趙 寒,董 軍*,夏 添,梁 雪,李文德
氨基酸雙子表面活性劑復(fù)配增溶PCE性能研究
趙 寒1,2,董 軍1,2*,夏 添1,2,梁 雪1,2,李文德1,2
(1.吉林大學(xué)新能源與環(huán)境學(xué)院,吉林 長(zhǎng)春 130021;2.吉林大學(xué)地下水資源與環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,吉林 長(zhǎng)春 130021)
利用氨基酸雙子表面活性劑N,N¢-雙月桂酰基乙二胺二丙酸鈉(DLMC)及其復(fù)配體系來(lái)提高四氯乙烯(PCE)在地下水中的溶解性,強(qiáng)化去除效果.測(cè)定了DLMC的初級(jí)生物降解性并將其與短鏈醇(異丙醇IPA,乙醇)和傳統(tǒng)表面活性劑十二烷基硫酸鈉(SDS),辛基苯基聚氧乙烯醚(TX-100)和聚氧乙烯脫水山梨醇單油酸酯(Tween80)復(fù)配.結(jié)果表明,DLMC的生物降解度超過(guò)99%,具備良好的生物降解性;篩選出DLMC-IPA(1:4)和DLMC-Tween80(1:1)兩個(gè)PCE污染柱沖洗劑配方,40g/L作用濃度下其增溶濃度分別為18329,16906mg/L;DLMC-Tween80(1:1)對(duì)PCE污染柱的沖洗效果最好,沖洗效率為9.87(g PCE/L沖洗液),較DLMC單體系提升16%.
氨基酸;雙子表面活性劑;增溶;四氯乙烯
四氯乙烯(PCE)是一種廣泛使用的氯代溶劑,具有’’三致’’效應(yīng),對(duì)人體危害極大,泄露后易向地下水中遷移.PCE進(jìn)入含水層后,由于其較高的油水界面張力和極低的水溶解性,導(dǎo)致其易于滯留在介質(zhì)孔隙中,難以去除,從而引起PCE污染修復(fù)耗時(shí)長(zhǎng),效率低,費(fèi)用高等問(wèn)題[1-2].
表面活性劑強(qiáng)化修復(fù)技術(shù)(SER)通過(guò)膠束增溶作用增加PCE在水中的溶解度,可快速地將其從含水層介質(zhì)中去除,具有良好的修復(fù)效果[1,3-8].對(duì)該技術(shù)研究較多的是表面活性劑泡沫驅(qū)替[9-10]和溶液沖洗[11-12],所使用的表面活性劑以傳統(tǒng)的單鏈表面活性劑為主[9-15],增溶幅度不高,均在一個(gè)數(shù)量級(jí).近年來(lái)研究發(fā)現(xiàn)雙子表面活性劑具有超低的臨界膠束濃度(CMC)和超強(qiáng)的增溶能力[16-17],相關(guān)研究[18-19]將其應(yīng)用于三次采油取得了非常好的效果,但應(yīng)用于用量較大的表面活性劑強(qiáng)化修復(fù)技術(shù)易對(duì)場(chǎng)地造成二次污染[20],主要是由于這類(lèi)分子擁有非常穩(wěn)定的結(jié)構(gòu),在環(huán)境中不易被生物降解[21].
針對(duì)該類(lèi)具有高效增溶能力的新型雙子表面活性劑不易生物降解而難以應(yīng)用于表面活性劑強(qiáng)化沖洗的問(wèn)題,本研究擬探究一種氨基酸雙子表面活性劑N,N’-雙月桂?;叶范徕c(DLMC)[22]對(duì)PCE的增溶性能.DLMC是以單鏈氨基酸表面活性劑[21,23]為基礎(chǔ)設(shè)計(jì)合成的一種新型綠色表面活性劑,其不僅具有雙子表面活性劑優(yōu)異的表面性能[21],還具有低刺激性[24],良好的生物降解性及環(huán)境相容性[25-28]等優(yōu)勢(shì).在DLMC對(duì)PCE的靜態(tài)增溶實(shí)驗(yàn)基礎(chǔ)上,將DLMC與短鏈醇和傳統(tǒng)表面活性劑復(fù)配進(jìn)行進(jìn)一步改進(jìn)[29-30]以提升對(duì)PCE污染柱的沖洗效果.
