• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      環(huán)境和人體中氯代/溴代多環(huán)芳烴的研究進展——污染來源、分析方法和污染特征

      2021-04-30 03:46:38劉明洋李會茹宋愛民胡建芳盛國英彭平安
      中國環(huán)境科學(xué) 2021年4期
      關(guān)鍵詞:硅膠污染土壤

      劉明洋,李會茹,宋愛民,胡建芳,盛國英,彭平安*

      環(huán)境和人體中氯代/溴代多環(huán)芳烴的研究進展——污染來源、分析方法和污染特征

      劉明洋1,4,李會茹2,3,宋愛民1,4,胡建芳1,盛國英1,彭平安1,4*

      (1.中國科學(xué)院廣州地球化學(xué)研究所,有機地球化學(xué)國家重點實驗室和廣東省環(huán)境資源利用與保護重點實驗室,廣東 廣州 510640;2.華南師范大學(xué)環(huán)境研究院,廣東省化學(xué)品污染與環(huán)境安全重點實驗室&環(huán)境理論化學(xué)教育部重點實驗室,廣東 廣州 510006;3.華南師范大學(xué)環(huán)境學(xué)院,廣東 廣州 510006;4.中國科學(xué)院大學(xué),北京 100049)

      氯代/溴代多環(huán)芳烴(Cl/Br-PAHs)是一類具有與二噁英和多環(huán)芳烴(PAHs)相似結(jié)構(gòu)和致癌效應(yīng)的新興持久性毒害污染物,其環(huán)境行為歸趨和潛在風(fēng)險受到了高度重視.本研究以"Cl-PAH*" OR "Br-PAH*" OR "H-PAH*" OR "chlorinated PAH*" OR "brominated PAH*" OR "halogenated PAHs" OR "chlorinated polycyclic aromatic hydrocarbon*" OR "brominated polycyclic aromatic hydrocarbon*" OR "halogenated polycyclic aromatic hydrocarbon*"為主題對Web of Science核心合集數(shù)據(jù)庫進行了檢索,并著重對環(huán)境/人體中Cl/Br-PAHs污染來源、污染特征和分析方法的研究進展進行了綜述.結(jié)果表明:截止2021年1月,環(huán)境/人體中Cl/Br-PAHs的相關(guān)文獻共計225篇.這些研究表明:Cl/Br-PAHs主要來源于廢棄物焚燒、汽車尾氣排放、金屬冶煉、電子垃圾拆解等熱過程和光化學(xué)反應(yīng)過程;目前已在全球各類環(huán)境介質(zhì)中被檢出,并表現(xiàn)出持久存在性、長距離遷移性和生物可利用性;Cl/Br-PAHs被證實具有與其母體PAHs相似甚至更強的毒性,但目前對其形成機理和環(huán)境行為尚不明確,也尚未有統(tǒng)一有效且精準(zhǔn)的分析方法,已報道的化合物種類十分有限,總體研究處于起步階段.結(jié)合目前Cl/Br-PAHs的研究現(xiàn)狀和存在的問題,今后應(yīng)在其高通量精準(zhǔn)篩查分析、源排放指紋識別追溯、環(huán)境遷移轉(zhuǎn)化行為及潛在風(fēng)險上開展研究.

      氯代/溴代多環(huán)芳烴;芳香受體效應(yīng);氣相色譜-質(zhì)譜聯(lián)用

      氯代/溴代多環(huán)芳烴(Cl/Br-PAHs)是多環(huán)芳烴(PAHs)芳環(huán)結(jié)構(gòu)上的一個或多個氫原子被氯/溴原子取代而形成的衍生物[1],結(jié)構(gòu)上類似于氯/溴代二噁英和PAHs的雜交體,其形成過程也與二噁英和PAHs類似[2].但不同的是,雖然Cl/Br-PAHs的環(huán)境污染問題在20世紀(jì)70年代已引起注意,但整體研究起步較晚[3],直到21世紀(jì)初相關(guān)研究才得以進一步展開[4].研究表明,Cl/Br-PAHs和二噁英、PAHs一樣能在環(huán)境中穩(wěn)定持久存在,可被魚類和哺乳動物等吸收并在脂肪組織中累積[5],表現(xiàn)出與其母體PAHs相當(dāng)甚至更高的致癌、致畸、致突變毒性,是一類新興高風(fēng)險毒害有機污染物,對生態(tài)環(huán)境和人類健康存在潛在危害[6].

      據(jù)文獻報道,目前對于Cl/Br-PAHs的研究主要集中在與多氯聯(lián)苯(PCBs)結(jié)構(gòu)類似的多氯萘(PCNs)上[4,7-10],但對3環(huán)及以上的Cl/Br-PAHs研究卻十分有限,主要原因是該類污染物種類繁多,在環(huán)境中多為超痕量濃度水平,凈化分離難度大,且缺乏標(biāo)準(zhǔn)品,目前尚未有統(tǒng)一的分析方法.本文通過對Web of Science 核心合集數(shù)據(jù)庫中相關(guān)文獻的檢索,綜述了近年來環(huán)境/人體中Cl/Br-PAHs的污染來源、分析方法和污染特征的研究進展,對目前的研究現(xiàn)狀、存在的問題及研究數(shù)據(jù)缺口進行了梳理分析,并由此提出其今后的研究方向.

      1 Cl/Br-PAHs的污染來源

      1.1 汽車尾氣排放

      汽車尾氣是城市環(huán)境中Cl/Br-PAHs的主要釋放源之一.據(jù)報道2016年日本城市空氣中有23%的Cl/Br-PAHs來源于道路交通排放,汽油中的二溴乙烷和二氯乙烯等是Cl/Br-PAHs形成的主要鹵源[11]. Ishaq等[12]發(fā)現(xiàn)含氯汽油使用的減少使得1996年斯德哥爾摩市公路隧道大氣Cl-PAHs濃度比1991年降低了10倍,由此認為含氯汽油會影響汽車尾氣中Cl-PAHs的形成.Wang等[13]在交通要道土樣中檢測出的Cl-PAHs濃度是農(nóng)田表層土壤的40倍.此外,有研究者在高速公路附近的雪樣中也檢出了一定濃度的Cl/Br-PAHs[14].

      1.2 有機物焚燒

      固體廢棄物(如城市生活垃圾、電子垃圾等)以及化石燃料(如煤炭)的高溫處理或燃燒均可產(chǎn)生大量Cl/Br-PAHs[15-17].其形成機理包括母體PAHs的直接氯化和Cl-PAHs與其他前驅(qū)物的二次反應(yīng)[18].前者一般有2種途徑(圖1):一是催化氯化,Cl2通過高溫下的親電氯化與PAHs反應(yīng)或被充當(dāng)路易斯酸的過渡金屬氯化物(如FeCl3、CuCl2等)催化(機制1);二是直接氯化,金屬氯化物作為氯化劑反應(yīng),通過構(gòu)成極化的金屬氯化物分子或是構(gòu)成有機金屬中間體來促進芳香族化合物的氯取代[24,28-29](機制2和3).固廢中常見的聚氯乙烯(PVC)、金屬氯化物、溴代阻燃劑(BFRs)等是Cl/Br-PAHs形成的氯/溴源[23-24].Fernando等[25]在PVC焚燒后的土壤樣品中檢測到高濃度的Cl-PAHs.PVC是電子產(chǎn)品的常用材料,電子垃圾焚燒區(qū)土壤、拆解車間灰塵及周邊土壤和植物中均已檢出高濃度的Cl- PAHs[17,27].Wang等[26]發(fā)現(xiàn)PVC在600~900℃范圍內(nèi)燃燒時,Cl-PAHs的形成隨溫度升高而升高.固廢焚燒產(chǎn)生的Cl/Br-PAHs不僅殘留在焚燒殘渣內(nèi),還可隨飛灰和煙氣釋放到環(huán)境中[19].Kitazawa等[16]在城市垃圾焚燒爐煙道氣中檢測出相當(dāng)高濃度的Cl-PAHs (<5.80~8780ng/m3),是環(huán)境大氣濃度的350~60000倍;受燃燒效率和條件的影響,不同類型焚燒爐產(chǎn)生的Cl/Br-PAHs濃度也存在顯著差異,其中固定爐(0.460~6990ng/g)遠高于爐排爐(<0.060~1.10ng/g)和回轉(zhuǎn)窯(<0.060~105ng/g)[20]. Li等[21]通過實驗室模擬研究發(fā)現(xiàn)Cl-PAHs在氣相中濃度較高,而Br-PAHs大多殘留在底灰和飛灰中,這與后者分子量較大較難揮發(fā)有關(guān)[22].相比于末端控制,焚燒過程中的源頭控制能更有效的降低Cl/Br-PAHs的污染排放,Qiao等[15]發(fā)現(xiàn)隨著清潔能源逐步取代燃煤發(fā)電取暖,北京市河流中Cl- PAHs的濃度顯著降低.

