• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ported wall extension hydraulics

    2021-05-02 13:45:26FeidongZhengPingyiWangJianfengAnYunLi
    Water Science and Engineering 2021年1期

    Fei-dong Zheng ,Ping-yi Wang ,Jian-feng An ,Yun Li ,

    a College of River and Ocean Engineering,Chongqing Jiaotong University,Chongqing 400074,China

    b National Engineering Technology Research Center for Inland Waterway Regulation,Chongqing 400074,China

    c State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing 210029,China

    Abstract Ported wall extensions are important hydraulic structures used to reduce crosscurrents in upper approaches to locks.The effect of such extensions located upstream of a solid guard wall on flow characteristics depends on many factors,including geometric and hydraulic parameters.In this study,the hydraulic performance of ported wall extensions was experimentally investigated in terms of the permeability coefficient,expanding angle,extension length,and flow depth.The results demonstrate that the dimensionless maximum transverse velocity is closely related to the permeability coefficient,expanding angle,and flow depth.By contrast,the dimensionless eddy length mainly depends on the permeability coefficient,expanding angle,and extension length.Furthermore,the optimum permeability coefficient increases with the expanding angle or flow depth,and it is approximately constant for different extension lengths.These results have the potential to provide direct guidance for the design of effective ported wall extensions in upper approaches to locks.? 2021 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Ported wall extension;Permeability coefficient;Transverse velocity;Eddy length;Navigation safety

    1.Introduction

    Flow conditions within the upper approach to a lock can affect the safety of tows that approach or leave the lock and the time required for tows to transit the lock(McCartney et al.,1998;Li et al.,2020).Due to the geometrical restriction of a solid guard wall,flow in the upper approach is characterized by significant crosscurrents upstream of the solid guard wall and the formation of eddy currents between the guard wall and riverbank(Stockstill et al.,2004).Downbound tows have to reduce speed as they approach the guard wall for a rest,thereby losing steerageway and the ability to overcome the effects of these currents(Franco and Pokrefke,1983;Gambucci,2010;Wang and Zou,2014;Wooley,1997,1998).Ported wall extensions,located upstream of a solid guard wall,are commonly used in lock extension projects to promote the flow conditions in the upper approach(Lynch,2001;Wang et al.,2016).A ported wall extension consists of a series of port openings spaced at a certain distance.This allows part of flow that enters the upper approach to pass under the extension and thereby helps reduce the strong crosscurrents near the end of the wall.

    The hydraulics of ported wall extensions are related to many factors,including geometric and hydraulic parameters.Past investigations have mainly focused on the crosscurrents in the upper approach.In the hydraulic studies conducted by Hu et al.(2019),Wang and Lu(2013),and Zhang et al.(2019),the hydraulics of ported wall extensions were investigated in relation to the maximum transverse velocity in upper approaches as they can drastically impact the ease with which a downbound tow can drift into the approaches.Li et al.(2007)studied the flow velocity distribution in the upper approach for six types of ported wall extensions,and the performance of these walls was assessed at different permeability coefficients and flow depths.In fact,eddy currents tended to rotate a downbound tow,thereby remarkably increasing the difficulties for the tow in approaching the solid guard wall(Franco and Pokrefke,1983;McCartney et al.,1998;Wooley,1998).The effect is even more pronounced when the eddy length is close to the length scale of the tow.Therefore,two goals should be required in adequate design of a ported wall extension:a significant reduction of crosscurrents and an eddy length compatible with the tow length.As a matter of fact,the flow region between a ported wall extension or a solid guard wall and the riverbank is typically a dead water zone.Many studies have been conducted to investigate the fundamental properties of recirculating flows in dead zones attached to the side wall of an open channel(Constantinescu et al.,2009;Kimura and Hosoda,1997;Liu,1995;Sanjou and Nezu,2017;Savvidis et al.,2017;Shen et al.,2003;Yue,1986).However,these studies have not detailed the flow structure in a dead zone when its centerline is parallel to the incoming main flow.Furthermore,the effect of a ported wall on eddy characteristics in the zone has not been sufficiently studied.

    The objective of this study was to detail the hydraulic characteristics in the upper approach with ported wall extensions.Physical model experiments were systematically performed with a particular emphasis on the effects of the permeability coefficient,expanding angle,extension length,and flow depth.The findings of this study may provide direct guidance for the hydraulic design of ported wall extensions in upper approaches to locks.

    2.Methodology

    2.1.Presentation

    Fig.1 shows a typical ported wall extension in the upper approach along with the coordinate system(xOy).The ported wall extension with a length(l)is located upstream of the solid guard wall,forming an angle(β)with the guard wall in the plan and an intercepted flow width(lint)with the riverbank.The permeability coefficient of the ported wall extension(ω)is defined as the ratio of the ported area(Ap)to the intercepted flow area(Aint).The approach flow velocity(Vin)and the flow depth(h)correspond to the values at the approach entrance,where the flow has a horizontal surface with no crosscurrents.