本文合成DLMC并測(cè)定了其表面性能和生物降解性,將其與短鏈醇和傳統(tǒng)表面活性劑復(fù)配篩選出了合適的沖洗劑配方,在此基礎(chǔ)上對(duì)PCE污染模擬柱進(jìn)行了沖洗實(shí)驗(yàn)并評(píng)估了DLMC及其復(fù)配體系對(duì)PCE污染含水層的修復(fù)效果.研究成果可為新型綠色表面活性劑在地下水修復(fù)的應(yīng)用提供參考.
主要實(shí)驗(yàn)材料如表1所示,主要實(shí)驗(yàn)儀器如表2所示.
表1 實(shí)驗(yàn)材料
1.2.1 DLMC的合成 合成方法參見(jiàn)文獻(xiàn)[22],合成路線如圖1所示.
圖1 DLMC的合成路線
1.2.2 FT-IR測(cè)定 取適量表面活性劑樣品與溴化鉀混合研磨壓片后放入紅外光譜儀中進(jìn)行測(cè)試并分析測(cè)定結(jié)果.
1.2.3 表面張力及CMC的測(cè)定 配制一定濃度梯度的表面活性劑溶液,用表面張力儀測(cè)定其表面張力,作lgC-g圖,分析其CMC值.
1.2.4 DLMC生物降解度的測(cè)定 測(cè)定方法參照GB/T 15818-2018《表面活性劑生物降解度試驗(yàn)方法》[31],規(guī)定表面活性劑在第7d的降解度為表面活性劑的生物降解度.
1.2.5 不同表面活性劑對(duì)PCE的增溶 配制不同濃度(5,10,20,30,40g/L)的4種表面活性劑溶液(DLMC,SDS,TX-100,Tween80),平行移取20mL于具塞密封玻璃瓶中,加入250mL NAPL相PCE后將其置于水浴恒溫振蕩器中,在150r/min,25℃的條件下振蕩48h.在5000r/min的條件下離心20min,取上層清液用甲醇稀釋10倍后利用高效液相色譜儀(HPLC)測(cè)定PCE的濃度.每組實(shí)驗(yàn)重復(fù)3次,取平均值.
1.2.6 DLMC復(fù)配體系對(duì)PCE的增溶 將DLMC與異丙醇(IPA)或乙醇按質(zhì)量比為2:1,1:1,1:2和1:4的比例分別配制成濃度梯度為5,10,20,30,40g/L的2種不同的表面活性劑水溶液.分別移取20mL的表面活性劑溶液于具塞玻璃瓶中,加入250mL NAPL相PCE后加蓋密封,進(jìn)行PCE靜態(tài)增溶實(shí)驗(yàn).其余步驟同1.2.5.
將DLMC與傳統(tǒng)表面活性劑TS(SDS,TX-100和Tween80)分別按照DLMC,DLMC:TS(4:1,3:1, 2:1,1:1,1:2,1:3,1:4),TS的質(zhì)量比例配制成濃度為40g/L的表面活性劑水溶液.移取20mL的表面活性劑溶液于具塞玻璃瓶中,加入250mL的PCE后加蓋密封,進(jìn)行PCE靜態(tài)增溶實(shí)驗(yàn).其余步驟同1.2.5.
1.2.7 DLMC及其復(fù)配體系沖洗去除PCE 用粒徑0.1~0.25mm的細(xì)河砂均勻填充玻璃柱(柱長(zhǎng)143mm,內(nèi)徑25mm),垂直放置柱子并用蠕動(dòng)泵以0.5mL/min的流量從下向上注入去離子水,使柱子飽水并測(cè)定柱子的孔隙體積(PV,1PV=22mL),然后以0.5mL/min的流量從下向上注入PCE(油紅染色),直至上口有自由相流出,接著以1mL/min的流量從上向下注入去離子水,沖至沒(méi)有自由相流出.最后配制濃度為40g/L的表面活性劑溶液,以1mL/min的流量由上向下連續(xù)沖洗,流出液累積23PV后停止沖洗,定時(shí)取樣利用HPLC測(cè)定流出液中的PCE濃度.
