蕉在线| 一级毛片我不卡| 高清视频免费观看一区二区| 国产亚洲最大av| 精品亚洲成a人片在线观看| 国产精品无大码| 欧美日韩av久久| 色网站视频免费| 校园人妻丝袜中文字幕| 国产精品不卡视频一区二区| 97在线视频观看| 精品亚洲乱码少妇综合久久| 26uuu在线亚洲综合色| 秋霞在线观看毛片| 精品人妻偷拍中文字幕| 成年人午夜在线观看视频| 成人亚洲精品一区在线观看| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久av美女十八| 色婷婷av一区二区三区视频| 久久久久久免费高清国产稀缺| 亚洲av日韩在线播放| 国产成人a∨麻豆精品| 亚洲,欧美精品.| 可以免费在线观看a视频的电影网站 | 超碰成人久久| 女人久久www免费人成看片| 国产日韩一区二区三区精品不卡| 久久精品aⅴ一区二区三区四区 | 久久久久久久国产电影| 国产一区二区三区av在线| a 毛片基地| 亚洲成人av在线免费| 久久青草综合色| 国产精品国产av在线观看| 一级毛片 在线播放| 国产精品蜜桃在线观看| 男人操女人黄网站| 亚洲av综合色区一区| 麻豆av在线久日| 在现免费观看毛片| 寂寞人妻少妇视频99o| 9191精品国产免费久久| 久久精品人人爽人人爽视色| 久久 成人 亚洲| 免费在线观看完整版高清| 有码 亚洲区| 日本91视频免费播放| 欧美日韩精品成人综合77777| 少妇熟女欧美另类| 麻豆av在线久日| 成年人午夜在线观看视频| 国产熟女欧美一区二区| 亚洲欧美一区二区三区久久| 90打野战视频偷拍视频| 啦啦啦视频在线资源免费观看| 深夜精品福利| 黄片播放在线免费| 在线精品无人区一区二区三| 日韩成人av中文字幕在线观看| 久久久欧美国产精品| 国产成人精品婷婷| 国产日韩欧美在线精品| 中文字幕色久视频| 久久久久久久亚洲中文字幕| 成年女人毛片免费观看观看9 | 欧美人与性动交α欧美软件| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 久久久久久伊人网av| 自线自在国产av| 欧美日韩视频精品一区| 国产精品久久久久久久久免| 国产 一区精品| 99热全是精品| 免费高清在线观看视频在线观看| 国产乱来视频区| 久久久亚洲精品成人影院| 欧美国产精品va在线观看不卡| 亚洲成人av在线免费| 国产免费视频播放在线视频| 90打野战视频偷拍视频| av国产久精品久网站免费入址| 女人久久www免费人成看片| 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| 美女xxoo啪啪120秒动态图| 免费看不卡的av| 男女高潮啪啪啪动态图| 亚洲欧美成人精品一区二区| 久久热在线av| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 深夜精品福利| 久久99热这里只频精品6学生| 黄片小视频在线播放| av天堂久久9| 亚洲视频免费观看视频| 亚洲情色 制服丝袜| 亚洲第一青青草原| 久久久久久久久免费视频了| 欧美日本中文国产一区发布| 在线观看免费高清a一片| av有码第一页| 好男人视频免费观看在线| 90打野战视频偷拍视频| av在线播放精品| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 日韩熟女老妇一区二区性免费视频| 在线观看三级黄色| 18禁观看日本| av网站免费在线观看视频| 亚洲成人手机| 国产精品不卡视频一区二区| 亚洲国产av新网站| 日韩 