    Fig.1.Sketch of an upper approach with a ported wall extension.

    As stated above,the maximum transverse velocity(Vme)and the eddy length(le),defined as the length between the upper and lower eddy ends(Ramos et al.,2019),are two key indices or criteria used to determine the hydraulic behavior of a ported wall extension.Hydraulic considerations indicate that these parameters should mainly depend on the following variables(Chanson,2004):

    wheregis the gravitational acceleration.Straightforward dimensional analysis is conducted to transform Eq.(1)into its dimensionless version as following:

    Eq.(2)evidently demonstrates that the values ofVme/Vinandle/lintprimarily depend on the geometrical characteristics of the ported wall extension and a Froude number-based dynamic parameter regarding the approach flow velocity and the intercepted flow width.

    2.2.Experimental setup and methodology

    Fig.2 schematically shows the experimental design.The facility basically consisted of an upstream reservoir,a rectangular notch weir,and a concrete flume with a length of 15.4 m and a rectangular section of 2.5 m×0.2 m.The channel invert was horizontal.A solid guard wall and its ported wall extension made of PVC sheets(1-cm thickness)were arranged on the riverside of the approach in the flume.The extension consisted of a series of rectangular cells spaced at 0.142 8 m between their centers and connected with beams.Draft curtains were attached to the beams between the cells,and their bottoms were set at the same elevation in each experimental run.The tailgate at the lower flume end was used to attain the necessary boundary conditions for the approach flow depth at the entrance section of the approach channel.The approach width between the solid guard wall and the bank was 0.57 m,and the scale of the Froudian model was 1:70,assuming a standard approach width of 40 m(Henderson,1966).

    Water was circulated in the flume through a pump,and the discharge was measured with a rectangular sharp-crested weir(Montes,1998).The approach flow depth at the entrance section of the approach was controlled by a point gauge with an accuracy limit of 0.1 mm.The eddy lengths were measured using a scale ruler with a resolution of 1 mm.The velocity in the approach was obtained with an acoustic Doppler velocimeter(ADV)Nortek?Vectrino+(serial no.VCN9235),with a side-looking head equipped with four receivers(Leng and Chanson,2015).The ADV velocity range was set to be±0.3 m/s,with a data accuracy limit of 1% of the velocity range.The velocity measurements were performed in planes parallel to the flume bed as close as possible to the water surface.As shown in Fig.2(c),data points on each plane were distributed on grids of 0.20 m(y-direction)×0.07 m(x-direction)in the critical zones,and the grid resolution was reduced to 0.40 m×0.07 m in the zones near the approach entrance.For the ease of result analyses in this paper,the geometric and hydraulic parameters in the following discussions are provided in full-scale values unless otherwise stated.

    Fig.2.Experimental design.

    Based on the results of dimensional analysis,seven experiment series were designed(Table 1).In each series,a wide range ofωwas tested with aVinvalue of 1.5 m/s to investigate the effects ofωonVmeandle.Series A,B,and C were designed with the samelandhvalues to investigate the effects of differentβvalues.In Series B,D,and E,the effects of differentlvalues were studied with the sameβandhvalues.Series B,F,and G keptβandlvalues constant to investigate the influences of differenthvalues.The investigated inflow Froude number(Fr)ranged from 0.20 to 0.26.

    Table 1Experimental series.

    3.Results and discussion

    3.1.Overall flow structure in upper approach

    For each experimental run,extensive velocity measurements were obtained near the water surface on thex-yplane parallel to the flume bottom.Fig.3 shows the typical velocity distribution and the velocity contour ofV/Vin,whereVis the plan velocity at any point.This figure demonstrates that two different flow regions were formed in the upper approach.One was a large recirculating flow region located between the wall and adjacent bank,and it was characterized by low velocity and reversed flows.The other was a crosscurrent flow region where the upstream main flow traveled toward the extension wall at a high speed.Part of this flow went to the outlet through the port openings,and the remaining flow impinged on the wall.Coherent vortices existed in the mixing layer between the main and recirculating flows(Wang et al.,2019).Clearly,velocity decayed rapidly in the interfacial region.

    Fig.4(a)displays the velocity distributions at different sections of the recirculating flow.Clearly,the flow was not perpendicular to the cross-sections in the recirculation region.Fig.4(b)demonstrates the velocity distributions at different sections in a dimensionless form.The dimensionless velocity was calculated by dividing the absolute velocity magnitude(|V|)by the maximum value(|V|m)at that section.The velocity profiles for the cross-sections near the nose of the extension wall(e.g.,yfrom 28 m to 56 m)demonstrated some similarity,and the velocity at each cross-section near the extension wall was significantly higher than that further from the wall.It was also found that the velocity profiles near the intersection of the guard and extension walls(e.g.,yfrom 14 m to-28 m)exhibited a high degree of similarity and were nearly symmetric to the approach centerline.