采用HPLC測(cè)定PCE濃度,測(cè)試條件為:C18色譜柱(4.6′250mm,5mm),柱溫40℃;測(cè)定波長(zhǎng)為214nm;流動(dòng)相比例為甲醇:水=80:20;進(jìn)樣量10mL;流速1.0mL/min.應(yīng)用Excel2016和OriginPro8.5對(duì)數(shù)據(jù)進(jìn)行分析處理與作圖.
對(duì)DLMC合成過(guò)程和分子結(jié)構(gòu)進(jìn)行分析發(fā)現(xiàn),—C(=O)N—, —CN和—COOH為其特征基團(tuán).如圖2所示,1629.36和1084.46處的峰分別為—C(=O)N—和—CN的振動(dòng)峰, —COOH的振動(dòng)峰位于1559.58, 1424.73和724.41處,2922.54和2849.08處的峰分別為—CH2和—CH3的伸縮振動(dòng)峰.分析結(jié)果與文獻(xiàn)[22,32]一致,表明DLMC被成功合成.
臨界膠束濃度(CMC)指表面活性劑分子在水溶液中形成膠束的最小濃度,gCMC為該濃度下溶液的表面張力[29],對(duì)應(yīng)lgC-g圖的折點(diǎn).CMC值和gCMC值越小,表明形成膠束所需的表面活性劑越少,降低表面張力的能力越強(qiáng),表面性能越好.如圖3和表3所示,DLMC的CMC值為1.14′10-4mol/L,遠(yuǎn)低于SDS和Tween80.gCMC值為30.8mN/m,與傳統(tǒng)表面活性劑接近,可有效降低表面張力,以上結(jié)果表明DLMC具備雙子表面活性劑優(yōu)良的表面性能,比單鏈的傳統(tǒng)表面活性劑能形成更多的膠束進(jìn)行增溶作用[29].
圖2 DLMC的FT-IR光譜
圖3 DLMC與傳統(tǒng)表面活性劑的lgC-γ圖
表3 DLMC與傳統(tǒng)表面活性劑的表面性能參數(shù)
相關(guān)標(biāo)準(zhǔn)和文獻(xiàn)[31,33]認(rèn)為表面活性劑生物降解度超過(guò)90%時(shí)易于生物降解,且到達(dá)90%的時(shí)間越少,生物降解性越好.由圖4可以看出,DLMC在第2d的生物降解度達(dá)到90%,第7d的生物降解度超過(guò)99%,這說(shuō)明DLMC具備良好的生物降解性.
由圖5可以看出,在20g/L的表面活性劑濃度范圍內(nèi),傳統(tǒng)表面活性劑對(duì)PCE的增溶效果要優(yōu)于DLMC,其中Tween80的增溶效果最強(qiáng).而隨著作用濃度的增加,Tween80對(duì)PCE的增溶效果提升很小,DLMC逐漸優(yōu)于SDS,TX-100和Tween80,在40g/L的作用濃度下,對(duì)PCE的增溶濃度分別為16047,11702,9997,12434mg/L.這可能是因?yàn)殡p子表面活性劑DLMC在水溶液中的聚集行為較單鏈分子復(fù)雜,其膠束聚集數(shù)隨著濃度發(fā)生變化[29],在低濃度下因其極低的CMC值而形成更多的膠束,但此時(shí)膠束聚集數(shù)小,膠束也較小,用以增溶的空間不大;當(dāng)DLMC濃度升高時(shí),膠束聚集數(shù)增大,因此增溶性能快速提升.