      1.3 工業(yè)活動

      金屬冶煉、氯化學(xué)工業(yè)等工業(yè)生產(chǎn)過程均可產(chǎn)生Cl/Br-PAHs.Xu等[30]發(fā)現(xiàn)鐵、鋁、鉛等冶金工業(yè)煙道氣中的Cl-PAHs和Br-PAHs濃度(68.3~156和2.90~13.5ng/Nm3)遠高于其周圍大氣中的濃度(7.00~554和3.00~126pg/m3),且兩者化合物組成相似.Jin等[31]在二次銅冶煉廠車間檢出了38種Cl/Br-PAHs,總濃度2.20~605pg/m3,高于周邊空氣濃度(2.50~92.3pg/m3).冶煉原材料、燃料、還原劑等是影響金屬冶煉過程中Cl/Br-PAHs生成釋放的重要因素,使用天然氣代替煤和重油作為燃料和還原劑可能有助于降低該過程中Cl/Br-PAHs的形成[30-31].

      Pinto等[32]模擬了自來水的消毒過程,在含有PAHs和次氯酸鈉的超純水中檢測到一定濃度的Cl-PAHs.Koistinen等[33-34]在牛皮紙漂白廠和紙漿廠的污水、紙漿、生物底泥中均檢測出Cl-PAHs,以氯代芴(Cl-FLU)和Cl-PHE為主.圖2是水氯化消毒過程中苊(ACE)的主要氯化途徑[35].

      圖1 燃燒過程中PAHs的3種氯化機制[24,28-29]

      圖2 ACE在水的消毒過程中的氯化途徑[35]

      除上述工業(yè)活動外,Ma等[17]發(fā)現(xiàn)焦化廠、PVC制造廠和氯堿廠等廠區(qū)表層土壤中的Cl-PAHs (88.0ng/g)比周邊農(nóng)田表層土高2~3個數(shù)量級(ND~0.760ng/g).

      1.4 光化學(xué)反應(yīng)

      PAHs的光化學(xué)作用也是Cl/Br-PAHs的重要來源.Sankoda等[36]以芘(PYR)模擬了海水中PAHs的紫外光照射過程,檢測到PYR的單氯、單溴、二氯和混合鹵代產(chǎn)物.Ohura等[37]觀察到PYR和苯丙(a)芘(BaP)與Cl2在紫外光或可見光照射下均可生成以1-Cl-PYR和6-Cl-BaP為主的Cl-PAHs,由此提出了PAHs在含Cl-的酸性溶液中的光氯化機制(1~7):

      PAH → PAH*(光照)(1)

      PAH* + O2→ PAH+·+ O2-(2)

      O2-·+ O2-·+ 2H2O → H2O2+ 2OH-+ O2(3)

      O2-·+ H2O2→ OH·+ OH-+ O2(4)

      OH·+ Cl-→ HOCl-(5)

      HOCl-·+ H+? Cl·+ H2O(6)

      PAH + Cl·→ ClPAH(7)

      pH值是水環(huán)境中Cl的光化學(xué)反應(yīng)的重要影響因素,Cl-PAHs的光化學(xué)生成隨pH值降低而增加[37].此外,金屬氧化物的種類和形態(tài)、氯源、光照時間等也會影響光化學(xué)反應(yīng)中Cl-PAHs的形成[38],例如二氧化鈦和二氧化硅能促進Cl-PYR的生成,而氧化鈣卻不能;在二氧化硅的硅酸酐形態(tài)中能檢測出2-Cl-PYR,而在石英和硅膠等形態(tài)中卻未檢測出[38].氯源、光照時間等也會影響光化學(xué)反應(yīng)過程中Cl-PAHs的形成.二氧化鈦中Cl-PYR的生成量在0.5~1h達到峰值,此后隨輻射時間增加生成量逐漸降低[38].

      2 Cl/Br-PAHs的污染特征

      目前研究者已在大氣、水體、土壤以及各種生物體中檢出了Cl/Br-PAHs(表1),并對其環(huán)境行為和污染特征進行了初步研究.

      2.1 大氣

      Kamiya等[11]發(fā)現(xiàn)日本名古屋大氣懸浮顆粒物中24種Cl-PAHs濃度的空間分布規(guī)律為工業(yè)地區(qū)(20.7pg/m3)>居民區(qū)(14.1pg/m3),且Cl-PAHs主要源于受季節(jié)影響的本地源,而PAHs主要源于工業(yè)和石油燃料燃燒,二者的產(chǎn)生機制差異較大.Ohura等[39]報道日本12個地區(qū)大氣中的Cl-PAHs呈現(xiàn)出夏季氣相濃度較高,而冬季顆粒相濃度較高的季節(jié)變化規(guī)律,由此推測不同季節(jié)Cl-PAHs的來源可能存在差異,其夏季來源可能是廢棄物焚燒,而冬季來源可能是車輛尾氣排放和燃煤.Jin等[40]發(fā)現(xiàn)煤燃燒的增加使得供暖期間北京大氣中Cl/Br-PAHs的平均濃度比非供暖期間高3~9倍,這與Kakimoto等[41]的研究一致.此外,Kakimoto等[41]認為不同季節(jié)的光化學(xué)降解差異也會導(dǎo)致Cl/Br-PAHs濃度的季節(jié)性.以上研究中報道的Cl/Br-PAHs以BaP和PYR的單氯化衍生物為主,對高取代或混合取代的Cl/Br-PAHs報道很少.

      大氣中的Cl/Br-PAHs主要存在于大氣顆粒物中并能保持相對穩(wěn)定.Helm等[42]在北極地區(qū)大氣中檢測出一定含量的PCNs,證實了Cl/Br-PAHs具有較強的大氣遠距離遷移傳輸能力.

      2.2 水體

      大多數(shù)Cl/Br-PAHs水溶性很低,在水環(huán)境中主要賦存在懸浮顆粒物和沉積物上.Sun等[43]在深圳茂州河的表層沉積物中檢出了3種Cl-PAHs和6種Br-PAHs,分別以9-Cl-PHE(平均濃度16.5ng/g)和2-Br-FLU(平均濃度35.3ng/g)為主,且Br-PAHs總濃度是現(xiàn)有研究報道中最高值(平均濃度53.0ng/g),城市化和工業(yè)化進程是其主要來源. Ohura等[44]在亞洲3個受工業(yè)化影響區(qū)域的水體(中國黃海,斯里蘭卡的康提湖和尼甘布瀉湖)沉積物中檢測出Cl/Br-PAHs,以6-Cl-BaP、1-Cl- PYR、3-Cl-FLT等為主,在表層沉積物濃度較高,而PAHs則在底層沉積物濃度較高.作者認為影響兩者分布的主要因素是各自污染來源及遷移轉(zhuǎn)化過程(如光降解、生物降解等),某些Cl-PAHs同系物如6-Cl-BaP和1-Cl-PYR可作為其人為活動源的指示物[43].