    Fig.3.Plan velocity field in upper approach and contour of V/Vin for l=70 m,β=0°,h=6.0 m,andω=0.14.

    Fig.4.Velocity distributions of recirculating flow for l=70 m,β=0°,h=6.0 m,andω=0.14.

    3.2.Effect of permeability coefficient

    Fig.5 shows the typical contour lines of transverse velocity(Vx)in thex-yplane in a dimensionless form forl=70 m,β=0°,andh=6.0 m.The flow structures for differentωvalues presented some similarity.As the permeability coefficientω increased,the velocity region enclosed by a givenVx/Vinvalue moved downstream.To obtain a general understanding of the overall distribution of the transverse velocity,velocity measurements were used to determine the area(Ax)enclosed by a velocity contour of a particularVx/Vinvalue in terms of the intercepted flow area.As shown in Fig.6,the profiles ofAx/Aintfor differentωvalues were similar,andAx/Aintchanged at a much higher rate for a smallVx/Vinvalue.In addition,the curves ofAx/AintversusVx/Vinwere much steeper at smallVx/Vinvalues with largeωvalues.

    Fig.5.Contours of normalized transverse velocity Vx/Vin for l=70 m,β=0°,and h=6.0 m.

    Fig.6.Ax/Aint versus Vx/Vin for differentωvalues for l=70 m,h=6.0 m,andβ=0°.

    Fig.7.Variations of Vmu/Vin,Vmd/Vin,and Vme/Vin withωfor l=70 m,h=6.0 m,andβ=0°.

    Based on the distribution ofVx,two flow zones,namely,the extension and entrance zones,are specified in Fig.5.Fig.7 demonstrates the variations of the dimensionless maximum transverse velocity withωfor two flow zones.The maximum transverse velocities in the entrance zone(Vmu)and in the extension zone(Vmd)were respectively divided byVinto obtain the corresponding dimensionless transverse velocity.With the rise ofω,the values ofVmu/VinandVmd/Vintended to linearly decrease and linearly increase,respectively.This indicated that the maximum transverse velocity(Vme)in the approach reached the minimum at the permeability coefficient ω0(Fig.7).Hence,ω0was designated as the optimum permeability for the extension.

    Fig.8 shows the variation of dimensionless eddy length(le/lint)forl=70 m,β=0°,andh=6.0 m.This figure demonstrates that the variation ofle/lintwithωfollowed an upward convex curve.With the rise ofω,thele/lintvalue first increased untilωreached 0.29 and then decreased.Yue(1986)investigated the characteristics of eddy flows in a dead zone.According to the findings of Yue(1986),the eddy length may be estimated as follows:

    wherebis the mean width of the dead zone,andαis the angle between the main flow and the longitudinal centerline of recirculating flow(e.g.,α=0°in this study).This relationship indicates that the maximum eddy length is 2.5 times the width.Fig.8 evidently demonstrates that the measuredle/lintvalue forω=0 was significantly larger than the maximum dimensionless eddy length estimated by Eq.(3).It should be noted that the prediction model(Eq.(3))was developed within the experimental range of 45°<α<135°.Thus,it may be inferred that the characteristics of recirculating flows in this study were completely different from those in dead zones attached to the side wall of an open channel.

    3.3.Effect of expanding angle

    Fig.9 displays the plots ofVmu/VinandVmd/Vinversusω with differentβvalues forl=70 m andh=6.0 m.The comparison of the trend lines for differentβvalues indicated thatVmu/Vinwas systematically higher for a largerβfor any givenωvalue,whereas the difference became negligible for a largeω.However,no detectable effect ofβonVmd/Vinwas observed.Consequently,the minimumVme/Vinvalue increased with the rise ofβ,andω0increased gradually from 0.53 to 0.60 asβincreased from 0°to 10°.

    Fig.10 shows the dependence ofle/lintonωaccording to the experimental measurements.Apparently,thele/lintprofile for a smallβvalue was essentially higher than that for a large β.The dimensionless eddy length had a maximum value of 3.85 atω=0.29 forβ=0°,3.34 atω=0.25 forβ=5°,and 2.95 atω=0.22 forβ=10°.It should be noted that the increase inβled to the rise of the mixing length between the main and recirculating flows,thereby contributing to the mass and momentum exchanges in the mixing layer.On the other hand,this increase made it considerably more difficult for the portion of main flow to enter the recirculation region along a ported wall extension.Further complexity arose when the current was allowed to flow through the extension.Therefore,the change of eddy length involved complicated mechanisms.