質(zhì)量增溶比(WSR)常用來(lái)評(píng)價(jià)表面活性劑對(duì)有機(jī)物的增溶能力[34],為單位質(zhì)量的增效試劑所增加的有機(jī)物的表觀溶解度,可用有機(jī)物表觀溶解度與表面活性劑濃度(大于CMC)的線性函數(shù)關(guān)系的斜率表示:
式中:CMC為表面活性劑溶液為CMC時(shí)的質(zhì)量濃度;surf為表面活性劑大于CMC時(shí)的任意質(zhì)量濃度;為表面活性劑濃度為surf時(shí)有機(jī)物的表觀溶解度;CMC為表面活性劑為CMC時(shí)有機(jī)物的溶解度.
表4為各表面活性劑對(duì)PCE的增溶曲線回歸方程.在實(shí)驗(yàn)范圍內(nèi)DLMC的WSR為0.44516,高于傳統(tǒng)的單鏈表面活性劑,說(shuō)明雙子表面活性劑DLMC較傳統(tǒng)的單鏈表面活性劑對(duì)PCE有更好的增溶能力.
圖5 DLMC與傳統(tǒng)表面活性劑對(duì)PCE的增溶性能對(duì)比
表4 不同表面活性劑的靜態(tài)增溶回歸方程
2.5.1 DLMC與短鏈醇的復(fù)配 由圖6和表5可以看出,在實(shí)驗(yàn)范圍內(nèi),當(dāng)IPA的復(fù)配比例逐漸增大時(shí),復(fù)配體系對(duì)PCE的增溶效果逐漸增強(qiáng).當(dāng)DLMC與IPA的復(fù)配比例小于1:1時(shí),復(fù)配體系的增溶效果對(duì)比DLMC單體系有所提升,WSR隨IPA的比例增加而增大.當(dāng)DLMC與IPA的復(fù)配比例為1:4時(shí),WSR達(dá)0.46758,增溶濃度可達(dá)18329mg/L,與DLMC單體系對(duì)比,達(dá)到相同的增溶效果時(shí),所需作用濃度更小,可減小表面活性劑用量.乙醇復(fù)配體系的WSR變化規(guī)律與IPA一致,但增溶效果無(wú)明顯提升.因此,沖洗實(shí)驗(yàn)中將選用比例為1:4的DLMC-IPA復(fù)配體系作為沖洗劑.
表5 不同復(fù)配體系增溶曲線回歸方程
2.5.2 DLMC與傳統(tǒng)表面活性劑的復(fù)配 由圖7可以看出,DLMC與SDS復(fù)配效果較好,在多個(gè)復(fù)配比例下均優(yōu)于DLMC單體系,復(fù)配體系存在協(xié)同效應(yīng),其中復(fù)配比例為4:1時(shí)增溶效果最好,PCE水相濃度可達(dá)17694mg/L.DLMC與TX-100復(fù)配體系則沒(méi)有出現(xiàn)協(xié)同效應(yīng),復(fù)配體系的增溶效果隨著DLMC比例的降低而降低.DLMC和Tween80復(fù)配體系在復(fù)配比例為2:1和1:1時(shí)發(fā)生協(xié)同增溶作用,其他比例下則發(fā)生拮抗作用,低于DLMC和Tween80單體系的增溶效果.當(dāng)DLMC-Tween80體系復(fù)配比例為1:1時(shí),增溶效果最好,增溶濃度達(dá)到16906mg/L.考慮到實(shí)際應(yīng)用過(guò)程中,作為陰-陰復(fù)配的DLMC-SDS體系在抗低溫和抗離子干擾性能方面[35]不如陰-非復(fù)配的DLMC-Tween80體系,因此沖洗實(shí)驗(yàn)將選用比例為1:1的DLMC-Tween80復(fù)配體系作為沖洗劑.