      Shiraishi等[2]在筑波地區(qū)自來水樣本中檢測出萘(NAP)、菲(PHE)、芴(FLU)和熒蒽(FLT)的一氯/二氯衍生物但在地表水中未檢測出,推測自來水中的Cl-PAHs主要來源于氯化消毒及管道傳輸過程.而Wang等[45]在河南洛陽某區(qū)的研究發(fā)現(xiàn)水樣中Cl-PAHs濃度表現(xiàn)為地表水(6.90~25.7ng/L)>自來水(0.900~25.7ng/L).這可能是由于城市化進程產(chǎn)生了Cl-PAHs的潛在排放源,如電子廢物回收、氯化學(xué)工業(yè)、汽車尾氣等,通過污水排放、地表徑流、地下水滲透等途徑向水體中釋放Cl-PAHs.海水中也存在著相當(dāng)高濃度的Cl/Br-PAHs,這可能源于沿海地表水中PAHs暴露于太陽光發(fā)生鹵化作用[36].

      表1 環(huán)境中Cl/Br-PAHs的污染特征比較

      注:①1,2-Br2-ACY指1,2-二溴苊烯;②2-Br-TRIPH指2-溴三亞苯.

      2.3 土壤

      Ni等[46]發(fā)現(xiàn)土地利用方式可影響土壤中Cl/Br-PAHs的同系物組成和濃度水平,深圳地區(qū)8種不同土地利用方式土壤中3種Cl-PAHs的平均濃度依次為:交通區(qū)(2.16ng/g)>商業(yè)區(qū)(1.04ng/g)>農(nóng)業(yè)區(qū)(0.330ng/g)>工業(yè)區(qū)(0.220ng/g)>居民區(qū)(0.080ng/g)>果園(0.070ng/g)>森林(0.060ng/g)>綠化區(qū)(0.020ng/g),表明汽車尾氣排放會影響土壤中的Cl-PAHs含量;而6種Br-PAHs的平均濃度在各土樣中均高于Cl-PAHs,且在農(nóng)業(yè)區(qū)土壤中的濃度最高(18.1ng/g),說明其主要來源與Cl-PAHs不同.Ni等[46]在土壤樣品中檢出的9種Cl/Br-PAHs中以2-Br-FLU為主(平均濃度為7.18ng/g),卻在飛灰中檢出了除2-Br-FLU以外的8種Cl/Br-PAHs,表明飛灰與土壤中Cl/Br-PAHs的來源存在差異.Nguyen等[47]發(fā)現(xiàn)電子廢物露天焚燒可造成土壤Cl/Br- PAHs污染,且Cl-PAHs濃度比相應(yīng)Br-PAHs高2.4~64倍,以三環(huán)單氯代物為主,其中1-Cl-PYR濃度最高;而Br-PAHs的組成和濃度水平隨燃燒材料類型和條件而變化.

      2.4 生物體

      盡管數(shù)據(jù)有限,Cl/Br-PAHs已在魚類、蔬菜等動植物樣品中被檢出,表現(xiàn)出生物可利用性和生物富集性.Tan等[48]在遼寧省的22個淡水魚樣品中檢測出3種低分子量的Cl-PAHs(9- Cl-PHE、1-Cl-PYR和5-Cl-ACE),但并未觀察到Cl-PAHs與母體PAHs的相關(guān)性,其中工業(yè)活動較強地區(qū)(如城市垃圾填埋、造紙廠)的魚樣中的Cl-PAHs濃度較高,而生產(chǎn)活動和燃燒源污染嚴重地區(qū)魚樣中PAHs濃度較高;所有魚樣中的Cl-PAHs以低分子量化合物為主,這可能與其生物可利用性較強有關(guān)[49]. Wang等[50]發(fā)現(xiàn)北京市場上的葉類和根類蔬菜中均可檢出11種Cl/Br-PAHs,但葉類蔬菜的總Cl/Br-PAHs濃度高于根類蔬菜,且隨著與焚燒廠距離的增加而顯著降低,說明其污染主要來自于焚燒污染排放的大氣沉降.

      2.5 人體

      目前對于人體樣品中Cl/Br-PAHs的污染特征研究極為有限,現(xiàn)有研究主要集中在Cl/Br-PAHs的人體暴露評價和致癌風(fēng)險評估方面(表2).有限的研究表明:不考慮體重影響下,男性及成年人的暴露劑量更高,而如果考慮體重的影響,女性和兒童則處于更高的暴露風(fēng)險中;食物性攝入是人體Cl/Br-PAHs的主要暴露途徑[46,51-52].

      有研究者[53]認為,Cl/Br-PAHs傾向于在水生生態(tài)系統(tǒng)的食物鏈中被生物利用和放大,污染水產(chǎn)品(如海鮮等)的攝入是其人體暴露的主要途徑.除此之外,其它受污染食物(如肉類、大米、蔬菜等)的攝入也會增加其人體暴露風(fēng)險[51].Ding等[51]通過計算不同年齡段人群每日通過不同食物對9種Cl/Br-PAHs的絕對攝入量(ADI,ng/d)發(fā)現(xiàn),雖然Cl/Br-PAHs總濃度變化順序為豬肉(4.97ng/g)>大米(2.75ng/g)>蔬菜(0.560ng/g),但各食物對其ADI的貢獻則是大米(41.3%~58.7%)>豬肉(27.4%~43%)>蔬菜(6.5%~ 19.6%);成年和老年人的ADI值(男:1129~1253ng/d;女:998.1~1034ng/d)高于兒童(男:581.7ng/d;女: 577.4ng/d);但考慮到體重影響,兒童仍是最敏感暴露人群.

      大氣顆粒物和土壤灰塵等非食物性攝入也會增加人體的Cl/Br-PAHs暴露風(fēng)險,但暴露量遠低于食物性攝入[40,46,52].Ni等[46]發(fā)現(xiàn)同一年齡段女性通過土壤接觸對Cl/Br-PAHs的相對每日攝入量(RDI,pg/(kg·d))高于男性,且隨年齡增加而降低.Sun等[52]通過計算也發(fā)現(xiàn)除成年人外,其余所有年齡段女性通過大氣顆粒物PM10和PM2.5攝入Cl/Br-PAHs的RDI值均略高于男性.Jin等[40]比較了不同人群在供暖期和非供暖期通過呼吸和皮膚暴露攝入PAHs和Cl/Br-PAHs的ADI值,發(fā)現(xiàn)顆粒相呼吸攝入(33%~98.8%)>氣相呼吸攝入(0.5%~39.2%)>氣相皮膚暴露(0.2%~40.8%)>顆粒相皮膚暴露(0.004%~0.8%),其中供暖期間的呼吸攝入ADI值比非供暖期間高10倍以上,且ADI值整體表現(xiàn)為成年人>青少年>兒童,顆粒相呼吸攝入被認為是PAHs及Cl/Br-PAHs在霧霾天的主要暴露途徑.

      對于致癌物質(zhì),美國環(huán)保局將10-6幾率致癌風(fēng)險值設(shè)為可接受致癌風(fēng)險水平下限,而10-4幾率設(shè)為可接受致癌風(fēng)險水平上限[54].Wang等[50]發(fā)現(xiàn)所有年齡段人群經(jīng)蔬菜攝入Cl/Br-PAHs所引發(fā)的終生致癌風(fēng)險(ILCR)值均<10-6,即其癌癥風(fēng)險很小.Ding等[51]報道了深圳地區(qū)男性和女性通過飲食攝入(豬肉、大米、蔬菜)8種Cl/Br-PAHs的ILCR值分別為1.20×10-5和1.10×10-5,處于10-6和10-4之間.這一差異可能與各自研究區(qū)域、檢測Cl/Br-PAHs種類及濃度不同有關(guān).Sun等[52]的研究則表明,雖然不同年齡段人群經(jīng)PM10和PM2.5呼吸攝入9種Cl/Br-PAHs所引發(fā)的ILCR值有所不同,但所有ILCR值都比10-6低2~3個數(shù)量級.總的來說,食物性和非食物性攝入Cl/Br-PAHs均存在一定的致癌風(fēng)險,但目前已有的數(shù)據(jù)大多低于可接受致癌風(fēng)險水平上限(10-4).需要注意的是,因為上述評價涵蓋的目標(biāo)物種類均十分有限,Cl/Br-PAHs的實際癌癥風(fēng)險可能要高于上述評估值.