    3.4.Effect of extension length

    Figs.11 and 12 demonstrate the effect of extension length forh=6.0 m andβ=5°.No significant influence of extension length(l)onVmu/VinorVmd/Vinwas detected.Therefore,the minimumVme/Vinvalue andω0remained essentially constant.For anyωvalue,le/lintwas systematically high for a largel,and had maximum values of 3.34 at ω=0.25 forl=70 m,3.65 atω=0.28 forl=80 m,and 3.80 atω=0.31 forl=90 m.For a given non-zeroβ,the increase inlsignificantly contributed to the mass and momentum exchanges in the mixing layer between the main and recirculating flows,thereby resulting in a largelevalue for ω=0.

    3.5.Effect of flow depth

    Fig.13 displays the variations ofVmu/VinandVmd/Vinwith ωfor differenthvalues forl=70 m andβ=5°.It was found that for any givenωvalue,theVmu/Vinvalues were essentially independent of flow depth,with a weak functional relationship betweenVmd/Vinandh.Additionally,a clear decrease in the minimumVme/Vinvalue and an increase inω0occurred with the rise ofh,andω0increased from 0.48 to 0.58 whenhincreased from 3.5 m to 6.0 m.

    Fig.8.Variation of le/lint withωfor l=70 m,h=6.0 m,andβ=0°.

    Fig.9.Variations of Vmu/Vin,Vmd/Vin,and Vme/Vin withωfor differentβvalues for l=70 m and h=6.0 m.

    Fig.10.Variations of le/lint withωfor differentβvalues for l=70 m and h=6.0 m.

    Fig.11.Variations of Vmu/Vin,Vmd/Vin,and Vme/Vin withωfor different l values for h=6.0 m andβ=5°.

    Fig.12.Variations of le/lint withωfor different l values for h=6.0 m andβ=5°.

    Fig.13.Variations of Vmu/Vin,Vmd/Vin,and Vme/Vin withωfor different h values for l=70 m andβ=5°.

    Fig.14 clearly demonstrates the relationship betweenhandle/lintwith differentωvalues.For a givenωvalue,no detectable effect ofhonle/lintwas found.This indicates that the recirculating flow inside the dead zone was insensitive to the water depth.It may be partially explained by the fact that the depth-averaged mixing intensity remains almost constant for different water depths.This finding is consistent with previous studies(Liu,1995;Shen et al.,2003;Yue,1986),although previous researchers reported observations on recirculation flows in dead water zones attached to the side wall of an open channel.

    In general,unsafe navigation conditions in the upper approach to a lock are strongly linked to significant crosscurrents and recirculating flows.The performance of a ported wall extension with respect to its navigability is primarily dependent on a significant reduction of crosscurrents and the eddy length compatible with the concerned tow length.A properly designed ported wall extension results from a relative balance of these two conditions.However,the present results clearly indicated that the permeability coefficient corresponding to the maximum eddy length was significantly smaller than its optimum value with respect to the reduction of crosscurrents.Therefore,only the major factor affecting tow manoeuvrability can be considered when the permeability coefficient of a port wall extension is estimated.

    Fig.14.Variations of le/lint withωfor different h values for l=70 m andβ=5°.

    Overall,this study has the potential to provide direct guidance for the hydraulic design of ported wall extensions in upper approaches to locks.Moreover,the present results demonstrate the unique features of recirculating flows in an upper approach.

    4.Conclusions

    In this study,the hydraulic behavior of ported wall extensions in an upper approach was investigated under different experimental conditions,including variations in the permeability coefficient,expanding angle,extension length,and flow depth.The main findings regarding the free-surface velocity fields and the eddy length properties can be summarized as follows:

    (1)The dimensionless maximum transverse velocity and the dimensionless eddy length primarily depend on the geometrical characteristics of the ported wall extension and a Froude number-based dynamic parameter expressed in terms of approach flow velocity and intercepted flow width.

    (2)A smaller expanding angle and a larger flow depth are effective in reducing the minimum value of the dimensionless maximum transverse velocity for different permeability coefficients.By contrast,the extension length has no detectable effect.

    (3)For a given permeability coefficient,a larger expanding angle and a smaller extension length contribute to the reduction of dimensionless eddy length,which is considered independent of flow depth.

    (4)The optimum permeability coefficient increases with the expanding angle or flow depth,whereas it is approximately constant for different extension lengths.

    Declaration of competing interest

    The authors declare no conflicts of interest.