圖7 DLMC與不同表面活性劑復(fù)配對(duì)PCE的增溶性能
圖8為用不同表面活性劑體系和清水沖洗PCE污染模擬柱的效果對(duì)比.從圖8(a)和圖8(b)可以看出,流出液累積的第1個(gè)PV內(nèi),各個(gè)體系的出水PCE濃度均保持在一個(gè)較低的水平,這個(gè)過(guò)程主要是注入的溶液將污染柱中的水驅(qū)替的過(guò)程[9].污染柱內(nèi)的水被完全驅(qū)替以后,柱內(nèi)PCE在表面活性劑的增溶作用下進(jìn)入水中,出水PCE濃度開(kāi)始增大,在流出液累積的第5個(gè)PV左右開(kāi)始上下波動(dòng),出現(xiàn)濃度峰值.這個(gè)過(guò)程表面活性劑吸附于介質(zhì)表面,到達(dá)吸附平衡時(shí)才開(kāi)始發(fā)生增溶作用[36],因此在污染柱內(nèi)水被完全驅(qū)替以后不會(huì)馬上出現(xiàn)濃度峰值.在流出液累積的5~23PV這一過(guò)程,PCE濃度基本穩(wěn)定在濃度峰值,出現(xiàn)波動(dòng)主要是因?yàn)镻CE在介質(zhì)中的不均勻分布[36].
圖8(a)結(jié)果顯示DLMC,Tween80,SDS和TX- 100沖出的PCE濃度峰值分別為9876,9227,7829和9112mg/L,顯著低于靜態(tài)實(shí)驗(yàn)中的結(jié)果,這主要是在1mL/min的注入速率下,表面活性劑與PCE的接觸時(shí)間較短而未達(dá)到增溶平衡以及表面活性劑在介質(zhì)中的吸附損失造成的[37].與傳統(tǒng)表面活性劑對(duì)比,DLMC沖出的PCE濃度更高,但其達(dá)到峰值的時(shí)間要更長(zhǎng),這說(shuō)明DLMC對(duì)PCE的增溶平衡時(shí)間[34]比傳統(tǒng)單鏈表面活性劑要長(zhǎng),降低注入速率對(duì)DLMC沖洗效果的提升可能比傳統(tǒng)單鏈表面活性劑要更大.圖8(b)結(jié)果顯示DLMC與其IPA和Tween80復(fù)配體系沖出PCE濃度峰值分別為9876, 9631和11308mg/L.可以看出,將DLMC與Tween80復(fù)配,不僅對(duì)沖出的PCE濃度有所提升,而且縮短了達(dá)到濃度峰值的時(shí)間.
圖8(c)為不同表面活性劑體系沖出PCE的累積去除曲線,累積沖洗23PV(506mL)后, DLMC,SDS, Tween80,TX-100,DLMC-Tween80(1:1),DLMC-IPA(1:4)和水累積沖出PCE的質(zhì)量分別為:3969,3113, 3971,3865,4677,4094和64mg.沖洗效率可直觀地對(duì)PCE的去除效果進(jìn)行評(píng)價(jià),相關(guān)研究將其定義為一定體積的沖洗液將PCE從污染區(qū)域沖洗出的累積質(zhì)量[3],根據(jù)定義不難發(fā)現(xiàn)圖8(c)曲線斜率代表沖洗過(guò)程的沖洗效率.表6為不同表面活性劑體系對(duì)PCE的累積去除回歸方程.與傳統(tǒng)表面活性劑對(duì)比, DLMC對(duì)PCE的沖出濃度及沖洗效率與Tween80和TX-100相當(dāng),遠(yuǎn)高于SDS的沖洗效率,這也說(shuō)明了不選用DLMC-SDS復(fù)配體系作為沖洗劑的合理性.復(fù)配體系中,DLMC-Tween80體系對(duì)PCE的沖洗效果最好,沖洗效率達(dá)9.87(g PCE/L沖洗液),較清水提高77倍,較DLMC單體系提升16%.
表6 不同表面活性劑體系對(duì)PCE的累積去除回歸方程
注:沖洗效率量綱為(g PCE/L沖洗液).
3.1 DLMC具備雙子表面活性劑的優(yōu)良性能,其臨界膠束濃度(CMC)為1.14′10-4mol/L,gCMC為30.8mN/m.
3.2 DLMC的生物降解度超過(guò)99%,具備良好的生物降解性.
3.3 DLMC在40g/L的作用濃度下對(duì)PCE的增溶濃度為16047mg/L,較清水提高了107倍,WSR可達(dá)0.44516.與短鏈醇的復(fù)配體系中,DLMC-IPA(1:4)體系效果最好,增溶濃度達(dá)18329mg/L,WSR可達(dá)0.46758;與傳統(tǒng)表面活性劑的復(fù)配體系中,陰-非體系DLMC-Tween80(1:1)增溶濃度達(dá)16906mg/L.