      表2 人體Cl/Br-PAHs暴露量及致癌風(fēng)險評估

      3 Cl/Br-PAHs的分析方法

      3.1 樣品提取

      樣品提取是準(zhǔn)確分析環(huán)境樣品中Cl/Br-PAHs的關(guān)鍵步驟,最傳統(tǒng)的方法是液液萃取(LLE)和索氏抽提(SE),廣泛應(yīng)用于水體、大氣、土壤等樣品中Cl/Br-PAHs的提取[2,55-57].近年來,隨著樣品前處理技術(shù)的飛速發(fā)展,一些新型儀器輔助提取方法被不斷推出并應(yīng)用于環(huán)境樣品中Cl/Br-PAHs的提取和分析,例如:利用固體吸附及選擇性吸附液態(tài)樣品中目標(biāo)物的固相萃取法(SPE)[45,58-59];采用涂有固定相的熔融石英纖維來吸附、富集樣品中的待測物質(zhì)的固相微萃取法(SPME)[60];利用超聲波輻射加速提取目標(biāo)物的超聲波萃取法(UE)[41,61-62];利用加溫加壓加速提取目標(biāo)物的加速溶劑萃取法(ASE)[25,30,48];利用微波加熱加速溶劑提取的微波輔助萃取法(MAE)[63-65]等.上述提取方法的優(yōu)缺點見表3.總的來說,SPE、ASE、UE等新型樣品提取技術(shù)有機溶劑消耗量低,提取時間短,效率高,容易實現(xiàn)自動化操作,或與分析檢測儀器在線聯(lián)用,大大節(jié)省人力物力,未來會在Cl/Br-PAHs的環(huán)境/人體樣品分析中發(fā)揮重要作用.

      除上述常見提取方法外還有超臨界流體萃取法(SFE),該方法利用超臨界流體(如CO2)良好的溶解能力和高擴散性達到萃取分離目的,目前已應(yīng)用于土壤[66-67]、沉積物[68]、大氣[69]等基質(zhì)中PAHs及其衍生物的提取分析,為Cl/Br-PAHs的提取技術(shù)提供新方向.

      3.2 樣品凈化

      柱層析法是有機污染物分析最常用的樣品凈化分離手段.目前Cl/Br-PAHs樣品凈化常用的柱填料有硅膠、活性炭、氧化鋁、弗羅里硅土、凝膠滲透色譜柱填料(GPC)、銅粉/粒(除硫)等[70].這些填料既可單獨使用,也可組合以更好的去除樣品的基質(zhì)干擾;既可自行組裝,也有不同容量的商品化小柱可以選用.

      表3 Cl/Br-PAHs的主要提取方法的比較

      3.2.1 單填料固相凈化柱 硅膠通過表面硅醇基產(chǎn)生吸附作用,適于分離極性相差較大的物質(zhì),還可與酸堿混合配置成酸性或堿性硅膠,用于不同酸堿性干擾物質(zhì)的去除,是有機物分析中最常用的凈化柱填料[71-72].但Jin等[73]考察了不同質(zhì)量負載(11%、22%、44%,:)下酸性硅膠對Cl/Br- PAHs樣品的凈化效果,發(fā)現(xiàn)即使是最低負載(11%)的酸性硅膠也會完全破壞Cl/Br-PAHs的結(jié)構(gòu),該研究最終采用中性硅膠對樣品進行凈化,并用60mL正己烷:二氯甲烷=4:1(:)洗脫,得到了很好的凈化效果(加標(biāo)回收率為77%~106%).堿性硅膠也常用于鹵代二噁英樣品的凈化過程[74]. Masuda等[75]采用12g 2% KOH堿性硅膠柱并結(jié)合活性炭小柱,成功將魚皮樣品中的脂質(zhì)及其堿反應(yīng)產(chǎn)物與Cl-PAHs分離,凈化后目標(biāo)物回收率為57%~105%.氧化鋁對非平面極性分子有較強吸附力,而活性炭可吸附共平面非/弱極性化合物,因此二者適用于分離平面型和非平面型化合物.Fernando等[25]采用活性氧化鋁柱凈化土壤樣品提取液,100mL正己烷淋洗去除樣品中的脂肪族化合物,然后以200mL二氯甲烷洗脫其中的Cl/Br- PAHs.莫李桂等[76]采用100mL正己烷:二氯甲烷=7:3 (:)淋洗雙層碳可逆管以去除脂肪類碳氫化合物及非共平面PCBs等干擾物,然后用100mL甲苯反沖柱獲得Cl/Br-PAHs,加標(biāo)回收率62%~95%.GPC填料依靠空間排阻效應(yīng),將分子體積較大的干擾物質(zhì)(如脂肪類)從樣品中去除.原文婷等[77]以乙酸乙酯:環(huán)己烷=1:1(:)做GPC柱洗脫液,6種Cl-PAHs檢測限2.60~25.1pg/g.

      3.2.2 復(fù)合固相凈化柱 對于基質(zhì)復(fù)雜的樣品,使用單填料凈化柱難以達到理想的凈化分離效果,通常采用兩種及以上的凈化填料復(fù)合的方式,如硅膠與氧化鋁、活性炭或GPC等組合,達到進一步凈化樣品提取液的目的.Qiao等[78]采用硅膠-氧化鋁復(fù)合柱凈化分析北京某河流水樣,不同配比有機溶劑洗脫,目標(biāo)物回收率在69%~103%之間.多段硅膠柱也是一種常見的復(fù)合凈化柱,將酸性硅膠、中性硅膠、堿性硅膠等按照不同的質(zhì)量、排列順序進行組合, 對基質(zhì)中極性較高(如脂肪等)和易氧化物質(zhì)有很好的去除效果[72],被用于沉積物和生物樣品中PCNs的凈化分析[79].但如前所述[73],酸性硅膠可能會破壞PAHs及其氯代衍生物的結(jié)構(gòu),導(dǎo)致目標(biāo)物回收率降低.

      3.3 儀器分析

      Cl/Br-PAHs的結(jié)構(gòu)和物化性質(zhì)與PAHs及二噁英等有機物相似,其儀器分析方法的建立主要參考上述有機物,以氣相色譜-質(zhì)譜聯(lián)用(GC-MS)為主.此外,高分辨氣相色譜-高分辨質(zhì)譜(HRGC- HRMS)、全二維氣相色譜-質(zhì)譜(GC×GC-MS)、氣相色譜-串聯(lián)質(zhì)譜(GC-MS/MS)等也在Cl/Br-PAHs分析中發(fā)揮了很大作用,對Cl/Br-PAHs的檢測限可達pg級甚至更低.目前已報道的Cl/Br-PAHs主要儀器分析方法見表4.

      3.3.1 GC-MS GC-MS主要采用電子電離源(EI)和四級桿(Q)質(zhì)量分析器,最早被用于水體樣品中的Cl/Br-PAHs分析[10],后來也被用于大氣樣品分析,定性定量效果良好[39].近年來隨著MS技術(shù)的飛速發(fā)展,軌道離子阱(Orbitrap)、傅里葉變換離子回旋共振分析器(FT-ICR)等高分辨率質(zhì)量分析器也被用于Cl/Br-PAHs的分析.GC-EI-Orbitrap/MS可檢測ppb級的有機污染物,Yang等[80]應(yīng)用GC-EI-Orbitrap/ MS對不同熱處理工業(yè)過程中產(chǎn)生的飛灰進行分析,共鑒定出包含Cl/Br-PAHs在內(nèi)的96種有機化合物.FT-ICR/MS是在回旋共振分析器的基礎(chǔ)上發(fā)展而來,具有更快的掃描速率和更高的靈敏度. Fernando等[25]借助FT-ICR在火災(zāi)過后的土壤樣品中鑒定出包含Cl/Br-PAHs在內(nèi)的約150個化合物分子式.但FT-ICR/MS價格昂貴,體積大,分析速度較慢,成本高,在實際樣品分析中應(yīng)用較少.