    可以免费在线观看a视频的电影网站| 狂野欧美激情性xxxx| 在线观看免费午夜福利视频| 国产精品亚洲av一区麻豆| 青青草视频在线视频观看| 成人18禁在线播放| 久久国产精品人妻蜜桃| 精品久久久久久电影网| 首页视频小说图片口味搜索| 色综合欧美亚洲国产小说| 亚洲精品国产一区二区精华液| 国产片内射在线| 高潮久久久久久久久久久不卡| 啦啦啦在线免费观看视频4| 黄色毛片三级朝国网站| 色播在线永久视频| 国产精品国产高清国产av | 国产日韩欧美视频二区| 欧美变态另类bdsm刘玥| 亚洲一码二码三码区别大吗| 国产成人啪精品午夜网站| 色婷婷久久久亚洲欧美| 在线观看免费视频网站a站| 黄频高清免费视频| 亚洲国产中文字幕在线视频| 国产日韩欧美视频二区| 国产在线视频一区二区| 三级毛片av免费| 啦啦啦中文免费视频观看日本| 日韩中文字幕欧美一区二区| 99国产精品免费福利视频| 嫁个100分男人电影在线观看| 国产精品 欧美亚洲| 久久久精品国产亚洲av高清涩受| 嫩草影视91久久| 日韩制服丝袜自拍偷拍| 国产男靠女视频免费网站| 国产不卡一卡二| 欧美黄色片欧美黄色片| 日韩熟女老妇一区二区性免费视频| 久久99一区二区三区| 日本av免费视频播放| 一本色道久久久久久精品综合| 欧美精品av麻豆av| 在线观看免费高清a一片| 美女国产高潮福利片在线看| 久久久久久久大尺度免费视频| 搡老岳熟女国产| 高清视频免费观看一区二区| 久久久国产成人免费| 免费在线观看日本一区| 国产精品影院久久| 中文字幕人妻丝袜制服| 欧美国产精品一级二级三级| 亚洲精品一卡2卡三卡4卡5卡| 国产淫语在线视频| 久久久久国内视频| 国产高清国产精品国产三级| 婷婷成人精品国产| 国产三级黄色录像| 国产97色在线日韩免费| www日本在线高清视频| 搡老岳熟女国产| 国产福利在线免费观看视频| 国产人伦9x9x在线观看| 黄色 视频免费看| 精品人妻熟女毛片av久久网站| 成人手机av| 国产精品一区二区免费欧美| 成人国产一区最新在线观看| 久久99一区二区三区| 欧美另类亚洲清纯唯美| 中文亚洲av片在线观看爽 | 精品国产一区二区三区久久久樱花| 亚洲国产av影院在线观看| 亚洲欧美一区二区三区久久| 亚洲国产看品久久| 99riav亚洲国产免费| 久久人妻av系列| 久久久久久免费高清国产稀缺| 亚洲男人天堂网一区| 久久九九热精品免费| 人人澡人人妻人| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 欧美性长视频在线观看| 宅男免费午夜| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 人人妻人人爽人人添夜夜欢视频| 色婷婷av一区二区三区视频| 亚洲国产欧美网| 欧美日韩精品网址| 欧美成狂野欧美在线观看| 亚洲天堂av无毛| 99热国产这里只有精品6| 精品国产一区二区久久| 欧美中文综合在线视频| 亚洲中文日韩欧美视频| 亚洲欧美精品综合一区二区三区| 成人国产一区最新在线观看| 宅男免费午夜| 久久精品国产亚洲av高清一级| 午夜精品久久久久久毛片777| 欧美另类亚洲清纯唯美| 国产亚洲精品一区二区www | 欧美日韩精品网址| 色在线成人网| 午夜福利免费观看在线| 亚洲伊人久久精品综合| 成年版毛片免费区| 捣出白浆h1v1| aaaaa片日本免费| 一本大道久久a久久精品| 国产xxxxx性猛交| 日韩人妻精品一区2区三区| 久久ye,这里只有精品| 精品国产亚洲在线| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 999精品在线视频| 午夜福利在线免费观看网站| 国产亚洲午夜精品一区二区久久| 成人av一区二区三区在线看| 亚洲七黄色美女视频| 国产精品 欧美亚洲| 不卡一级毛片| 肉色欧美久久久久久久蜜桃| 天堂8中文在线网| 好男人电影高清在线观看| 免费观看av网站的网址| 丰满迷人的少妇在线观看| 天天躁夜夜躁狠狠躁躁| 国产免费福利视频在线观看| 高潮久久久久久久久久久不卡| 嫩草影视91久久| 18禁美女被吸乳视频| 国产精品 欧美亚洲| 久久婷婷成人综合色麻豆| 免费高清在线观看日韩| 在线播放国产精品三级| 成人国产一区最新在线观看| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 国产又爽黄色视频| 99香蕉大伊视频| 中文字幕精品免费在线观看视频| 久热这里只有精品99| 一区在线观看完整版| 精品久久久精品久久久| 国产精品二区激情视频| 精品久久蜜臀av无| 国产成人欧美| 欧美激情高清一区二区三区| 精品一区二区三区av网在线观看 | 制服诱惑二区| av不卡在线播放| 