3.4 沖洗去除PCE的不同表面活性劑體系中, DLMC-Tween80(1:1)沖洗效果最好,沖洗效率達(dá)9.87(g PCE/L沖洗液),較清水提高77倍,較DLMC單體系提升16%.
[1] Harwell J H, Sabatini D A, Knox R C. Surfactants for ground water remediation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999,151(1):255-268.
[2] 高存榮,王俊桃.中國(guó)69個(gè)城市地下水揮發(fā)性鹵代烴污染檢測(cè)與特征研究 [J]. 地球科學(xué)與環(huán)境學(xué)報(bào), 2012,34(1):66-71 Gao C R, Wang J T. Investigation and research on volatile halogenated hydrocarbon contamination from groundwater in 69cities in China [J]. Journal of Earth Sciences and Enviornment, 2012,34(1):66-71.
[3] Jeffrey C, Edgar A, Michael A D, et al. Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware [J]. Journal of Contaminant Hydrology, 2006,82(1/2): 1-22.
[4] Paria S. Surfactant-enhanced remediation of organic contaminated soil and water [J]. Advances in Colloid and Interface Science, 2007,138(1): 24-58.
[5] Befkadu A A, Chen Q Y. Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review [J]. Pedosphere, 2018,28(3):383-410.
[6] Afzal S, Suniya S, Azeema M, et al. Micelles as soil and water decontamination agents [J]. Chemical reviews, 2016,116(10):6042- 74.
[7] Li Y, Liao X Y, Scott H G, et al. The combined effects of surfactant solubilization and chemical oxidation on the removal of polycyclic aromatic hydrocarbon from soil [J]. Science of the Total Environment, 2019,647:1106-1112.
[8] Mao X H, Jiang R, Xiao W, et al. Use of surfactants for the remediation of contaminated soils: a review [J]. Journal of hazardous materials, 2015,285:419-435.
[9] 何 宇,郭 超,付玉豐,等.膠態(tài)泡沫在飽和介質(zhì)遷移特性及對(duì)PCE沖洗效果 [J]. 中國(guó)環(huán)境科學(xué), 2019,39(11):4673-4680. He Y, Guo C, Fu Y F, et al. Migration characteristics of colloidal gas aphron in saturated media and flushing effect on PCE [J]. China Environmental Science, 2019,39(11):4673-4680.
[10] 范 野,楊朝格,張瀚元,等.泡沫去除含水層硝基苯微觀過(guò)程及其穩(wěn)定化機(jī)理 [J]. 中國(guó)環(huán)境科學(xué), 2019,39(3):1061-1067. Fan Y, Yang C G, Zhang H Y, et al. Microscopic-process of foam removing nitrobenzene from aquifer and its stabilization mechanism [J]. China Environmental Science, 2019,39(3):1061-1067.
[11] 白 靜,趙勇勝,周 冰,等.非離子表面活性劑Tween80增溶萘實(shí)驗(yàn)?zāi)M [J]. 中國(guó)環(huán)境科學(xué), 2013,33(11):1993-1998. Bai J, Zhao Y S, Zhou B, et al. Laboratory investigation of solubilization of naphthalene by nonionic surfactant Tween80 [J]. China Environmental Science, 2013,33(11):1993-1998.
[12] Pei G P, Zhu Y, Cai X T, et al. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil [J]. Chemosphere, 2017, 185:1112-1121.
[13] Boving T B, Brusseau M L. Solubilization and removal of residual trichloroethene from porous media:comparison of several solubilization agents [J]. Journal of Contaminant Hydrology, 2000, 42(1):51-67.