      3.3.2 HRGC-HRMS HRGC-HRMS在準(zhǔn)確分析環(huán)境基質(zhì)中具有復(fù)雜同類異構(gòu)體且超痕量的有機物方面具有壓倒性優(yōu)勢.Jin等[31,73]在高分辨率(>10000)和選擇離子監(jiān)測(SIM)模式下,采用HRGC-HRMS分析了二次銅冶煉廠煙道氣及周邊空氣樣品中的Cl/Br-PAHs.Fan等[81]采用HRGC- HRMS法分析不同工業(yè)熱處理飛灰中的Cl/Br- PAHs,均取得了良好效果,其中低氯代PAHs的檢測限為3.50~9.50pg/g.

      3.3.3 GC×GC-MS 全二維GC(GC×GC)將2個涂層存在差異、分離機理不同且相互獨立的色譜柱以串聯(lián)方式結(jié)合,極大提高了分離度和峰容量.Xu等[35]借助GC×GC-Q/MS對Cl/Br-PAHs的定性分析發(fā)現(xiàn)ACE和PYR是 Cl-PAHs的主要前體,ACY和ANT則主要產(chǎn)生毒性較小的氧化PAHs.GC×GC若與高分辨率的飛行時間質(zhì)譜(TOF)聯(lián)用則同時具有高通量、高靈敏度、高分析速率等優(yōu)勢,適于復(fù)雜樣品的分離鑒定和全譜分析.Manzano等[82]采用GC×GC- TOF/MS分析大氣顆粒物、土壤和沉積物等樣品中的PAHs和Cl-PAHs,顯著降低了分析時間.Ieda等[83]首次通過GC×GC-TOF/MS分析法,在土壤提取物中檢測出了高氯(37)Cl-PAHs和混合鹵素取代的PAHs.盡管GC×GC-TOF/MS對高氯/溴取代PAHs具有明顯的分析優(yōu)勢,但其高昂的成本和分析費用使其應(yīng)用受到限制.

      3.3.4 GC-MS/MS 多級MS串聯(lián)所具有的多反應(yīng)監(jiān)測模式(MRM)可對一維MS無法區(qū)分的干擾離子進一步確認,有效排除雜質(zhì)干擾.莫李桂等[76]借助GC-QQQ-MS/MS 對土壤樣品中的19種Cl-PAHs和8種Br-PAHs進行分析,目標(biāo)物的儀器檢測限分別為0.400~5.00pg和0.600~3.60pg.GC-QQQ-MS/ MS的檢測限和靈敏度與高分辨質(zhì)譜相當(dāng),但硬件相對便宜,分析成本低,具有較好的應(yīng)用前景.

      3.3.5 其他儀器分析方法 Wang等[84]首次嘗試采用高效液相色譜 (HPLC)和熒光檢測器分析自來水中的6種Cl-PAHs和15種PAHs,目標(biāo)物檢測限0.30~5.00ng/L.也有研究人員將LC-MS應(yīng)用于水體[85]、土壤[86]、人體組織[87]中PCNs的檢測,回收率和檢測限均能滿足檢測要求.但LC-MS常用的離子源如電噴霧電離源(ESI)、大氣壓化學(xué)電離源(APCI)等對Cl/Br-PAHs的電離效率低,基質(zhì)效應(yīng)高,因而在Cl/Br-PAHs的分析中應(yīng)用較少.Gao等[88]借助LC- MS設(shè)計了一種鑒定未知PAHs的方法,利用Cl- PAHs在質(zhì)譜中的同位素分布識別未知PAHs的分子組成和碳骨架,很好的表征了NAP、ANT、PHE、PYR和FLT等PAHs類污染物,靈敏度達1.00ng/mL.

      表4 Cl/Br-PAHs的主要儀器分析方法的比較

      4 結(jié)語

      4.1 總結(jié)

      Cl/Br-PAHs來源和種類繁多,并在環(huán)境中表現(xiàn)出普遍存在性、持久性、長距離遷移性、生物富集性和毒性.目前受分析方法和標(biāo)準(zhǔn)品限制,國內(nèi)外對其污染特征、環(huán)境行為歸趨和風(fēng)險的研究尚未全面展開,整體處于起步階段,存在以下問題:

      4.1.1 缺乏統(tǒng)一完善的分析方法體系和商業(yè)可獲得標(biāo)準(zhǔn)品;目前的靶向分析方法能夠分析的Cl/Br- PAHs極為有限,如何分析/表征復(fù)雜樣品中的多種Cl/Br-PAHs對于環(huán)境分析化學(xué)家是極大的挑戰(zhàn).

      4.1.2 環(huán)境/人體中Cl/Br-PAHs的污染數(shù)據(jù)十分有限,對其在環(huán)境中的遷移轉(zhuǎn)化行為、歸趨和風(fēng)險尚不清楚.

      4.1.3 對于Cl/Br-PAHs的生成機理、與母體PAHs的關(guān)系、影響因素及不同污染排放源的組成指紋特征研究極為有限.

      4.1.4 目前的研究主要集中在1~3個Cl/Br單獨或混合取代的PAHs上,對于高鹵代PAHs污染特征和環(huán)境行為的研究有待展開.

      4.2 研究展望

      作為一類新興鹵代芳烴類毒害有機污染物,Cl/ Br-PAHs的污染和風(fēng)險已引起國內(nèi)外研究學(xué)者的廣泛關(guān)注,可以預(yù)見,隨著研究方法和技術(shù)手段的不斷發(fā)展進步,關(guān)于Cl/Br-PAHs的污染及其生態(tài)和健康風(fēng)險研究將會全面展開.結(jié)合Cl/Br-PAHs目前的研究現(xiàn)狀和存在的問題,今后應(yīng)在以下方面開展相關(guān)研究:

      4.2.1 復(fù)雜樣品中多種Cl/Br-PAHs的分析/表征方法,如高分辨質(zhì)譜非靶向篩查分析法、生物毒性表征法等.

      4.2.2 不同污染來源Cl/Br-PAHs的生成機理、關(guān)鍵控制因素、污染物組成特征指紋譜,不同環(huán)境介質(zhì)中的Cl/Br-PAHs污染來源的判識和追溯,同時提出其污染的源頭控制建議.

      4.2.3 深入探討Cl/Br-PAHs在各類環(huán)境介質(zhì)及生物體/人體間的遷移轉(zhuǎn)化規(guī)律和潛在生態(tài)健康風(fēng)險.

      [1] Ohura T, Amagai T, Makino M. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane [J]. Chemosphere, 2008,70(11):2110- 2117.

      [2] Shiraishi H, Pilknington N H, Otsuki A, et al. Occurrence of chlorinated polynuclear aromatic-hydrocarbons in tap water [J]. Environmental Science & Technology, 1985,19(7):585-590.

      [3] BrinkmanU A T, ekok A, Reymer H G M, et al. Analysis of polychlorinated naphthalenes by high- performance liquid and thin -layer chromatography [J]. Journal of Chromatography, 1976,129(22): 193-209.

      [4] Liu Z, Liu G, Zheng M, et al. Progress in the studies associated with environmental distribution and characterization of polychlorinated naphthalenes [J]. Scientia Sinica Chimica, 2013,43(3):279-290.

      [5] Gao Z, Yang X, Peng Y. Analytical methods and pollution status of a new class of organic contaminants-chlorinated polycyclic aromatic hydrocarbons [J]. Environmental Chemistry, 2016,35(2):287-296.

      [6] Loftroth G, Nilsson L, Agurell E, et al. almonella microsome mutagenicity of monochloro derivatives of some di-tetracyclic, tri-tetracyclic and tetracyclic aromatic-hydrocarbons [J]. Mutation Research, 1985,155(3):91-94.