亚洲 欧美在线| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 久久久久久人妻| 欧美精品一区二区大全| 中文字幕av电影在线播放| 日韩精品免费视频一区二区三区| 国产熟女午夜一区二区三区| 亚洲欧美中文字幕日韩二区| 久久久国产精品麻豆| 中文精品一卡2卡3卡4更新| 天天躁夜夜躁狠狠躁躁| 电影成人av| 91精品伊人久久大香线蕉| 乱人伦中国视频| 美女大奶头黄色视频| 毛片一级片免费看久久久久| 精品国产一区二区三区久久久樱花| 一级毛片我不卡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 色哟哟·www| 亚洲av在线观看美女高潮| 亚洲人成电影观看| 黄色 视频免费看| 26uuu在线亚洲综合色| 久久精品国产亚洲av天美| 日日撸夜夜添| 国产色婷婷99| 亚洲精品国产色婷婷电影| 黄片小视频在线播放| 综合色丁香网| videosex国产| 超碰成人久久| 亚洲精品日韩在线中文字幕| 亚洲精品在线美女| 亚洲欧美成人综合另类久久久| 亚洲图色成人| 777米奇影视久久| 久久婷婷青草| 久久影院123| 捣出白浆h1v1| 一级毛片我不卡| 久久精品国产亚洲av高清一级| 久久久久精品性色| 久久精品亚洲av国产电影网| 纯流量卡能插随身wifi吗| 精品一区二区三区四区五区乱码 | 国语对白做爰xxxⅹ性视频网站| 日本免费在线观看一区| 欧美精品亚洲一区二区| 街头女战士在线观看网站| 在线亚洲精品国产二区图片欧美| 一级毛片 在线播放| 国产xxxxx性猛交| 有码 亚洲区| 亚洲精品一二三| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| 欧美国产精品va在线观看不卡| 美女大奶头黄色视频| 青春草国产在线视频| 欧美日韩视频精品一区| 高清在线视频一区二区三区| 亚洲精品国产一区二区精华液| 午夜福利一区二区在线看| 久久综合国产亚洲精品| 午夜福利在线免费观看网站| 国产精品熟女久久久久浪| 男女边摸边吃奶| 亚洲精品在线美女| 精品一区二区免费观看| 日韩视频在线欧美| 久久久久久久久免费视频了| 国产男女超爽视频在线观看| 9热在线视频观看99| 国产黄色免费在线视频| 精品99又大又爽又粗少妇毛片| 国产成人91sexporn| 日日啪夜夜爽| 女人精品久久久久毛片| 亚洲精品久久成人aⅴ小说| 两个人看的免费小视频| 午夜福利在线免费观看网站| 久久久久精品性色| 成人黄色视频免费在线看| 久久精品国产a三级三级三级| 大码成人一级视频| 日韩在线高清观看一区二区三区| 91精品国产国语对白视频| 狠狠婷婷综合久久久久久88av| 欧美日韩av久久| 亚洲美女黄色视频免费看| 熟妇人妻不卡中文字幕| 国产一区亚洲一区在线观看| 亚洲精华国产精华液的使用体验| 中文字幕av电影在线播放| av.在线天堂| 亚洲精品第二区| 欧美日韩一级在线毛片| 免费少妇av软件| 久久午夜综合久久蜜桃| 久久久久久久久久久免费av| 五月天丁香电影| 久久99蜜桃精品久久| 久久人人97超碰香蕉20202| 中文字幕色久视频| 国产伦理片在线播放av一区| 午夜91福利影院| 精品人妻偷拍中文字幕| 中文字幕亚洲精品专区| 久久久久国产一级毛片高清牌| 1024香蕉在线观看| 午夜日韩欧美国产| a级毛片在线看网站| 亚洲av综合色区一区| 99热网站在线观看| 免费看不卡的av| 久久韩国三级中文字幕| 中文天堂在线官网| 