国产精品免费一区二区三区在线 | 欧美一级毛片孕妇| 久久久精品区二区三区| 男女免费视频国产| 国产99久久九九免费精品| 免费看a级黄色片| 久久99热这里只频精品6学生| 国产色视频综合| 伦理电影免费视频| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 国产精品一区二区在线不卡| 18禁观看日本| 精品免费久久久久久久清纯 | 亚洲专区字幕在线| 国产一区二区三区综合在线观看| 欧美另类亚洲清纯唯美| 久久精品国产a三级三级三级| 亚洲一码二码三码区别大吗| 热re99久久国产66热| 99re在线观看精品视频| 视频区图区小说| a级毛片黄视频| 精品乱码久久久久久99久播| av片东京热男人的天堂| 蜜桃国产av成人99| 18禁美女被吸乳视频| 国产高清国产精品国产三级| 涩涩av久久男人的天堂| 欧美精品一区二区大全| 真人做人爱边吃奶动态| 热99久久久久精品小说推荐| 欧美黄色淫秽网站| 国产精品免费视频内射| 久久中文字幕人妻熟女| 黄色怎么调成土黄色| 嫩草影视91久久| 亚洲av日韩在线播放| 国产高清videossex| 少妇粗大呻吟视频| 亚洲av欧美aⅴ国产| 久久青草综合色| 在线观看一区二区三区激情| 久久香蕉激情| 老司机在亚洲福利影院| 国产欧美亚洲国产| 亚洲第一欧美日韩一区二区三区 | 99精国产麻豆久久婷婷| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲高清精品| 欧美在线一区亚洲| 午夜福利视频精品| 蜜桃在线观看..| 99久久国产精品久久久| 国产亚洲av高清不卡| 国产在线免费精品| 搡老乐熟女国产| 大型黄色视频在线免费观看| 欧美精品人与动牲交sv欧美| 丰满少妇做爰视频| 高清视频免费观看一区二区| 国产精品久久电影中文字幕 | 久久久久久人人人人人| a级毛片在线看网站| 久久国产亚洲av麻豆专区| av欧美777| 国产欧美日韩综合在线一区二区| 亚洲欧美激情在线| 一夜夜www| 高潮久久久久久久久久久不卡| 啦啦啦免费观看视频1| 操出白浆在线播放| 天堂俺去俺来也www色官网| 免费观看人在逋| 青青草视频在线视频观看| 天天影视国产精品| 日本撒尿小便嘘嘘汇集6| 久久久精品区二区三区| 亚洲一区二区三区欧美精品| 色老头精品视频在线观看| 亚洲中文av在线| svipshipincom国产片| 99久久人妻综合| 免费人妻精品一区二区三区视频| 欧美精品亚洲一区二区| 免费女性裸体啪啪无遮挡网站| 成人18禁在线播放| 国产又色又爽无遮挡免费看| 一本色道久久久久久精品综合| 免费在线观看影片大全网站| 91国产中文字幕| 不卡av一区二区三区| 美女高潮到喷水免费观看| 欧美国产精品一级二级三级| 欧美在线黄色| 99热国产这里只有精品6| 少妇 在线观看| 国产精品av久久久久免费| 天堂8中文在线网| 久久精品熟女亚洲av麻豆精品| 一进一出抽搐动态| 少妇粗大呻吟视频| 亚洲色图 男人天堂 中文字幕| 久久久久网色| 国产亚洲精品久久久久5区| 啦啦啦中文免费视频观看日本| 国产av一区二区精品久久| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 如日韩欧美国产精品一区二区三区| 五月天丁香电影| 国产成人精品在线电影| 少妇猛男粗大的猛烈进出视频| a级片在线免费高清观看视频| 性少妇av在线| 男人舔女人的私密视频| 久久香蕉激情| 免费在线观看影片大全网站| 日本av免费视频播放| 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 黄色毛片三级朝国网站| 啦啦啦 在线观看视频| 最新美女视频免费是黄的| 巨乳人妻的诱惑在线观看| 女警被强在线播放| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 日日爽夜夜爽网站| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看 | 亚洲综合色网址| 久久精品国产a三级三级三级| 国产av又大| 亚洲欧美精品综合一区二区三区| 久久久久久久久久久久大奶| 久久久久网色| 天天操日日干夜夜撸| 国产在视频线精品| 亚洲精品国产精品久久久不卡| 国产一区二区 视频在线| 久久精品aⅴ一区二区三区四区| 成年女人毛片免费观看观看9 | 国产av一区二区精品久久| 大码成人一级视频| 色在线成人网| 国产成人欧美在线观看 | 国产亚洲精品久久久久5区| 中文字幕高清在线视频| 亚洲av电影在线进入| 人人妻人人添人人爽欧美一区卜| 欧美在线黄色| 成人黄色视频免费在线看| 精品卡一卡二卡四卡免费| 