      [7] Mahmood A, Malik R N, Li J, et al. Congener specific analysis, spatial distribution and screening-level risk assessment of polychlorinated naphthalenes in water and sediments from two tributaries of the River Chenab, Pakistan [J]. Science of the Total Environment, 2014,485: 693-700.

      [8] Falandyse J. Polychlorinated naphthalenes: an environmental update [J]. Environmental Pollution, 1998,101(1):77-90.

      [9] Kannan K, Hilscherova K, magawa T, et al. Polychlorinated naphthalenes, -biphenyls, -dibenzo-p-dioxins, and -dibenzofurans in double-crested cormorants and herring gulls from Michigan waters of the Great Lakes [J]. Environmental Science & Technology, 2001,35(3): 441-447.

      [10] Kucklick J R, Helm P A. Advances in the environmental analysis of polychlorinated naphthalenes and toxaphene [J]. Analytical and Bioanalytical Chemistry, 2006,386(4):819-836.

      [11] Kamiya Y, Iijima A, Ikemori F, et al. Source apportionment of chlorinated polycyclic aromatic hydrocarbons associated with ambient particles in a Japanese megacity [J]. Scientific Reports, 2016,6:38358.

      [12] Ishaq R, Naf C, Zebuhr Y, et al. PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in air and water particulate samples-patterns and variations [J]. Chemosphere, 2003,50(9):1131-1150.

      [13] Wang X L, Wu J F, Liu B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions [J]. Rsc Advances, 2016,6(83):80017-80023.

      [14] Haglund P, Alsberg T, Bergman A, et al. Analysis of halogenated polycyclic aromatic-hydrocarbons in urban air, snow and automobile exhaust [J]. Chemosphere, 1987,16(10-12):2441-2450.

      [15] Qiao M, Bai Y H, Cao W, et al. Impact of secondary effluent from wastewater treatment plants on urban rivers: Polycyclic aromatic hydrocarbons and derivatives [J]. Chemosphere, 2018,211:185-191.

      [16] Kitazawa A, Amagai T, Ohura T. Temporal trends and relationships of particulate chlorinated polycyclic aromatic hydrocarbons and their parent compounds in urban air [J]. Environmental Science & Technology, 2006,40(15):4592-4598.

      [17] Ma J, Horii Y, Cheng J, et al. Chlorinated and Parent Polycyclic Aromatic Hydrocarbons in Environmental Samples from an Electronic Waste Recycling Facility and a Chemical Industrial Complex in China [J]. Environmental Science & Technology, 2009,43(3):643-649.

      [18] Takasuga T, Umetsu N, Makino T, et al. Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper [J]. Archives of Environmental Contamination and Toxicology, 2007,53(1):8-21.

      [19] Fujima S, Ohura T, Amagai T. Simultaneous determination of gaseous and particulate chlorinated polycyclic aromatic hydrocarbons in emissions from the scorching of polyvinylidene chloride film [J]. Chemosphere, 2006,65(11):1983-1989.

      [20] Horii Y, Ok G, Ohura T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators [J]. Environmental Science & Technology, 2008,42(6): 1904-1909.

      [21] Li H Y, Gao P P, Ni H G. Emission characteristics of parent and halogenated PAHs in simulated municipal solid waste incineration [J]. Science of the Total Environment, 2019,665:11-17.

      [22] Lei Y D, Chankal R, Chan A, et al. Supercooled liquid vapor pressures of the polycyclic aromatic hydrocarbons [J]. Journal of Chemical and Engineering Data, 2002,47(4):801-806.

      [23] Huang K, Guo J, Lin K F, et al. Distribution and temporal trend of polybrominated diphenyl ethers in one Shanghai municipal landfill, China [J]. Environmental Science and Pollution Research, 2013,20(8): 5299-5308.

      [24] Wang D, Zhang H J, Fan Y, et al. Electrophilic Chlorination of Naphthalene in Combustion Flue Gas [J]. Environmental Science & Technology, 2019,53(10):5741-5749.

      [25] Fernando S, Jobst K J, Taguchi V Y, et al. Identification of the Halogenated Compounds Resulting from the 1997 Plastimet Inc. Fire in Hamilton, Ontario, using Comprehensive Two-Dimensional Gas Chromatography and (Ultra) High Resolution Mass Spectrometry [J]. Environmental Science & Technology, 2014,48(18):10656-10663.

      [26] Wang D L, Xu X B, Chu S G, et al. Analysis and structure prediction of chlorinated polycyclic aromatic hydrocarbons released from combustion of polyvinylchloride [J]. Chemosphere, 2003,53(5):495- 503.

      [27] Mukai, Fujimori T, Shiota K, et al. Quantitative speciation of insoluble chlorine in E-waste open burning soil: Implications of the presence of unidentified aromatic-Cl and insoluble chlorides [J]. Chemosphere, 2019,233:493-502.

      [28] Weber P, Dinjus E, Stieglitz L. The role of copper(II) chloride in the formation of organic chlorine in fly ash [J]. Chemosphere, 2001,42 (5-7):579-582.

      [29] Ryu J Y. Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper (II) chloride-catalyzed thermal process [J]. Chemosphere, 2008,71(6):1100-1109.

      [30] Xu Y, Yang L L, Zheng M H, et al. Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons from Metallurgical Plants [J]. Environmental Science & Technology, 2018,52(13):7334-7342.

      [31] Jin R, Liu G, Zheng M, et al. Secondary Copper Smelters as Sources of Chlorinated and Brominated Polycyclic Aromatic Hydrocarbons [J]. Environmental Science & Technology, 2017,51(14):7945-7953.

      [32] Pinto M, Rebola M, Louro H, et al. Chlorinated Polycyclic Aromatic Hydrocarbons Associated with Drinking Water Disinfection: Synthesis, Formation under Aqueous Chlorination Conditions and Genotoxic Effects [J]. Polycyclic Aromatic Compounds, 2014,34(4):356-371.

      [33] Koistinen J, Paasivirta J, Nevalainen T, et al. Chlorophenanthrenes, alkylchlorophenanthrenes and alkylchloronaphthalenes in kraft pulp-mill products and discharges [J]. Chemosphere, 1994,28(7): 1261-1277.

      [34] Koistinen J, Paasivirta J, Nevalainen T, et al. Chlorinated Fluorenes and Alkylfluorenes in Bleached Kraft Pulp and Pulp-Mill Discharges [J]. Chemosphere, 1994,28(12):2139-2150.

      [35] Xu X, Xiao R Y, Dionysiou D D, et al. Kinetics and mechanisms of the formation of chlorinated and oxygenated polycyclic aromatic hydrocarbons during chlorination [J]. Chemical Engineering Journal, 2018,351:248-257.

      [36] Sankoda K, Toda I, Sekiguchi K, et al. Aqueous secondary formation of brominated, chlorinated, and mixed halogenated pyrene in presence of halide ions [J]. Chemosphere, 2017,171:399-404.

      [37] Ohura T, Miwa M. Photochlorination of Polycyclic Aromatic Hydrocarbons in Acidic Brine Solution [J]. Bulletin of Environmental Contamination and Toxicology, 2016,96(4):524-529.

      [38] Sugiyama H, Katagiri Y, Kaneko M, et al. Chlorination of pyrene in soil components with sodium chloride under xenon irradiation [J]. Chemosphere, 1999,38(8):1937-1945.

      [39] Ohura T, Suhara T, Kamiya Y, et al. Distributions and multiple sources of chlorinated polycyclic aromatic hydrocarbons in the air over Japan [J]. Science of the Total Environment, 2019,649:364-371.

      [40] Jin R, Liu G, Jiang X, et al. Profiles, sources and potential exposures of parent, chlorinated and brominated polycyclic aromatic hydrocarbons in haze associated atmosphere [J]. Science of the Total Environment, 2017,593:390-398.

      [41] Kakimoto K, Nagayoshi H, Konishi Y, et al. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia [J]. Chemosphere, 2014,111:40-46.