[14] 李 隋,趙勇勝,徐 巍,等.吐溫80對(duì)硝基苯的增溶作用和無(wú)機(jī)電解質(zhì)作用機(jī)理研究 [J]. 環(huán)境科學(xué), 2008,(4):920-924. Li S, Zhao Y S, Xu W, et al. Solubilization of nitrobenzene in micellar solutions of Tween80 and inorganic salts [J]. Environmental Science, 2008,(4):920-924.
[15] 李 果,毛華軍,鞏宗強(qiáng),等.幾種表面活性劑對(duì)柴油及多環(huán)芳烴的增溶作用 [J]. 環(huán)境科學(xué)研究, 2011,24(7):775-780. Li G, Mao H J, Gong Z Q, et al. Solubilization of diesel and polycyclic aromatic hydrocarbons by certain kinds of surfactants [J]. Research of Environmental Sciences, 2011,24(7):775-780.
[16] Menger F M, Littau C A. Gemini surfactants: Synthesis and properties [J]. American Chemical Society, 1991,113(4):1451–1452.
[17] Infante M R, Pérez L, Pinazo A, et al. Amino acid-based surfactants [J]. Comptes rendus Chimie, 2004,7(6):583-592.
[18] 殷代印,仲玉倉(cāng).陰非離子型Gemini表面活性劑驅(qū)油體系性能評(píng)價(jià) [J]. 應(yīng)用化工, 2018,47(7):1556-1558. Yin D Y, Zhong Y C. Properties of an anionic-nonionic Gemini surfactant flooding system [J]. Applied Chemical Industry, 2018,47(7): 1556-1558.
[19] 李小瑞,解 穎,王海花,等.酯基型雙子表面活性劑的合成及驅(qū)油性能 [J]. 精細(xì)化工, 2017,34(12):1370-1378. Li X R, Xie Y, Wang H H, et al. Synthesis and oil displacement performance of Gemini surfactants with ester group [J]. Fine Chemicals, 2017,34(12):1370-1378.
[20] Tomislav I, Jasna H. Surfactants in the environment [J]. Arh Hig Rada Toksikol, 2010,61(1):95-110.
[21] Lourdes P, Aurora P, Ramon P, et al. Gemini surfactants from natural amino acids [J]. Advances in colloid and interface science, 2014, 205:134-155.
[22] 許虎君,呂春緒,葉志文.N,N¢-雙月桂?;叶范徕c的制備與性能 [J]. 精細(xì)石油化工, 2004,(2):9-11. Xu H J, Lv C X, Ye Z W. N, N’-Dilauryl ethylenediamine dipropionic acid [J]. Speciality Petro Chemicals, 2004,(2):9-11.
[23] Infante M, Pinazo A, Seguer J. Non-conventional surfactants from amino acids and glycolipids: Structure, preparation and properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997,123:49-70.
[24] Diego R. Perinelli A, Casettari L B, et al. Chemical–physical properties and cytotoxicity of N-decanoyl amino acid-based surfactants: Effect of polar heads [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,492(1):38-46.
[25] Kamimura A. Colorimetric determination of long-chain N- acylglutamic acids with pinacyanol [J]. Japan Society for Bioscience, Biotechnology, and Agrochemistry, 1973,37(3):457-464.
[26] Shida T, Homma Y, Misato T. Bacterial degradation of N-lauroyl- L-valine [J]. Japan Society for Bioscience, Biotechnology, and Agrochemistry, 1973,37(5):1027-1033.
[27] Pinazo A, Pons R, Pérez L, et al. Amino acids as raw material for biocompatible surfactants [J]. Industrial & Engineering Chemistry Research, 2011,50:4805-4817.
[28] Kubo M, Yamad K, Takinami K. Effects of chemical structure of biodegradation of long chain N-acyl amino acids:Studies on biodegradation of amino acid derivatives(I) [J]. Journal of Fermentation Technology, 1976,54:323-332.
[29] Rosen M J,表面活性劑與界面現(xiàn)象[M]. 北京:化學(xué)工業(yè)出版, 2012:102-181. Rosen M J,Surfactant and interfacial phenomena [M]. Beijing: Chemical Industry Press, 2012:102-181.