一进一出好大好爽视频| 日本一区二区免费在线视频| 欧美成人午夜精品| 中国美女看黄片| 久久久久网色| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 1024视频免费在线观看| 国产视频一区二区在线看| 欧美乱码精品一区二区三区| 国产无遮挡羞羞视频在线观看| 美女高潮到喷水免费观看| √禁漫天堂资源中文www| 国产精品麻豆人妻色哟哟久久| 色婷婷av一区二区三区视频| 狠狠精品人妻久久久久久综合| 欧美成狂野欧美在线观看| 日韩一区二区三区影片| 最新的欧美精品一区二区| 国产精品一区二区精品视频观看| 午夜福利在线观看吧| 国产精品久久久久久精品电影小说| 精品国产乱码久久久久久男人| 精品国产国语对白av| videosex国产| 成人精品一区二区免费| 大香蕉久久网| 亚洲成人手机| 国产男女超爽视频在线观看| 精品卡一卡二卡四卡免费| 五月开心婷婷网| 黄色a级毛片大全视频| 精品人妻在线不人妻| 亚洲免费av在线视频| 日韩一区二区三区影片| 丁香欧美五月| tube8黄色片| 女警被强在线播放| 亚洲欧美精品综合一区二区三区| 99国产精品免费福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 美女视频免费永久观看网站| 高清黄色对白视频在线免费看| 国产成人av激情在线播放| 丁香六月天网| 嫁个100分男人电影在线观看| 大片免费播放器 马上看| 国产主播在线观看一区二区| 欧美人与性动交α欧美精品济南到| 欧美激情久久久久久爽电影 | 女性生殖器流出的白浆| 两个人看的免费小视频| 考比视频在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美成人午夜精品| av网站免费在线观看视频| 精品久久久精品久久久| 90打野战视频偷拍视频| 亚洲精品av麻豆狂野| 亚洲成av片中文字幕在线观看| 久久久精品国产亚洲av高清涩受| 久久久久视频综合| 亚洲av片天天在线观看| 亚洲国产看品久久| 国产成人免费观看mmmm| 男人舔女人的私密视频| 久久九九热精品免费| 国产精品久久久久久精品电影小说| 久久国产精品大桥未久av| 亚洲国产欧美在线一区| 久久久精品区二区三区| 久久人妻福利社区极品人妻图片| 精品午夜福利视频在线观看一区 | 午夜福利一区二区在线看| 精品一区二区三区四区五区乱码| 亚洲欧美激情在线| 欧美激情高清一区二区三区| 天堂8中文在线网| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到| av免费在线观看网站| 99精国产麻豆久久婷婷| 人人妻人人添人人爽欧美一区卜| 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| netflix在线观看网站| 91精品三级在线观看| 亚洲精品国产一区二区精华液| 国产深夜福利视频在线观看| 国产成人影院久久av| www日本在线高清视频| 人成视频在线观看免费观看| 亚洲五月色婷婷综合| 国产精品成人在线| 蜜桃国产av成人99| 菩萨蛮人人尽说江南好唐韦庄| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区 | 两人在一起打扑克的视频| 在线观看人妻少妇| 午夜成年电影在线免费观看| 99精品欧美一区二区三区四区| 高潮久久久久久久久久久不卡| 国产一区二区激情短视频| 午夜日韩欧美国产| 在线看a的网站| 老熟妇乱子伦视频在线观看| 国产精品成人在线| 亚洲国产成人一精品久久久| 欧美黄色淫秽网站| 午夜福利一区二区在线看| 国产一区二区 视频在线| 在线天堂中文资源库| 精品卡一卡二卡四卡免费| 性色av乱码一区二区三区2| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 欧美日韩亚洲高清精品| 首页视频小说图片口味搜索| 考比视频在线观看| 啦啦啦中文免费视频观看日本| 国产成人精品在线电影| 久久久久网色| 久久狼人影院| 久久久国产一区二区| av视频免费观看在线观看| 天堂8中文在线网| 欧美日韩中文字幕国产精品一区二区三区 | 超碰97精品在线观看| 99香蕉大伊视频| 极品少妇高潮喷水抽搐| 高清av免费在线| 国产欧美日韩一区二区三| 精品国内亚洲2022精品成人 | 久久精品成人免费网站| 亚洲国产成人一精品久久久| 中文字幕色久视频| 久久毛片免费看一区二区三区| 精品国产乱子伦一区二区三区| 午夜福利免费观看在线| 亚洲午夜精品一区,二区,三区| 亚洲人成电影观看| 老熟女久久久| 午夜久久久在线观看| 高清视频免费观看一区二区| 