      [42] Helm P A, Bidleman T F, Li H H, et al. Seasonal and spatial variation of polychlorinated naphthalenes and non-/mono-ortho-substituted polychlorinated biphenyls in arctic air [J]. Environmental Science & Technology, 2004,38(21):5514-5521.

      [43] Sun J L, Ni H G, Zeng H. Occurrence of chlorinated and brominated polycyclic aromatic hydrocarbons in surface sediments in Shenzhen, South China and its relationship to urbanization [J]. Journal of Environmental Monitoring, 2011,13(10):2775-2781.

      [44] Ohura T, Sakakibara H, Watanabe I, et al. Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia [J]. Environmental Pollution, 2015,196:331-340.

      [45] Wang X, Kang H, Wu J. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry [J]. Journal of Separation Science, 2016,39(9):1742-1748.

      [46] Ni H G, Zeng E Y. Environmental and human exposure to soil chlorinated and brominated polycyclic aromatic hydrocarbons in an urbanized region [J]. Environmental Toxicology and Chemistry, 2012,31(7):1494-1500.

      [47] Nguyen Minh T, Goto A, Takahashi S, et al. Soil contamination by halogenated polycyclic aromatic hydrocarbons from open burning of e-waste in Agbogbloshie (Accra, Ghana) [J]. Journal of Material Cycles and Waste Management, 2017,19(4):1324-1332.

      [48] Tan J, Lu X, Fu L, et al. Quantification of Cl-PAHs and their parent compounds in fish by improved ASE method and stable isotope dilution GC-MS [J]. Ecotoxicology and Environmental Safety, 2019, 186:109775.

      [49] Sun J L, Zeng H, Ni H G. Halogenated polycyclic aromatic hydrocarbons in the environment [J]. Chemosphere, 2013,90(6):1751- 1759.

      [50] Wang L, Li C, Jiao B, et al. Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: Levels, dietary intakes, and health risk assessments [J]. Science of the Total Environment, 2018, 616:288-295.

      [51] Ding C, Ni H G, Zeng H. Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China [J]. Science of the Total Environment, 2013,443:857-863.

      [52] Sun J L, Jing X, Chang W J, et al. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air [J]. Ecotoxicology and Environmental Safety, 2015,113:31-37.

      [53] Ni H G, Guo J Y. Parent and Halogenated Polycyclic Aromatic Hydrocarbons in Seafood from South China and Implications for Human Exposure [J]. Journal of Agricultural and Food Chemistry, 2013,61(8):2013-2018.

      [54] Bostrom C E, Gerde P, Hanberg A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air [J]. Environmental Health Perspectives, 2002,110:451- 488.

      [55] Li G, Guo F, Rao Z, et al. Simultaneous determination of sixteen polycyclic aromatic hydrocarbons and four derivatives in groundwater by ultra-high performance liquid chromatography [J]. Environmental Chemistry, 2017,36(6):1295-1303.

      [56] Jin R, Yang L L, Zheng M H, et al. Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes [J]. Environmental Pollution, 2018,242:1346-1352.

      [57] Nishimura C, Horii Y, Tanaka S, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils [J]. Environmental Pollution, 2017,225:252-260.

      [58] Liu Q, Xu X, Wang L, et al. Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water [J]. Ecotoxicology and Environmental Safety, 2019,181:241-247.

      [59] 王 麗,金 芬,李敏潔,等.分散固相萃取-氣相色譜-串聯(lián)質(zhì)譜法測定蔬菜中多環(huán)芳烴及鹵代多環(huán)芳烴 [J]. 分析化學(xué), 2013,41(6): 869-875. Wang L, Jin F, Li M J, et al. Determination of Polycyclic Aromatic Hydrocarbons and Halogenated Polycyclic Aromatic Hydrocarbons in Vegetable by Gas Chromatography-Tandem Mass Spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013,41(6):869-875.

      [60] Tillner J, Hollard C, Bach C, et al. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorination by-products in drinking water and the coatings of water pipes by automated solid-phase microextraction followed by gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2013,1315:36-46.

      [61] Sankoda K, Kuribayashi T, Nomiyama K, et al. Occurrence and Source of Chlorinated Polycyclic Aromatic Hydrocarbons (CI-PAHs) in Tidal Flats of the Ariake Bay, Japan [J]. Environmental Science & Technology, 2013,47(13):7037-7044.

      [62] Sun P, Weavers L K, Taerakul P, et al. Characterization of polycyclic aromatic hydrocarbons (PAHs) on lime spray dryer (LSD) ash using different extraction methods [J]. Chemosphere, 2006,62(2):265-274.

      [63] Yusa V, Pardo O, Pastor A, et al. Optimization of a microwave- assisted extraction large-volume injection and gas chromatography- ion trap mass spectrometry procedure for the determination of polybrominated diphenyl ethers, polybrominated biphenyls and polychlorinated naphthalenes in sediments [J]. Analytica Chimica Acta, 2006,557(1/2):304-313.

      [64] 李 丹,周明輝,劉瑩峰,等.微波萃取/GC-MS法對電子電氣產(chǎn)品中多氯萘的測定 [J]. 分析測試學(xué)報, 2010,29(1):43-45,50. Li D, Zhou M H, Liu Y F, et al. Determination of polychlorinated naphthalenes in electrical and electronic products by microwave extraction and GC-MS method [J]. Journal of Instrumental Analysis, 2010,29(1):43-45,50.

      [65] 劉春娟.微波萃取技術(shù)應(yīng)用及其研究進展 [J]. 廣東化工, 2008,3: 53-55,58. Liu C J. The application and research development of microwave assisted extraction [J]. Guangdong Chemical Industry. 2008,3:53- 55,58.

      [66] Han Y, Ren L, Xu K, et al. Supercritical fluid extraction with carbon nanotubes as a solid collection trap for the analysis of polycyclic aromatic hydrocarbons and their derivatives [J]. Journal of Chromatography A, 2015,1395:1-6.

      [67] Wiater-Protas I, Van B B, Parczewski A. Rapid extraction and clean-up of PCNs and PCDFs from soil samples using SFE-LC with solid phase carbon trap. Comparison with other methods [J]. Chemia Analityczna, 2002,47(5):659-667.

      [68] Librando V, Hutzinger O, Tringali G, et al. Supercritical fluid extraction of polycyclic aromatic hydrocarbons from marine sediments and soil samples [J]. Chemosphere, 2004,54(8):1189-1197.

      [69] Shimmo M, Anttila P, Hartonen K, et al. Identification of organic compounds in atmospheric aerosol particles by on-line supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2004,1022(1/2): 151-159.

      [70] Gevao B, Harner T, Jones K C. Sedimentary record of polychlorinated naphthalene concentrations and deposition fluxes in a dated Lake Core [J]. Environmental Science & Technology, 2000,34(1):33-38.

      [71] Vandermarken T, Gao Y, Baeyens W, et al. Dioxins, furans and dioxin-like PCBs in sediment samples and suspended particulate matter from the Scheldt estuary and the North Sea Coast: Comparison of CALUX concentration levels in historical and recent samples [J]. Science of the Total Environment, 2018,626:109-116.

      [72] Li H R, Zhou L, Ren M, et al. Levels, profiles and gas-particle distribution of atmospheric PCDD/Fs in vehicle parking lots of a South China metropolitan area [J]. Chemosphere, 2014,94:128-134.

      [73] Jin R, Liu G, Zheng M, et al. Congener-specific determination of ultratrace levels of chlorinated and brominated polycyclic aromatic hydrocarbons in atmosphere and industrial stack gas by isotopic dilution gas chromatography/high resolution mass spectrometry method [J]. Journal of Chromatography A, 2017,1509:114-122.

      [74] Subedi B, Aguilar L, Robinson E M, et al. Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern [J]. Trac-Trends in Analytical Chemistry, 2015,68:119-132.

      [75] Masuda M, Wang Q, Tokumura M, et al. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods [J]. Ecotoxicology and Environmental Safety, 2019,178:188-194.