亚洲国产成人一精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 久久av网站| av国产久精品久网站免费入址| 母亲3免费完整高清在线观看 | 2022亚洲国产成人精品| 久久精品国产a三级三级三级| 免费久久久久久久精品成人欧美视频| 精品一品国产午夜福利视频| 黑人猛操日本美女一级片| 亚洲精华国产精华液的使用体验| 色播在线永久视频| 男女边摸边吃奶| 亚洲国产欧美日韩在线播放| xxx大片免费视频| 两个人免费观看高清视频| √禁漫天堂资源中文www| 久热这里只有精品99| 在线观看美女被高潮喷水网站| 日韩,欧美,国产一区二区三区| 欧美日韩国产mv在线观看视频| 交换朋友夫妻互换小说| 女人被躁到高潮嗷嗷叫费观| 啦啦啦在线观看免费高清www| 亚洲国产精品999| 久久精品国产综合久久久| 男女啪啪激烈高潮av片| 日韩制服丝袜自拍偷拍| 又粗又硬又长又爽又黄的视频| 在线精品无人区一区二区三| 欧美人与性动交α欧美软件| 亚洲美女黄色视频免费看| 午夜福利视频在线观看免费| 久久人人爽av亚洲精品天堂| 日本免费在线观看一区| 热re99久久精品国产66热6| 国产成人91sexporn| 国产成人午夜福利电影在线观看| 好男人视频免费观看在线| 一级,二级,三级黄色视频| 欧美成人午夜免费资源| 欧美另类一区| 国产男女超爽视频在线观看| 欧美成人午夜精品| 国产欧美日韩综合在线一区二区| 一区福利在线观看| 日日摸夜夜添夜夜爱| 纵有疾风起免费观看全集完整版| 中文字幕制服av| 免费久久久久久久精品成人欧美视频| 美女高潮到喷水免费观看| 黄色视频在线播放观看不卡| 日韩精品有码人妻一区| 一区二区日韩欧美中文字幕| 中国国产av一级| 国产有黄有色有爽视频| 免费看av在线观看网站| 久久久久视频综合| 日韩,欧美,国产一区二区三区| 久久久久网色| 久久精品国产自在天天线| 久久这里有精品视频免费| av卡一久久| 久久久亚洲精品成人影院| 乱人伦中国视频| 久久久久人妻精品一区果冻| 精品国产露脸久久av麻豆| 热re99久久精品国产66热6| 大码成人一级视频| 大香蕉久久网| 亚洲精品第二区| 女人精品久久久久毛片| 在线精品无人区一区二区三| 男人爽女人下面视频在线观看| 日本色播在线视频| 一区福利在线观看| 好男人视频免费观看在线| 欧美日韩成人在线一区二区| 一级爰片在线观看| 日本爱情动作片www.在线观看| 国产女主播在线喷水免费视频网站| 亚洲国产成人一精品久久久| 黑人猛操日本美女一级片| 亚洲成人av在线免费| 久久久久久免费高清国产稀缺| 啦啦啦在线观看免费高清www| 美女高潮到喷水免费观看| 侵犯人妻中文字幕一二三四区| 日韩制服骚丝袜av| 亚洲第一青青草原| 五月天丁香电影| 人人妻人人澡人人看| 国产成人午夜福利电影在线观看| 午夜福利影视在线免费观看| 免费观看a级毛片全部| 一区二区日韩欧美中文字幕| 咕卡用的链子| 欧美精品一区二区免费开放| 精品视频人人做人人爽| 9191精品国产免费久久| 如日韩欧美国产精品一区二区三区| 精品视频人人做人人爽| videossex国产| 制服诱惑二区| 午夜免费观看性视频| 天天躁日日躁夜夜躁夜夜| 日本av免费视频播放| 秋霞伦理黄片| 亚洲综合精品二区| 最黄视频免费看| 考比视频在线观看| 国产精品久久久久成人av| 最新中文字幕久久久久| 免费看不卡的av| 免费日韩欧美在线观看| 精品国产一区二区久久| 伦精品一区二区三区| 欧美精品亚洲一区二区| 最近最新中文字幕免费大全7| 久久久久国产网址| 最近的中文字幕免费完整| 中文字幕色久视频|