在线观看舔阴道视频| 天天操日日干夜夜撸| 国产亚洲一区二区精品| 亚洲国产av影院在线观看| 日韩 欧美 亚洲 中文字幕| 国产高清videossex| 国产欧美亚洲国产| 热99国产精品久久久久久7| 男女边摸边吃奶| 丝袜在线中文字幕| 久久精品国产99精品国产亚洲性色 | 国产福利在线免费观看视频| 动漫黄色视频在线观看| e午夜精品久久久久久久| 美女午夜性视频免费| 一级毛片电影观看| 女性生殖器流出的白浆| 美女国产高潮福利片在线看| 波多野结衣一区麻豆| 午夜免费成人在线视频| 亚洲精品国产一区二区精华液| 日本精品一区二区三区蜜桃| 午夜91福利影院| 久久免费观看电影| 18禁观看日本| 国产精品免费大片| 啦啦啦 在线观看视频| 高清欧美精品videossex| 最新的欧美精品一区二区| 大型黄色视频在线免费观看| 免费久久久久久久精品成人欧美视频| 777米奇影视久久| 国产日韩一区二区三区精品不卡| 久久亚洲精品不卡| 日韩大片免费观看网站| 精品亚洲成国产av| 久久这里只有精品19| 国产亚洲精品第一综合不卡| 久久久久精品国产欧美久久久| 老汉色av国产亚洲站长工具| 亚洲va日本ⅴa欧美va伊人久久| 黄片大片在线免费观看| 男女午夜视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 岛国毛片在线播放| 色老头精品视频在线观看| 日本av免费视频播放| 在线观看人妻少妇| 9色porny在线观看| 肉色欧美久久久久久久蜜桃| 热re99久久精品国产66热6| 久久久久久亚洲精品国产蜜桃av| 他把我摸到了高潮在线观看 | 成年人免费黄色播放视频| 免费日韩欧美在线观看| 香蕉国产在线看| 亚洲成人免费av在线播放| 国产片内射在线| 亚洲精品美女久久久久99蜜臀| 一区二区三区乱码不卡18| 午夜福利在线观看吧| 自线自在国产av| 欧美国产精品一级二级三级| 人人妻人人澡人人爽人人夜夜| 国产精品98久久久久久宅男小说| 三级毛片av免费| 午夜福利一区二区在线看| 中文字幕高清在线视频| 亚洲精品自拍成人| 新久久久久国产一级毛片| 最近最新中文字幕大全电影3 | a在线观看视频网站| 日韩制服丝袜自拍偷拍| 丰满人妻熟妇乱又伦精品不卡| 成人亚洲精品一区在线观看| 精品福利观看| 国产麻豆69| 欧美午夜高清在线| 天天躁日日躁夜夜躁夜夜| 丝袜人妻中文字幕| 免费黄频网站在线观看国产| 高潮久久久久久久久久久不卡| 亚洲欧美一区二区三区黑人| 久久久久久久大尺度免费视频| 亚洲avbb在线观看| 久久精品人人爽人人爽视色| av免费在线观看网站| 精品一区二区三区四区五区乱码| kizo精华| 国产精品久久久久成人av| 如日韩欧美国产精品一区二区三区| 亚洲第一av免费看| 中文字幕av电影在线播放| 99国产精品一区二区蜜桃av | 日韩熟女老妇一区二区性免费视频| 九色亚洲精品在线播放| 无人区码免费观看不卡 | 亚洲中文日韩欧美视频| 丝袜人妻中文字幕| 日韩成人在线观看一区二区三区| 黄色a级毛片大全视频| 国产福利在线免费观看视频| 亚洲全国av大片| 高清在线国产一区| 欧美日韩亚洲综合一区二区三区_| 在线观看www视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区二区激情短视频| 变态另类成人亚洲欧美熟女 | 精品乱码久久久久久99久播| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩精品亚洲av| 岛国在线观看网站| 人人妻人人澡人人看| 国产免费av片在线观看野外av| 一区二区三区乱码不卡18| 亚洲色图 男人天堂 中文字幕| 日韩精品免费视频一区二区三区| 王馨瑶露胸无遮挡在线观看| 欧美乱妇无乱码| avwww免费| 99九九在线精品视频| 日本av免费视频播放| 日韩精品免费视频一区二区三区| 精品卡一卡二卡四卡免费| 成人手机av| 啦啦啦免费观看视频1| 美女福利国产在线| 国产黄频视频在线观看| 久久狼人影院| 99九九在线精品视频| 欧美日韩视频精品一区| h视频一区二区三区| 丰满少妇做爰视频| 免费观看a级毛片全部| 一区二区日韩欧美中文字幕| 黑人操中国人逼视频| 成人黄色视频免费在线看| 两个人免费观看高清视频| 夜夜骑夜夜射夜夜干| 99热国产这里只有精品6| 宅男免费午夜| 色老头精品视频在线观看| 日韩一卡2卡3卡4卡2021年| 一二三四社区在线视频社区8| 国产精品一区二区精品视频观看| 十分钟在线观看高清视频www| 在线天堂中文资源库| 麻豆乱淫一区二区| 大片电影免费在线观看免费| 国产精品自产拍在线观看55亚洲 | 亚洲熟妇熟女久久| 国产精品亚洲一级av第二区| 久久久久国产一级毛片高清牌|