      [76] 莫李桂,馬盛韜,李會茹,等.氣相色譜/三重四極桿串聯(lián)質(zhì)譜法檢測土壤中氯代多環(huán)芳烴和溴代多環(huán)芳烴 [J]. 分析化學(xué), 2013,41(12): 1825-1830. Mo L G, Ma S T, Li H R, et al. Determination of chlorinated- and brominated- polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013,41(12):1825-1830.

      [77] 原文婷,高占啟,孫 成.土壤中6種氯代多環(huán)芳烴測定方法的建立及應(yīng)用 [J]. 環(huán)境監(jiān)控與預(yù)警, 2015,7(6):13-17,37. Yuan W T, Gao Z Q, Sun C. Method development and application for the determination of chlorinated polycyclic aromatic hydrocarbons in soil [J]. Environmental Monitoring and Forewarning, 2015,7(6):13- 17,37.

      [78] Qiao M, Cao W, Liu B C, et al. Simultaneous detection of chlorinated polycyclic aromatic hydrocarbons with polycyclic aromatic hydrocarbons by gas chromatography-mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2017,9(13):3465-3473.

      [79] Falandysz J, Strandberg L, Bergqvist P A, et al. Polychlorinated naphthalenes in sediment and biota from the Gdansk Basin, Baltic Sea [J]. Environmental Science & Technology, 1996,30(11):3266-3274.

      [80] Yang L, Wang S, Peng X, et al. Gas chromatography-Orbitrap mass spectrometry screening of organic chemicals in fly ash samples from industrial sources and implications for understanding the formation mechanisms of unintentional persistent organic pollutants [J]. Science of the Total Environment, 2019,664:107-115.

      [81] Fan Y, Zhang H, Wang D, et al. Simultaneous determination of chlorinated aromatic hydrocarbons in fly ashes discharged from industrial thermal processes [J]. Analytical Methods, 2017,9(35): 5198-5203.

      [82] Manzano C, Hoh E, Simonich S L M. Improved separation of complex polycyclic aromatic hydrocarbon mixtures using novel column combinations in GCxGC/ToF-MS [J]. Environmental Science & Technology, 2012,46(14):7677-7684.

      [83] Ieda T, Ochiai N, Miyawaki T, et al. Environmental analysis of chlorinated and brominated polycyclic aromatic hydrocarbons by comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry [J]. Journal of Chromatography A, 2011,1218(21):3224-3232.

      [84] Wang J, Fan Y, Lu X, et al. Solid-phase extraction combined with HPLC for the determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in tap water samples [J]. Environmental Chemistry, 2018,37(9):1987-1993.

      [85] Moukas A I, Thomaidis N S, Calokerinos A C. Novel determination of polychlorinated naphthalenes in water by liquid chromatography-mass spectrometry with atmospheric pressure photoionization [J]. Analytical and Bioanalytical Chemistry, 2016,408(1):191-201.

      [86] Teng M, Jin J, Fu Q, et al. Selective separation of polychlorinated naphthalene (PCNs), hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) in soil matrices [J]. Chinese Science Bulletin, 2013,58(4/5):500-506.

      [87] Chen Z, Xie H, Liu J, et al. Simultaneous quantification of phencynonate and its active metabolite N-demethyl phencynonate in human plasma using liquid chromatography and isotope-dilution mass spectrometry [J]. Drug Testing and Analysis, 2015,7(9):843-847.

      [88] Gao Z Y, Jiang W S, Sun D, et al. Chlorination for efficient identification of polycyclic aromatic hydrocarbons by liquid chromatography-mass spectrometry [J]. Talanta, 2010,81(1/2):48-54.

      致謝:感謝評審專家和責(zé)任編輯對本文的細致點評和寶貴建議,同時感謝華南師范大學(xué)環(huán)境學(xué)院陳長二教授在本文英文修改上提供的熱心幫助和支持!

      A review of chlorinated/brominated polycyclic aromatic hydrocarbons in the environment and human: Sources, analysis methods and pollution characteristics.

      LIU Ming-yang1,4, LI Hui-ru2,3, SONG Ai-min1,4, HU Jian-fang1, SHENG Guo-ying1, PENG Ping-an1,4*

      (1.State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2.SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China;3.School of Environment, South China Normal University, Guangzhou 510006, China;4.University of Chinese Academy of Sciences, Beijing 100049, China)., 2021,41(4):1842~1855

      Chlorinated/brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) were a class of emerging persistent toxic contaminants that demonstrating similar chemical structures and carcinogenicities with dioxins and PAHs. Their behaviors, fates, and potential risks in environments were of great concern. This study retrieved the Web of Science Database with the topics including "Cl-PAH*" OR"Br-PAH*" OR"H-PAH*" OR"chlorinated PAH*" OR"brominated PAH*" OR"halogenated PAHs" OR"chlorinated polycyclic aromatic hydrocarbon*"OR"brominated polycyclic aromatic hydrocarbon*"OR"halogenated polycyclic aromatic hydrocarbon*", and reviewed the research progress of the sources, pollution characteristics and analysis methods of Cl/Br-PAHs focusing on the environmental matrix and human beings. The results showed that 225 papers in total within this topic were published by Jan. 2021. The existing findings showed that: Cl/Br-PAHs were mainly generated from thermal processes such as waste incineration, vehicle exhaust, metal smelting, electronic waste recycling, etc., as well as some photochemical processes; So far, Cl/Br-PAHs were found ubiquitous in various environments worldwide, and demonstrated persistence, long-distance transportability and bioavailability; It was documented that Cl/Br-PAHs had similar or stronger toxicity compared to their parent PAHs. However, their formation mechanisms and environmental behaviors were still unclear; An effective and precise analytical method was still unavailable, leading to very limited reports on Cl/Br-PAH compounds in environments and the overall research area on this topic was still in its infant stage. Based on the current research status and knowledge gaps of Cl/Br-PAHs, more attention should be paid to their high-throughput and precise analytical methods, emission fingerprints, environmental behaviors, and potential risks in the future.

      chlorinated/brominated polycyclic aromatic hydrocarbons;aromatic receptor effect;gas chromatograph-mass spectrometer

      X592

      A

      1009-6923(2021)04-1842-14

      劉明洋(1996-),男,河南信陽人,中國科學(xué)院廣州地化所碩士研究生,主要從事環(huán)境有機污染物方面的研究.

      2020-08-16

      廣州市科技計劃項目(201707020028);廣東省自然科學(xué)基金資助項目(2018A030313904);廣東省科技項目(2017B030314057)

      * 責(zé)任作者, 研究員, pinganp@gig.ac.cn

      猜你喜歡
      硅膠污染土壤
      土壤
      靈感的土壤
      識破那些優(yōu)美“擺拍”——鏟除“四風(fēng)”的土壤
      堅決打好污染防治攻堅戰(zhàn)
      堅決打好污染防治攻堅戰(zhàn)
      厚樸酚中壓硅膠柱層析純化工藝的優(yōu)化
      中成藥(2017年4期)2017-05-17 06:09:46
      靈感的土壤
      粗孔活性硅膠從含鈾廢水中吸附鈾的研究
      對抗塵污染,遠離“霾”伏
      都市麗人(2015年5期)2015-03-20 13:33:49
      人參皂苷Rg1鍵合硅膠固定相的制備、表征及應(yīng)用(二)
      兴义市| 教育| 屏东市| 喀喇| 霍城县| 五台县| 贵溪市| 云霄县| 清镇市| 华坪县| 略阳县| 皋兰县| 西吉县| 洛南县| 弥勒县| 平利县| 登封市| 呼玛县| 清流县| 庄河市| 轮台县| 沙坪坝区| 青岛市| 抚松县| 元朗区| 黔江区| 徐水县| 亚东县| 巴中市| 顺昌县| 天镇县| 丹寨县| 南乐县| 山东| 呼伦贝尔市| 峨山| 张家界市| 丰城市| 广西| 诸城市| 巴楚县|