[30] Hisham J Y, Aila E. Interaction of Nonionic surfactant Triton-X-100 with ionic surfactants [J]. Journal of Dispersion Science and Technology, 2009,30(9):1277-1280.
[31] GBT15818-2018 表面活性劑生物降解度試驗(yàn)方法 [S]. GBT15818-2018 Test method for biodegradability of surfactants [S].
[32] Liang Zhao, Wengang Liu, Hao Duan, et al. Sodium carbonate effects on the flotation separation of smithsonite from quartz using N,N¢-dilauroyl ethylenediamine dipropionate as a collector [J]. Minerals Engineering, 2018,126:1-8.
[33] 馮 瑜,張廣良,宋 鵬,等.表面活性劑生物降解性及其法規(guī) [J]. 日用化學(xué)品科學(xué), 2014,37(6):33-39. Feng Y, Zhang G L, Song P, et al. Standards and regulations of surfactant biodegradation [J]. Detergent & Cosmetics, 2014,37(6): 33-39.
[34] 王 媛,田志海,孫 馨,等.不同類(lèi)型表面活性劑對(duì)三氯乙烯的增溶作用[J]. 環(huán)境化學(xué), 2013,32(6):1051-1055.Wang Y, Tian Z H, Sun X, et al. Solubilization of trichloroethylene by different types of surfactants [J]. Envionment Chemistry,2013,32(6): 1051-1055.
[35] Sahu A, Choudhury S, Bera A, et al. Anionic–nonionic mixed surfactant systems: micellar interaction and thermodynamic behavior [J]. Journal of Dispersion Science and Technology, 2014,36(8): 1156–1169.
[36] 白 靜.表面活性劑強(qiáng)化地下水循環(huán)井技術(shù)修復(fù)NAPL污染含水層研究 [D]. 長(zhǎng)春:吉林大學(xué), 2013. Bai J. Remediation of NAPL contaminated aquifer with surfactant- enhanced groundwater circulation well [D]. Changchun: Jilin University, 2013.
[37] 劉銀平.混合表面活性劑修復(fù)四氯乙烯土壤污染研究 [D]. 北京:華北電力大學(xué), 2011. Liu Y P. Research on perchloroethylene contaminated soil remediation using mixed surfactant [D]. Beijing: North China Electric Power University, 2011.
Performance of amino acid gemini surfactant co-mixed systems in solubilization of perchloroethylene.
ZHAO Han1,2, DONG Jun1,2*, XIA Tian1,2, LIANG Xue1,2, LI Wen-de1,2
(1.College of New Energy Resource and Environment, Jilin University, Changchun 130021, China;2.Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China)., 2021,41(4):1634~1641
The amino acid gemini surfactant N, N’-dilauroyl ethylenediamine sodium dipropionate (DLMC) and its co-mixed system were used to improve the solubility of perchloroethylene (PCE) in groundwater and to enhance the removal effect.The primary biodegradability of DLMC was determined and it was co-mixed with short-chain alcohols (isopropyl alcohol, ethanol) and traditional surfactants including sodium dodecyl sulfate(SDS), octylphenyl polyoxyethylene ether(TX-100) and polyoxyethylene dehydrated sorbitan monooleate (Tween80). The results showed that the biodegradability of DLMC was over 99%, possessing good biodegradability. Two formulations of DLMC-IPA (1:4) and DLMC-Tween80 (1:1) were selected for PCE-contaminated column flushingand their solubilizing concentrations were 18329 and 16906mg/L at 40g/L, respectively. DLMC-Tween80(1:1) showed the best flushing effect on PCE-contaminated columns with a flushing efficiency of 9.87g PCE per liter of flushing solution, which was 16% higher than that of single DLMC system.
amino acid;gemini surfactants;solubilization;perchloroethylene
X703
A
1000-6923(2021)04-1634-08
趙 寒(1997-),男,江西撫州人,吉林大學(xué)碩士研究生,主要從事污染場(chǎng)地修復(fù)方面研究.
2020-08-04
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFC1802503);國(guó)家自然科學(xué)基金資助項(xiàng)目(42077167)
* 責(zé)任作者, 教授, dongjun@jlu.edu.cn